Selected aspects of Chlamydophila pneumoniae infections
Agnieszka Jama-Kmiecik 1 , Magdalena Frej-Mądrzak 1 , Jolanta Sarowska 1 , Irena Choroszy-Król 1Abstract
Chlamydophila pneumoniae was taxonomically separated from strain TWAR – an abbreviation of the strain isolated from humans TW-183 (material from the eye of a child in Taiwan in 1965) and AR-39 (material from a student’s throat swab with acute changes within airways in Seattle in 1983). The basis of separation of the C. pneumoniae species was the unique structure of the elementary bodies.Infection caused by C. pneumoniae is often asymptomatic (60-80% of all infections). Symptomatic infections of the upper respiratory tract relate to pharyngitis, laryngitis, sinusitis and the lower respiratory tract: bronchitis and pneumonia. C. pneumoniae infection often transforms into a chronic, clinically oligo- or asymptomatic form. The chronic inflammatory process is associated by many authors with the pathogenesis of coronary artery disease, endocarditis, atherosclerosis, hypertension, vasculitis, multiple sclerosis, sarcoidosis, and asthma.C. pneumoniae has a specific tropism and exhibits cytotoxic activity towards the airway epithelium, in which it proliferates and destroys infected cells by lysis. Entry of these bacteria to the human body leads to activation of first non-specific and then specific resistance mechanisms and the development of a local inflammatory process.Diagnosis of C. pneumoniae should be confirmed only after the exclusion of typical micro-organisms causing respiratory infections. It is important to pay attention to the fact that the epidemiological data on the incidence of C. pneumoniae infections in different age groups of patients are variable depending on the type of diagnostic methods used in the research.Chlamydia are resistant to most antibiotics that are routinely used in respiratory tract infections. These bacteria are susceptible to antibiotics that disrupt the synthesis of DNA and proteins, such as macrolides, tetracyclines, and fluoroquinolones.
References
- 1. Aslam S., Hamill R.J., Musher D.M.: Treatment of Clostridium difficile-associateddisease: old therapies and new strategies. LancetInfect. Dis., 2005; 5: 549-557
Google Scholar - 2. Baban S.T., Kuehne S.A., Barketi-Klai A., Cartman S.T., Kelly M.L.,Hardie K.R., Kansau I., Collignon A., Minton N.P.: The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemicand an epidemic strain. PLoS One, 2013; 8: e73026
Google Scholar - 3. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I.:Host-bacterial mutualism in the human intestine. Science, 2005;307: 1915-1920
Google Scholar - 4. Bakken J.S.: Fecal bacteriotherapy for recurrent Clostridium difficileinfection. Anaerobe, 2009; 15: 285-289 5 Barbut F., Richard A., Hamadi K., Chomette V., Burghoffer B., PetitJ.C.: Epidemiology of recurrences or reinfections of Clostridiumdifficile-associated diarrhea. J. Clin. Microbiol., 2000; 38: 2386-2388
Google Scholar - 5. Nature, 2001; 410: 1099-1103
Google Scholar - 6. Bartlett J.G.: Antibiotic-associated diarrhea. N. Engl. J. Med., 2002;346: 334-339
Google Scholar - 7. Bartlett J.G., Chang T.W., Moon N., Onderdonk A.B.: Antibioticinducedlethal enterocolitis in hamsters: studies with eleven agentsand evidence to support the pathogenic role of toxin-producingclostridia. Am. J. Vet. Res., 1978; 39: 1525-1530
Google Scholar - 8. Bartoloni A., Mantella A., Goldstein B.P., Dei R., Benedetti M.,Sbaragli S., Paradisi F.: In-vitro activity of nisin against clinical isolatesof Clostridium difficile. J. Chemother., 2004; 16: 119-121
