Role of the RIG-I-like receptors in antiviral response
Agnieszka Jabłońska 1 , Edyta Paradowska 1Abstract
The innate nonspecific immunity is the first line of defense against viral infection. Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are two main receptor families detecting viral nucleic acid. So far, three RLR family members were characterized: RIG-I, MDA5 and LGP2. RLR constitute a family of cytoplasmic helicases, which recognized intracellular single-stranded and double-stranded RNA that is introduced to cytosol during viral infection and replication. In this work we review the current knowledge about the mechanisms of viral recognition by RIG-I-like receptors and their signaling pathways for the activation of type I interferons and pro-inflammatory cytokines synthesis.
References
- 1. Ablasser A., Bauernfeind F., Hartmann G., Latz E., Fitzgerald K.A.,Hornung V.: RIG-I-dependent sensing of poly(dA:dT) through theinduction of an RNA polymerase III-transcribed RNA intermediate.Nat. Immunol., 2009; 10: 1065-1072
Google Scholar - 2. Andrejeva J., Childs K.S., Young D.F., Carlos T.S., Stock N., GoodbournS., Randall R.E.: The V proteins of paramyxoviruses bind theIFN inducible RNA helicase, mda-5, and inhibit its activation of theIFN-β promoter. Proc. Natl. Acad. Sci. USA, 2004; 101: 17264-17269 3 Arimoto K.I., Takahashi H., Hishiki T., Konishi H., Fujita T., ShimotohnoK.: Negative regulation of the RIG-I signaling by the ubiquitinligase RNF125. Proc. Natl. Acad. Sci. USA, 2007; 104: 7500-7505
Google Scholar - 3. activation pathways. The EMBO J., 2005; 24: 4018-4028
Google Scholar - 4. Bao X., Liu T., Shan Y., Li K., Garofalo R.P., Casola A.: Human metapneumovirusglycoprotein G inhibits innate immune responses.PLoS Pathog., 2008; 4: e1000077 5 Barral P.M., Sarkar D., Su Z-Z., Barber G.N., DeSalle R., RacanielloV.R., Fisher P.B.: Functions of the cytoplasmic RNA sensors RIGIand MDA-5: Key regulators of innate immunity. Pharmacol. Ther.,2009; 124: 219-234
Google Scholar - 5. J. Exp. Med., 2008; 205: 1601-1610
Google Scholar - 6. Beckham S.A., Brouwer J., Roth A., Wang D., Sadler A.J., JohnM., Jahn-Hofmann K., Williams B.R., Wilce J.A., Wilce M.C.: Conformationalrearrangements of RIG-I receptor on formation ofa multiprotein:dsRNA assembly. Nucleic Acids Res., 2013; 41: 3436-3445
Google Scholar - 7. Bubko I., Gruber B.M., Anuszewska E.L.: Rola proteasomu w terapiichorób nieuleczalnych. Postępy Hig. Med. Dośw., 2010; 64: 314-325
Google Scholar - 8. Castanier C., Garcin D., Vazquez A., Arnoult D.: Mitochondrialdynamics regulate the RIG-I-like receptor antiviral pathway. EMBORep., 2010; 11: 133-138
Google Scholar - 9. Castanier C., Zemirli N., Portier A., Garcin D., Bidère N., VazquezA., Arnoult D.: MAVS ubiquitination by the E3 ligase TRIM25 anddegradation by the proteasome is involved in type I interferon productionafter activation of the antiviral RIG-I-like receptors. BMCBiol., 2012; 10: 44
Google Scholar - 10. Charoenthongtrakul S., Gao L., Parvatiyar K., Lee D., Harhaj E.W.:RING finger protein 11 targets TBK1/IKKi kinases to inhibit antiviralsignaling. PLoS One, 2013; 8: e53717