Google Scholar - 9. Bauer M.P., Notermans D.W., van Benthem B.H., Brazier J.S., WilcoxM.H., Rupnik M., Monnet D.L., van Dissel J.T., Kuijper E.J., ECDISStudy Group: Clostridium difficile infection in Europe: a hospital-basedsurvey. Lancet, 2011; 377: 63-73
Google Scholar - 10. Bengmark S.: Modulation by enteral nutrition of the acute phaseresponse and immune functions. Nutr. Hosp., 2003; 18: 1-5
Google Scholar - 11. Boakes S., Ayala T., Herman M., Appleyard A.N., Dawson M.J., CortésJ.: Generation of an actagardine A variant library through saturationmutagenesis. Appl. Microbiol. Biotechnol., 2012; 95: 1509-1517
Google Scholar - 12. Borody T.J., Khoruts A.: Fecal microbiota transplantation andemerging applications. Nat. Rev. Gastroenterol. Hepatol., 2011; 9:88-96
Google Scholar - 13. Bouma G., Strober W.: The immunological and genetic basis ofinflammatory bowel disease. Nat. Rev. Immunol., 2003; 3: 521-533
Google Scholar - 14. Bouza E., Munoz P., Alonso R.: Clinical manifestations, treatmentand control of infections caused by Clostridium difficile. Clin.Microbiol. Infect., 2005; 11 (Suppl. 4): 57-64
Google Scholar - 15. Braat H., Rottiers P., Hommes D.W., Huyghebaert N., RemautE., Remon J.P., van Deventer S.J., Neirynck S., Peppelenbosch M.P.,Steidler L.: A phase I trial with transgenic bacteria expressing interleukin-10in Crohn’s disease. Clin. Gastroenterol. Hepatol., 2006;4: 754-759
Google Scholar - 16. Branka J.E., Vallette G., Jarry A., Bou-Hanna C., Lemarre P., VanP.N., Laboisse C.L.: Early functional effects of Clostridium difficile toxinA on human colonocytes. Gastroenterology, 1997; 112: 1887-1894
Google Scholar - 17. Braun M., Stuber K., Schlatter Y., Wahli T., Kuhnert P., Frey J.:Characterization of an ADP-ribosyltransferase toxin (AexT) fromAeromonas salmonicida subsp. salmonicida. J. Bacteriol., 2002; 184:1851-1858
Google Scholar - 18. Buffie C.G., Jarchum I., Equinda M., Lipuma L., Gobourne A.,Viale A., Ubeda C., Xavier J., Pamer E.G.: Profound alterations of intestinalmicrobiota following a single dose of clindamycin results insustained susceptibility to Clostridium difficile-induced colitis. Infect.Immun., 2012; 80: 62-73
Google Scholar - 19. Burrowes B., Harper D.R., Anderson J., McConville M., EnrightM.C.: Bacteriophage therapy: potential uses in the control of antibiotic-resistantpathogens. Expert Rev. Anti Infect. Ther., 2011;9: 775-785
Google Scholar - 20. Calabi E., Fairweather N.: Patterns of sequence conservation inthe S-layer proteins and related sequences in Clostridium difficile. J.Bacteriol., 2002; 184: 3886-3897
Google Scholar - 21. Cassone M., Serra P., Mondello F., Girolamo A., Scafetti S., PistellaE., Venditti M.: Outbreak of Saccharomyces cerevisiae subtype boulardiifungemia in patients neighboring those treated with a probioticpreparation of the organism. J. Clin. Microbiol., 2003; 41: 5340-5343
Google Scholar - 22. Castagliuolo I., Kelly C.P., Qiu B.S., Nikulasson S.T., LaMont J.T.,Pothoulakis C.: IL-11 inhibits Clostridium difficile toxin A enterotoxicityin rat ileum. Am. J. Physiol., 1997; 273: G333-G341
Google Scholar - 23. Castagliuolo I., LaMont J.T., Nikulasson S.T., Pothoulakis C.: Saccharomycesboulardii protease inhibits Clostridium difficile toxin A effectsin the rat ileum. Infect. Immun., 1996; 64: 5225-5232
Google Scholar - 24. Cerquetti M., Serafino A., Sebastianelli A., Mastrantonio P.: Bindingof Clostridium difficile to Caco-2 epithelial cell line and to extracellularmatrix proteins. FEMS Immunol. Med. Microbiol., 2002;32: 211-218
Google Scholar - 25. Chang J.Y., Antonopoulos D.A., Kalra A., Tonelli A., Khalife W.T.,Schmidt T.M., Young V.B.: Decreased diversity of the fecal microbiomein recurrent Clostridium difficile-associated diarrhea. J. Infect.Dis., 2008; 197: 435-438
Google Scholar - 26. Citron D.M., Tyrrell K.L., Merriam C.V., Goldstein E.J.: Comparativein vitro activities of LFF571 against Clostridium difficile and 630other intestinal strains of aerobic and anaerobic bacteria. Antimicrob.Agents Chemother., 2012; 56: 2493-2503
Google Scholar - 27. Clements A.C., Magalhães R.J., Tatem A.J., Paterson D.L., RileyT.V.: Clostridium difficile PCR ribotype 027: assessing the risks of furtherworldwide spread. Lancet Infect. Dis., 2010; 10: 395-404
Google Scholar - 28. Cohen S.H., Gerding D.N., Johnson S., Kelly C.P., Loo V.G., McDonaldL.C., Pepin J., Wilcox M.H.: Clinical practice guidelines forClostridium difficile infection in adults: 2010 update by the Societyfor Healthcare Epidemiology of America (SHEA) and the InfectiousDiseases Society of America (IDSA). Infect. Control Hosp. Epidemiol.,2010; 31: 431-455
Google Scholar - 29. Dabard J., Dubos F., Martinet L., Ducluzeau R.: Experimental reproductionof neonatal diarrhea in young gnotobiotic hares simultaneouslyassociated with Clostridium difficile and other Clostridiumstrains. Infect. Immun., 1979; 24: 7-11
Google Scholar - 30. Ðapa T., Leuzzi R., Ng Y.K., Baban S.T., Adamo R., Kuehne S.A.,Scarselli M., Minton N.P., Serruto D., Unnikrishnan M.: Multiple factorsmodulate biofilm formation by the anaerobic pathogen Clostridiumdifficile. J. Bacteriol., 2013; 195: 545-555
Google Scholar - 31. Dethlefsen L., Huse S., Sogin M.L., Relman D.A.: The pervasiveeffects of an antibiotic on the human gut microbiota, as revealed bydeep 16S rRNA sequencing. PLoS Biol., 2008; 6: e280
Google Scholar - 32. Didierlaurent A., Sirard J.C., Kraehenbuhl J.P., Neutra M.R.: Howthe gut senses its content. Cell. Microbiol., 2002; 4: 61-72
Google Scholar - 33. Dingle T.C., Mulvey G.L., Armstrong G.D.: Mutagenic analysisof the Clostridium difficile flagellar proteins, FliC and FliD, and theircontribution to virulence in hamsters. Infect. Immun., 2011; 79:4061-4067
Google Scholar - 34. Dubberke E.R., Wertheimer A.I.: Review of current literature onthe economic burden of Clostridium difficile infection. Infect. ControlHosp. Epidemiol., 2009; 30: 57-66
Google Scholar - 35. Dupuy B., Sonenshein A.L.: Regulated transcription of Clostridiumdifficile toxin genes. Mol. Microbiol., 1998; 27: 107-120
Google Scholar - 36. Eckburg P.B., Bik E.M, Bernstein C.N., Purdom E., Dethlefsen L.,Sargent M., Gill S.R., Nelson K.E., Relman D.A.: Diversity of the humanintestinal microbial flora. Science, 2005; 308: 1635-1638
Google Scholar - 37. Eidhin D.N., Ryan A.W., Doyle R.M., Walsh J.B., Kelleher D.: Sequenceand phylogenetic analysis of the gene for surface layer protein,slpA, from 14 PCR ribotypes of Clostridium difficile. J. Med. Microbiol.,2006; 55: 69-83
Google Scholar - 38. Eveillard M., Fourel V., Barc M.C., Kerneis S., Coconnier M.H.,Karjalainen T., Bourlioux P., Servin A.L.: Identification and characterizationof adhesive factors of Clostridium difficile involved in adhesionto human colonic enterocyte-like Caco-2 and mucus-secretingHT29 cells in culture. Mol. Microbiol., 1993; 7: 371-381
Google Scholar - 39. Fagan R.P., Albesa-Jové D., Qazi O., Svergun D.I., Brown K.A.,Fairweather N.F.: Structural insights into the molecular organizationof the S-layer from Clostridium difficile. Mol. Microbiol., 2009;71: 1308-1322