Google Scholar - 11. Chen H., Li Y., Zhang J., Ran Y., Wei J., Yang Y., Shu H.B.: RAVER1is a coactivator of MDA5-mediated cellular antiviral response. J. Mol.Cell Biol., 2013; 5: 111-119
Google Scholar - 12. Chiu Y.H., MacMillan J.B., Chen Z.J.: RNA polymerase III detectscytosolic DNA and induces type-I interferons through the RIG-I pathway.Cell, 2009; 138: 576-591
Google Scholar - 13. Cui S., Eisenächer K., Kirchhofer A., Brzózka K., Lammens A.,Lammens K., Fujita T., Conzelmann K.K., Krug A., Hopfner K.P.: TheC-terminal regulatory domain is the RNA 5’-triphosphate sensor ofRIG-I. Mol. Cell, 2008; 29: 169-179
Google Scholar - 14. Diao F., Li S., Tian Y., Zhang M., Xu L.G., Zhang Y., Wang R.P., ChenD., Zhai Z., Zhong B., Tien P., Shu H.B.: Negative regulation of MDA5 –but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetonekinase. Proc. Natl. Acad. Sci. USA, 2007; 104: 11706-11711
Google Scholar - 15. Dong B., Niwa M., Walter P., Silverman R.H.: Basis for regulatedRNA cleavage by functional analysis of RNase L and Ire1p. RNA,2001; 7: 361-373
Google Scholar - 16. Ferreira R.C., Pan-Hammarström Q., Graham R.R., Gateva V.,Fontán G., Lee A.T., Ortmann W., Urcelay E., Fernández-Arquero M.,Núñez C., Jorgensen G., Ludviksson B.R., Koskinen S., Haimila K.,Clark H.F., Klareskog L., Gregersen P.K., Behrens T.W., HammarströmL.: Association of IFIH1 and other autoimmunity risk alleles withselective IgA deficiency. Nat. Genet., 2010; 42:777-780
Google Scholar - 17. Fitzgerald K.A., McWhirter S.M., Faia K.L., Rowe D.C., Latz E.,Golenbock D.T., Coyle A.J., Liao S.M., Maniatis T.: IKKepsilon andTBK1 are essential components of the IRF3 signaling pathway. Nat.Immunol., 2003; 4: 491-496
Google Scholar - 18. Friedman C.S., O’Donnell M.A., Legarda-Addison D., Ng A., CárdenasW.B., Yount J.S., Moran T.M., Basler C.F., Komuro A., Horvath C.M.,Xavier R., Ting A.T.: The tumor suppressor CYLD is a negative regulatorof RIG-I-mediated antiviral response. EMBO Rep., 2008; 9: 930-936
Google Scholar - 19. Foy E., Li K., Sumpter R. Jr., Loo Y-M., Johnson C.L., Wang C.,Fish P.M., Yoneyama M., Fujita T., Lemon S.M., Gale M. Jr.: Controlof antiviral defenses through hepatitis C virus disruption of retinoicacid-inducible gene-I signaling. Proc. Natl. Acad. Sci. USA, 2005;102: 2986-2991
Google Scholar - 20. Fredericksen B.L., Gale M. Jr.: West Nile virus evades cctivationof interferon regulatory factor 3 through RIG-I-dependent and – independentpathways without antagonizing host defense signaling.J. Virol., 2006; 80: 2913-2923
Google Scholar - 21. Fritz J.H., Ferrero R.L., Philpott D.J., Girardin S.E.: Nod-like proteinsin immunity, inflammation and disease. Nature Immunol.,2006; 7: 1250-1257
Google Scholar - 22. Gack M.U., Shin Y.C., Joo C.H., Urano T., Liang C., Sun L., TakeuchiO., Akira S., Chen Z., Inoue S., Jung J.U.: TRIM25 RING-finger E3ubiquitin ligase is essential for RIG-I-mediated antiviral activity.Nature, 2007; 446: 916-920
Google Scholar - 23. Gitlin L., Barchet W., Gilfillan S., Cella M., Beutler B., FlavellR.A., Diamond M.S., Colonna M.: Essential role of mda-5 in typeI IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditispicornavirus. Proc. Natl. Acad. Sci. USA, 2006;103: 8459-8464