Google Scholar - 40. Gerding D.N., Johnson S., Peterson L.R., Mulligan M.E., Silva J.Jr.: Clostridium difficile-associated diarrhea and colitis. Infect. Control.Hosp. Epidemiol., 1995; 16: 459-477
Google Scholar - 41. Ghantoji S.S., Sail K., Lairson D.R., DuPont H.L., Garey K.W.: Economichealthcare costs of Clostridium difficile infection: a systematicreview. J. Hosp. Infect., 2010; 74: 309-318
Google Scholar - 42. Giannasca P.J., Warny M.: Active and passive immunization againstClostridium difficile diarrhea and colitis. Vaccine, 2004; 22: 848-856
Google Scholar - 43. Giannasca P.J., Zhang Z.X., Lei W.D., Boden J.A., Giel M.A., MonathT.P., Thomas W.D.Jr.: Serum antitoxin antibodies mediate systemicand mucosal protection from Clostridium difficile disease in hamsters.Infect. Immun., 1999; 67: 527-538
Google Scholar - 44. Girardin S.E., Boneca I.G., Carneiro L.A., Antignac A., JéhannoM., Viala J., Tedin K., Taha M.K., Labigne A., Zähringer U., Coyle A.J.,DiStefano P.S., Bertin J., Sansonetti P.J., Philpott D.J.: Nod1 detectsa unique muropeptide from gram-negative bacterial peptidoglycan.Science, 2003; 300: 1584-1587
Google Scholar - 45. Girardin S.E., Boneca I.G., Viala J., Chamaillard M., Labigne A.,Thomas G., Philpott D.J., Sansonetti P.J.: Nod2 is a general sensor ofpeptidoglycan through muramyl dipeptide (MDP) detection. J. Biol.Chem., 2003; 278: 8869-8872
Google Scholar - 46. Gülke I., Pfeifer G., Liese J., Fritz M., Hofmann F., Aktories K.,Barth H.: Characterization of the enzymatic component of the ADPribosyltransferasetoxin CDTa from Clostridium difficile. Infect. Immun.,2001; 69: 6004-6011
Google Scholar - 47. Hall I.C., O’Toole E.: Intestinal flora in new-born infants: witha description of a new pathogenic anaerobe, Bacillus difficilis. Am. J.Dis. Child., 1935; 49: 390-402
Google Scholar - 48. Harper D.R., Anderson J., Enright M.C.: Phage therapy: deliveringon the promise. Ther. Deliv., 2011; 2: 935-947
Google Scholar - 49. Hasegawa M., Yamazaki T., Kamada N., Tawaratsumida K., KimY.G., Nunez G., Inohara N.: Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophilrecruitment and protection against the pathogen. J. Immunol.,2011; 186: 4872-4880
Google Scholar - 50. Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., GoodlettD.R., Eng J.K., Akira S., Underhill D.M., Aderem A.: The innate immuneresponse to bacterial flagellin is mediated by Toll-like receptor
Google Scholar - 51. Hennequin C., Janoir C., Barc M.C., Collignon A., Karjalainen T.:Identification and characterization of a fibronectin-binding proteinfrom Clostridium difficile. Microbiology, 2003; 149: 2779-2787
Google Scholar - 52. Hennequin C., Porcheray F., Waligora-Dupriet A., Collignon A.,Barc M., Bourlioux P., Karjalainen T.: GroEL (Hsp60) of Clostridiumdifficile is involved in cell adherence. Microbiology, 2001; 147: 87-96
Google Scholar - 53. Hryniewicz W, Martirosian G., Ozorowski T.: Zakażenia Clostridiumdifficile: diagnostyka, terapia, profilaktyka. Narodowy InstytutLeków, Warszawa 2011
Google Scholar - 54. Jank T., Aktories K.: Structure and mode of action of clostridial glucosylatingtoxins: the ABCD model. Trends Microbiol., 2008; 16: 222-229
Google Scholar - 55. Janoir C., Pechine S., Grosdidier C., Collignon A.: Cwp84, a surface-associatedprotein of Clostridium difficile, is a cysteine proteasewith degrading activity on extracellular matrix proteins. J. Bacteriol.,2007; 189: 7174-7180
Google Scholar - 56. Jernberg C., Löfmark S., Edlund C., Jansson J.K.: Long-term ecologicalimpacts of antibiotic administration on the human intestinalmicrobiota. ISME J., 2007; 1: 56-66
Google Scholar - 57. Johnson A.P.: Drug evaluation: OPT-80, a narrow-spectrum macrocyclicantibiotic. Curr. Opin. Investig. Drugs, 2007; 8: 168-173
Google Scholar - 58. Johnson S., Maziade P.J., McFarland L.V., Trick W., Donskey C.,Currie B., Low D.E., Goldstein E.J.: Is primary prevention of Clostridiumdifficile infection possible with specific probiotics? Int. J. Infect.Dis., 2012; 16: e786-e792
Google Scholar - 59. Joshi L.T., Phillips D.S., Williams C.F., Alyousef A., Baillie L.: Contributionof spores to the ability of Clostridium difficile to adhere tosurfaces. Appl. Environ. Microbiol., 2012; 78: 7671-7679
Google Scholar - 60. Kaur S., Vaishnavi C., Prasad K.K., Ray P., Kochhar R.: Effect ofLactobacillus acidophilus & epidermal growth factor on experimentallyinduced Clostridium difficile infection. Indian J. Med. Res., 2011;133: 434-441
Google Scholar - 61. Kelly C.P.: Can we identify patients at high risk of recurrentClostridium difficile infection? Clin. Microbiol. Infect., 2012; 18 (Suppl.6): 21-27
Google Scholar - 62. Kim J.M., Lee J.Y., Yoon Y.M., Oh Y.K., Youn J., Kim Y.J.: NF-κBactivation pathway is essential for the chemokine expression in intestinalepithelial cells stimulated with Clostridium difficile toxin A.Scand. J. Immunol., 2006; 63: 453-460
Google Scholar - 63. Kirby J.M., Ahern H., Roberts A.K., Kumar V., Freeman Z., AcharyaK.R., Shone C.C.: Cwp84, a surface-associated cysteine protease,plays a role in the maturation of the surface layer of Clostridium difficile.J. Biol. Chem., 2009; 284: 34666-34673
Google Scholar - 64. Kotloff K.L., Wasserman S.S., Losonsky G.A., Thomas W.Jr., NicholsR., Edelman R., Bridwell M., Monath T.P.: Safety and immunogenicityof increasing doses of a Clostridium difficile toxoid vaccineadministered to healthy adults. Infect. Immun., 2001; 69: 988-995
Google Scholar - 65. Kuehne S.A., Cartman S.T., Heap J.T., Kelly M.L., Cockayne A.,Minton N.P.: The role of toxin A and toxin B in Clostridium difficileinfection. Nature, 2010; 467: 711-713
Google Scholar - 66. Kuijper E.J., Coignard B., Tull P., the ESCMID Study Group forClostridium difficile (ESGCD), EU Member States and the EuropeanCentre for Disease Prevention and Control (ECDC): Emergence ofClostridium difficile-associated disease in North America and Europe.Clin. Microbiol. Infect., 2006; 12 (Suppl. 6): 2-18
Google Scholar - 67. Kyne L., Hamel M.B., Polavaram R., Kelly C.P.: Health care costsand mortality associated with nosocomial diarrhea due to Clostridiumdifficile. Clin. Infect. Dis., 2002; 34: 346-353
Google Scholar - 68. Lavelle E.C., Murphy C., O’Neill L.A., Creagh E.M.: The role ofTLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis.Mucosal Immunol., 2010; 3: 17-28
Google Scholar - 69. Lawley T.D., Clare S., Walker A.W., Goluding D., Stabler R.A.,Croucher N., Mastroeni P., Scott P., Raisen C., Mottram L., FairweatherN.F., Wren B.W., Parkhill J., Dougan G.: Antibiotic treatment of Clostridiumdifficile carrier mice triggers a supershedder state, sporemediatedtransmission, and severe disease in immunocompromisedhosts. Infect. Immun., 2009; 77: 3661-3669
Google Scholar - 70. Lee J.S., Chung M.J., Seo J.G.: In vitro evaluation of antimicrobialactivity of lactic acid bacteria against Clostridium difficile. Toxicol.Res., 2013; 29: 99-106
Google Scholar - 71. Lessa F.C., Gould C.V., McDonald L.C.: Current status of Clostridiumdifficile infection epidemiology. Clin. Infect. Dis., 2012; 55(Suppl. 2): S65-S70