Google Scholar - 24. Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T.: Immunologia.Wydawnictwo Naukowe PWN, Warszawa 2011
Google Scholar - 25. Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M.: Tworelated superfamilies of putative helicases involved in replication,recombination, repair and expression of DNA and RNA genomes.Nucleic Acids Res., 1989; 17: 4713-4730
Google Scholar - 26. Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M.: A novelsuperfamily of nucleoside triphosphate-binding motif containingproteins which are probably involved in duplex unwinding inDNA and RNA replication and recombination. FEBS Letters, 1988;235: 16-24
Google Scholar - 27. Habjan M., Andersson I., Klingström J., Schümann M., MartinA., Zimmermann P., Wagner V., Pichlmair A., Schneider U., MühlbergerE., Mirazimi A., Weber F.: Processing of genome 5’ termini asa strategy of negative-strand RNA viruses to avoid RIG-I-dependentinterferon induction. PLoS One, 2008; 3: e2032
Google Scholar - 28. Harhaj E.W., Dixit V.M.: Regulation of NF-ĸB by deubiquitinases.Immunol. Rev., 2012; 246: 107-124
Google Scholar - 29. Hausmann S., Marq J.B., Topparel C., Kolakofsky D., Garcin D.:RIG-I and dsRNA-induces IFNβ activation. PLoS One, 2008; 3: e3965
Google Scholar - 30. Hornung V., Ellegast J., Kim S., Brzózka K., Jung A., Kato H.,Poeck H., Akira S., Conzelmann K.K., Schlee M., Endres S., HartmannG.: 5’-Triphosphate RNA is the ligand for RIG-I. Science, 2006; 314:994-997
Google Scholar - 31. Hou F., Sun L., Zheng H., Skaug B., Jiang Q.X., Chen Z.J.: MAVSforms functional prion-like aggregates to activate and propagateantiviral innate immune response. Cell, 2011; 146: 448-461
Google Scholar - 32. Huang J., Liu T., Xu L.G., Chen D., Zhai Z., Shu H.B.: SIKE is anIKKε/TBK1-associated suppressor of TLR3 – and virus-triggered IRF-
Google Scholar - 33. Ishikawa H., Barber G.N.: STING is an endoplasmic reticulumadaptor that facilitates innate immune signalling. Nature, 2008;455: 674-678
Google Scholar - 34. Ishikawa H., Ma Z., Barber G.N.: STING regulates intracellularDNA-mediated, type I interferon-dependent innate immunity. Nature,2009; 461: 788-792
Google Scholar - 35. Jounai N., Takeshita F., Kobiyama K., Sawano A., Miyawaki A.,Xin K.Q., Ishii K.J., Kawai T., Akira S., Suzuki K., Okuda K.: The Atg5-Atg12 conjugate associates with innate antiviral immune responses.Proc. Natl. Acad. Sci. USA, 2007; 104: 14050-14055
Google Scholar - 36. Kang D.C, Gopalkrishnan R.V., Wu Q., Jankowsky E., Pyle A.M.,Fisher P.B.: mda-5: An interferon-inducible putative RNA helicasewith double-stranded RNA-dependent ATPase activity and melanomagrowth-suppressive properties. Proc. Natl. Acad. Sci. USA,2002; 99: 637-642
Google Scholar - 37. Kanneganti T.D., Body-Malapel M., Amer A., Park J.H., WhitfieldJ., Franchi L., Taraporewala Z.F., Miller D., Patton J.T., InoharaN., Núñez G.: Critical role for Cryopyrin/Nalp3 in activation of caspase-1in response to viral infection and double-stranded RNA. J.Biol. Chem., 2006; 281: 36560-36568
Google Scholar - 38. Kato H., Sato S., Yoneyama M., Yamamoto M., Uematsu S., MatsuiK., Tsujimura T., Takeda K., Fujita T., Takeuchi O., Akira S.: Celltype-specific involvement of RIG-I in antiviral response. Immunity,2005; 23: 19-28
Google Scholar - 39. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., MatsushitaK., Hiiragi A., Dermody T.S., Fujita T., Akira S.: Length-dependentrecognition of double-stranded ribonucleic acids by retinoicacid-inducible gene-I and melanoma differentiation-associated gene
Google Scholar - 40. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., MatsuiK., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K.,Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., AkiraS.: Differential roles of MDA5 and RIG-I helicases in the recognitionof RNA viruses. Nature, 2006; 441: 101-105
Google Scholar - 41. Kawai T., Akira S.: The roles of TLRs, RLRs and NLRs in pathogenrecognition. Int. Immunol., 2009; 21: 317-337
Google Scholar - 42. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H.,Ishii K.J., Takeuchi O., Akira S.: IPS-1, an adaptor triggering RIG-I– and Mda5-mediated type I interferon induction. Nat. Immunol.,2005; 6: 981-988
Google Scholar - 43. Kayagaki N., Phung Q., Chan S., Chaudhari R., Quan C., O’RourkeK.M., Eby M., Pietras E., Cheng G., Bazan J.F., Zhang Z., Arnott D.,Dixit V.M.: DUBA: a deubiquitinase that regulates type I interferonproduction. Science, 2007; 318: 1628-1632
Google Scholar - 44. Kim M.J., Hwang S.Y., Imaizumi T., Yoo J.Y.: Negative feedbackregulation of RIG-I-mediated antiviral signaling by interferon-inducedISG15 conjugation. J Virol., 2008; 82: 1474-1483
Google Scholar - 45. Komuro A., Horvath C.M.: RNA – and virus-independent inhibitionof antiviral signaling by RNA helicase LGP2. J. Virol., 2006;80: 12332-12342
Google Scholar - 46. Kübler K., Gehrke N., Riemann S., Böhnert V., Zillinger T., HartmannE., Pölcher M., Rudlowski C., Kuhn W., Hartmann G., BarchetW.: Targeted activation of RNA helicase retinoic acid-inducible geneIinduces proimmunogenic apoptosis of human ovarian cancer cells.Cancer Res., 2010; 70: 5293-52304
Google Scholar - 47. Lee H.K., Lund J.M., Ramanathan B., Mizushima N., Iwasaki A.:Autophagy-dependent viral recognition by plasmacytoid dendriticcells. Science, 2007; 315: 1398-1401
Google Scholar - 48. Leung D.W., Basler C.F., Amarasinghe G.K.: Molecular mechanismsof viral inhibitors of RIG-I-like receptors. Trends Microbiol.,2012; 20: 139-146
Google Scholar - 49. Leung D.W., Prins K.C., Borek D.M., Farahbakhsh M., TufarielloJ.M., Ramanan P., Nix J.C., Helgeson L.A., Otwinowski Z., HonzatkoR.B., Basler C.F., Amarasinghe G.K.: Structural basis for dsRNA recognitionand interferon antagonism by Ebola VP35. Nat. Struct. Mol.Biol., 2010; 17: 165-172
Google Scholar - 50. Li X., Ranjith-Kumar C.T., Brooks M.T., Dharmaiah S., Herr A.B.,Kao C., Li P.: The RIG-I-like receptor LGP2 recognizes the termini ofdouble-stranded RNA. J. Biol. Chem., 2009; 284: 13881-13891
Google Scholar - 51. Lin R., Yang L., Nakhaei P., Sun Q, Sharif-Askari E., Julkunen I.,Hiscott J.: Negative regulation of the retinoic acid-inducible gene Iinducedantiviral state by the ubiquitin-editing protein A20. J. Biol.Chem., 2006; 281: 2095-2103
Google Scholar - 52. Loo Y.M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-SobridoL., Akira S., Gill M.A., García-Sastre A., Katze M.G., GaleM.Jr.: Distinct RIG-I and MDA5 signaling by RNA viruses in innateimmunity. J. Virol., 2008; 82: 335-345
Google Scholar - 53. Maelfait J., Beyaert R.: Emerging role of ubiquitination in antiviralRIG-I signaling. Microbiol. Mol. Biol. Rev., 2012; 76: 33-45
Google Scholar - 54. Malathi K., Dong B., Gale M.Jr, Silverman R.H.: Small self-RNAgenerated by RNase L amplifies antiviral innate immunity. Nature,2007; 448: 816-819
Google Scholar - 55. Malmgaard L.: Induction and regulation of IFNs during viralinfections. J. Interferon Cytokine Res., 2004; 24: 439-454
Google Scholar - 56. McCartney S.A., Thackray L.B., Gitlin L., Gilfillan S., Virgin H.W.,Colonna M.: MDA-5 recognition of a murine norovirus. PLoS Pathog.,2008; 4: e1000108
Google Scholar - 57. Melchjorsen J., Rintahaka J., Søby S., Horan K.A., PoltajainenA., Østergaard L., Paludan S.R., Matikainen S.: Early innate recognitionof herpes simplex virus in human primary macrophagesis mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J. Virol., 2010; 84:11350-11358
Google Scholar - 58. Meylan E., Curran J., Hofmann K., Moradpour D., Binder M.,Bartenschlager R., Tschopp J.: Cardif is an adaptor protein in theRIG-I antiviral pathway and is targeted by hepatitis C virus. Nature,2005; 437: 1167-1172
Google Scholar - 59. Michallet M.C., Meylan E., Ermolaeva M.A., Vazquez J., RebsamenM., Curran J., Poeck H., Bscheider M., Hartmann G., König M.,Kalinke U., Pasparakis M., Tschopp J.: TRADD protein is an essentialcomponent of the RIG-like helicase antiviral pathway. Immunity,2008; 28: 651-661
Google Scholar - 60. Moore C.B., Bergstralh D.T., Duncan J.A., Lei Y., Morrison T.E.,Zimmermann A.G., Accavitti-Loper M.A., Madden V.J., Sun L., Ye Z.,Lich J.D., Heise M.T., Chen Z., Ting J.P.: NLRX1 is a regulator of mitochondrialantiviral immunity. Nature, 2008; 451: 573-577
Google Scholar - 61. Mori M, Yoneyama M., Ito T., Takahashi K., Inagaki F., Fujita T.:Identification of Ser-386 of interferon regulatory factor 3 as criticaltarget for inducible phosphorylation that determines activation. J.Biol. Chem., 2004; 279: 9698-9702
Google Scholar - 62. Motz C., Schumman K.M., Kirchofer A., Moldt M., Witte G., ConzelmannK.K., Hopfer K.P.: Paramyxovirus V proteins disrupt thefold of the RNA sensor MDA5 to inhibit antiviral signaling. Science,2013; 339: 690-693
Google Scholar - 63. Murali A., Li X., Ranjith-Kumar C.T., Bhardwaj K., HolzenburgA., Li P., Kao C.C.: Structure and function of LGP2, a DEX(D/H) helicasethat regulates the innate immunity response. J. Biol. Chem.,2008; 283: 15825-15833
Google Scholar - 64. Nejentsev S., Walker N., Riches D., Egholm M., Todd J.A.: Rarevariants of IFIH1, a gene implicated in antiviral responses, protectagainst type 1 diabetes. Science, 2009; 324: 387-389
Google Scholar - 65. Oshiumi H., Matsumoto M., Hatakeyama S., Seya T.: Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promoteinterferon-β induction during the early phase of viral infection. J.Biol. Chem., 2009; 284: 807-817
Google Scholar - 66. Osorio F., Reis e Sousa C.: Myeloid C-type lectin receptors inpathogen recognition and host defense. Immunity, 2011; 34: 651-664
Google Scholar - 67. Parvatiyar K., Barber G.L., Harhaj E.W.: TAX1BP1 and A20 inhibitantiviral signaling by targeting TBK1-IKKi kinases. J. Biol. Chem.,2010; 285: 14999-15009
Google Scholar - 68. Pichlmair A., Schulz O., Tan C.P., Näslund T.I., Liljeström P., WeberF., Reis e Sousa C.: RIG-I-mediated antiviral responses to singlestrandedRNA bearing 5’-phosphates. Science, 2006; 314: 997-1001
Google Scholar - 69. Pichlmair A., Schulz O., Tan C.P., Rehwinkel J., Kato H., TakeuchiO., Akira S., Way M., Schiavo G., Reis e Sousa C.: Activation of MDA5requires higher-order RNA structures generated during virus infection.J. Virol., 2009; 83: 10761-10769
Google Scholar - 70. Prens E.P., Kant M., van Dijk G., van der Wel L.I., Mourits S., vander Fits L.: IFN-α enhances poly-IC responses in human keratinocytesby inducing expression of cytosolic innate RNA receptors: revelancefor psoriasis. J Invest. Dermatol., 2008; 128: 932-938
Google Scholar - 71. Rajsbaum R., Albrecht R.A., Wang M.K., Maharaj N.P., VersteegG.A., Nistal-Villán E., García-Sastre A., Gack M.U.: Species-specificinhibition of RIG-I ubiquitination and IFN induction by the influenzaA virus NS1 protein. PLOS Pathog., 2012; 8: e100305949
Google Scholar - 72. Rasmussen S.B., Jensen S.B., Costa E., Nielsen C., Kato H., ChenZ.J., Silverman R.H., Akira S., Paludan S.R.: Herpes simplex virus infectionis sensed by both Toll-like receptors and RIG-like receptors,which synergize to induce type I interferon production. J. Gen. Virol.,2009; 90: 74-78
Google Scholar - 73. Reich N., Evans B., Levy D., Fahey D., Knight E. Jr, Darnell J.E.Jr.:Interferon-induced transcription of a gene encoding a 15-kDa proteindepends on a upstream enhancer element. Proc. Natl. Acad. Sci.USA, 1987; 84: 6394-6398
Google Scholar - 74. Roth-Cross J.K., Bender S.J., Weiss S.R.: Murine coronavirusmouse hepatitis virus is recognized by MDA5 and induces type I interferonin brain macrophages/microglia. J. Virol., 2008; 82: 9829-9838
Google Scholar - 75. Saha S.K., Pietras E.M., He J.Q., Kang J.R., Liu S.Y., Oganesyan G.,Shahangian A., Zarnegar B., Shiba T.L., Wang Y., Cheng G.: Regulationof antiviral responses by a direct and specific interaction betweenTRAF3 and Cardif. EMBO J., 2006; 25: 3257-3263
Google Scholar - 76. Saito T., Hirai R., Loo Y-M., Owen D., Johnson C.L., Sinha S.C.,Akira S., Fujita T., Gale M.Jr.: Regulation of innate antiviral defensesthrough a shared repressor domain in RIG-I and LGP2. Proc. Natl.Acad. Sci. USA, 2007; 104: 582-587
Google Scholar - 77. Saito T., Owen D.M., Jiang F., Marcotrigiano J., Gale M. Jr.: Innateimmunity induced by composition-dependent RIG-I recognition ofHepatitis C virus RNA. Nature, 2008; 454: 523-527
Google Scholar - 78. Satoh T., Kato H., Kumagai Y., Yoneyama M., Sato S., MatsushitaK., Tsujimura T., Fujita T., Akira S., Takeuchi O.: LGP2 is a positiveregulator of RIG-I – and MDA5-mediated antiviral responses. Proc.Natl. Acad. Sci. USA, 2010; 107: 1512-1517
Google Scholar - 79. Schlee M., Roth A., Hornung V., Hagmann C.A., WimmenauerV., Barchet W., Coch C., Janke M., Mihailovic A., Wardle G., JuranekS., Kato H., Kawai T., Poeck H., Fitzgerald K.A. i wsp.: Recognitionof 5’-triphosphate by RIG-I helicase requires short blunt doublestrandedRNA as contained in panhandle of negative strand virus.Immunity, 2009; 31: 25-34
Google Scholar - 80. Seth R.B., Sun L., Ea C.K., Chen Z.J.: Identification and characterizationof MAVS, a mitochondrial antiviral signaling protein thatactivates NF-κB and IRF3. Cell, 2005; 122: 669-682
Google Scholar - 81. Sharma S., tenOever B.R., Grandvaux N., Zhou G.P., Lin R., HiscottJ.: Triggering the interferon antiviral response through an IKKrelatedpathway. Science, 2003; 300: 1148-1151
Google Scholar - 82. Shembade N., Pujari R., Harhaj N.S., Abbott D.W., Harhaj E.W.:The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylation the regulatory molecule TAX1BP1. Nat. Immunol.,2012; 12; 834-843
Google Scholar - 83. Skaug B., Chen Z.J.: Emerging role of ISG15 in antiviral immunity.Cell, 2010; 143: 187-190
Google Scholar - 84. Sochocka M., Błach-Olszewska Z.: Mechanisms of innate immunity.Postępy Hig. Med. Dośw., 2005; 59: 250-258
Google Scholar - 85. Subramaniam V., Li H., Wong M., Kitching R., Attisano L., WranaJ., Zubovits J., Burger A.M., Seth A.: The RING-H2 protein RNF11 isoverexpressed in breast cancer and is a target of Smurf2 E3 ligase.Br. J. Cancer, 2003; 89: 1538-1544
Google Scholar - 86. Takahashi K., Kawai T., Kumar H., Sato S., Yonehara S., Akira S.:Cutting edge: roles of caspase-8 and caspase-10 in innate immuneresponses to double-stranded RNA. J. Immunol., 2006; 176: 4520-4524
Google Scholar - 87. Takahasi K., Kumeta H., Tsuduki N., Narita R., Shigemoto T., HiraiR., Yoneyama M., Horiuchi M., Ogura K., Fujita T., Inagaki F.: Solutionstructures of cytosolic RNA sensor MDA5 and LGP2 C-terminaldomains. Identification of the RNA recognition loop in RIG-I-likereceptor. J. Biol. Chem., 2009; 284: 17465-17474
Google Scholar - 88. Takahasi K., Yoneyama M., Nishihori T., Hirai R., Kumeta H.,Narita R., Gale M.Jr., Inagaki F., Fujita T.: Nonself RNA-sensing mechanismof RIG-I helicase and activation of antiviral immune responses.Mol. Cell, 2008; 29: 428-440
Google Scholar - 89. Takamatsu S., Onoguchi K., Onomoto K., Narita R., Takahasi K.,Ishidate F., Fujiwara T.K., Yoneyama M., Kato H., Fujita T.: Functionalcharacterization of domains of IPS-1 using an inducible oligomerizationsystem. PLoS One, 2013; 8: e53578
Google Scholar - 90. Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., LuY., Miyagishi M., Kodama T., Honda K., Ohba Y., Taniguchi T.: DAI(DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innateimmune response. Nature, 2007; 448: 501-505
Google Scholar - 91. Unterholzner L., Keating S.E., Baran M. Horan K.A., Jensen S.B.,Sharma S., Sirois C.M., Jin T., Xiao T., Fitzgerald K.A., Paludan S.R.,Bowie A.G.: IFI16 is an innate immune sensor for intracellular DNA.Nat. Immunol., 2010; 11: 997-1004
Google Scholar - 92. Uzri D., Gehrke L.: Nucleotide sequences and modifications thatdetermine RIG-I/RNA binding and signaling activities. J. Virol., 2009;83: 4174-4184
Google Scholar - 93. Venkataraman T., Valdes M., Elsby R., Kakuta S., Caceres G.,Saijo S., Iwakura Y., Barber G.N.: Loss of DExD/H box RNA helicaseLGP2 manifests disparate antiviral responses. J. Immunol., 2007;178: 6444-6455
Google Scholar - 94. Wang L., Zhao W., Zhang M., Wang P., Zhao X., Yang S., Gao C.:USP4 positively regulates RIG-I-mediated antiviral response throughdeubiquitination and stabilization of RIG-I. J. Virol., 2013; 87: 4507-4515
Google Scholar - 95. Wang X., Basler C.F., Williams B.R., Silverman R.H., Palese P.,García-Sastre A.: Functional replacement of the carboxy-terminaltwo-thirds of the influenza A virus NS1 protein with short heterologousdimerization domains. J. Virol., 2002; 76: 12951-12962
Google Scholar - 96. Wang Y., Tong X., Li G., Li J., Deng M., Yr X.: Ankrd17 positivelyregulates RIG-I-like receptor (RLR)-mediated immune signaling. Eur.J. Immunol., 2012; 42: 1304-1315
Google Scholar - 97. Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., WalzT., Hur S.: Structural basis for dsRNA recognition, filament formation,and antiviral signal activation by MDA5. Cell, 2013; 152: 276-289
Google Scholar - 98. Xing J., Wang S., Lin R., Mossman K.L., Zheng C.: Herpes simplexvirus 1 tegument protein US11 downmodulates the RLR signalingpathway via direct interaction with RIG-I and MDA-5. J. Virol., 2012;86: 3528-3540
Google Scholar - 99. Xu L.G., Wang Y.Y., Han K.J., Li L.Y., Zhai Z., Shu H.B.: VISA is anadapter protein required for virus-triggered IFN-β signaling. Mol.Cell, 2005; 19: 727-740
Google Scholar - 100. Yoneyama M., Fujita T.: Structural mechanism of RNA recognitionby the RIG-I-like receptors. Immunity, 2008; 29: 178-181
Google Scholar - 101. Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., MiyagishiM., Taira K., Foy E., Loo Y.M., Gale M.Jr., Akira S., Yonehara S.,Kato A., Fujita T.: Shared and unique functions of the DExD/H-boxhelicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol.,2005; 175: 2851-2858
Google Scholar - 102. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., ImaizumiT., Miyagishi M., Taira K., Akira S., Fujita T.: The RNA helicase RIGIhas an essential function in double-stranded RNA-induced innateantiviral responses. Nat. Immunol., 2004; 5: 730-737
Google Scholar - 103. Yoneyama M., Suhara W., Fujita T.: Control of IRF-3 activationby phosphorylation. J. Interferon Cytokine Res., 2002; 22: 73-76
Google Scholar - 104. Yoneyama M., Suhara W., Fukuhara Y., Fukuda M., Nishida E.,Fujita T.: Direct triggering of the type I interferon system by virusinfection: activation of a transcription factor complex containingIRF-3 and CBP/p300. EMBO J., 1998: 17: 1087-1095
Google Scholar - 105. Yu Y., Wang S.E., Hayward G.S.: The KSHV immediate-earlytranscription factor RTA encodes ubiquitin E3 ligase activity thattargets IRF7 for proteosome-mediated degradation. Immunity, 2005;22: 59-70
Google Scholar - 106. Zeng W., Sun L., Jiang X., Chen X., Hou F., Adhikari A., Xu M.,Chen Z.J.: Reconstitution of the RIG-I pathway reveals a signalingrole of unanchored polyubiquitin chains in innate immunity. Cell,2010; 141: 315-330
Google Scholar - 107. Zhong B., Yang Y., Li S., Wang Y.Y., Li Y., Diao F., Lei C., He X.,Zhang L., Tien P., Shu H.B.: The adaptor protein MITA links virussensingreceptors to IRF3 transcription factor activation. Immunity,2008; 29: 538-550
Google Scholar