Google Scholar - 72. Lievin-Le Moal V., Servin A.L.: The front line of enteric hostdefense against unwelcome intrusion of harmful microorganisms:mucins, antimicrobial peptides, and microbiota. Clin. Microbiol.Rev., 2006; 19: 315-337
Google Scholar - 73. Lyerly D.M., Lockwood D.E., Richardson S.H., Wilkins T.D.: Biologicalactivities of toxins A and B of Clostridium difficile. Infect. Immun.,1982; 35: 1147-1150
Google Scholar - 74. Lyras D., O’Connor J.R., Howarth P.M., Sambol S.P., Carter G.P.,Phumoonna T., Poon R., Adams V., Vedantam G., Johnson S., GerdingD.N., Rood J.I.: Toxin B is essential for virulence of Clostridiumdifficile. Nature, 2009; 458: 1176-1179
Google Scholar - 75. Martins F.S., Nardi R.M., Arantes R.M., Rosa C.A., Neves M.J.,Nicoli J.R.: Screening of yeasts as probiotic based on capacities tocolonize the gastrointestinal tract and to protect against enteropathogenchallenge in mice. J. Gen. Appl. Microbiol., 2005; 51: 83-92
Google Scholar - 76. McDonald L.C., Killgore G.E., Thompson A., Owens R.C.Jr., KazakovaS.V., Sambol S.P., Johnson S., Gerding D.N.: An Epidemic, Toxingene-variant strain of Clostridium difficile. N. Engl. J. Med., 2005; 353:2433-2441
Google Scholar - 77. McFarland L.V., Mulligan M.E., Kwok R.Y., Stamm W.E.: Nosocomialacquisition of Clostridium difficile infection. N. Engl. J. Med.,1989; 320: 204-210
Google Scholar - 78. Meessen-Pinard M., Sekulovic O., Fortier L.C.: Evidence of invivo prophage induction during Clostridium difficile infection. Appl.Environ. Microbiol., 2012; 78: 7662-7670
Google Scholar - 79. Merrigan M., Venugopal A., Mallozzi M., Roxas B., ViswanathanV.K., Johnson S., Gerding D.N., Vedantam G.: Human hypervirulentClostridium difficile strains exhibit increased sporulation as well asrobust toxin production. J. Bacteriol., 2010; 192: 4904-4911
Google Scholar - 80. Mulvey G.L., Dingle T.C., Fang L., Strecker J., Armstrong G.D.:Therapeutic potential of egg yolk antibodies for treating Clostridiumdifficile infection. J. Med. Microbiol., 2011; 60: 1181-1187
Google Scholar - 81. Navaneethan U., Mukewar S., Venkatesh P.G., Lopez R., ShenB.: Clostridium difficile infection is associated with worse long termoutcome in patients with ulcerative colitis. J. Crohns Colitis, 2012;6: 330-336
Google Scholar - 82. Pantosti A., Cerquetti M., Viti F., Ortisi G., Mastrantonio P.: Immunoblotanalysis of serum immunoglobulin G response to surfaceproteins of Clostridium difficile in patients with antibiotic-associateddiarrhea. J. Clin. Microbiol., 1989; 27: 2594-2597
Google Scholar - 83. Papatheodorou P., Carette J.E., Bell G.W., Schwan C., GuttenbergG., Brummelkamp T.R., Aktories K.: Lipolysis-stimulated lipoproteinreceptor (LSR) is the host receptor for the binary toxin Clostridium difficiletransferase (CDT). Proc. Natl. Acad. Sci. USA, 2011; 108: 16422-16427
Google Scholar - 84. Pechine S., Deneve C., Le Monnier A., Hoys S., Janoir C., CollignonA.: Immunization of hamsters against Clostridium difficile infectionusing the Cwp84 protease as an antigen. FEMS Immunol. Med. Microbiol.,2011; 63: 73-81
Google Scholar - 85. Pechine S., Gleizes A., Janoir C., Gorges-Kergot R., Barc M.C., DelméeM., Collignon A.: Immunological properties of surface proteinsof Clostridium difficile. J. Med. Microbiol., 2005; 54: 193-196
Google Scholar - 86. Pechine S., Janoir C., Boureau H., Gleizes A., Tsapis N., Hoys S., FattalE., Collignon A.: Diminished intestinal colonization by Clostridium difficileand immune response in mice after mucosal immunization with surfaceproteins of Clostridium difficile. Vaccine, 2007; 25: 3946-3954
Google Scholar - 87. Pechine S., Janoir C., Collignon A.: Variability of Clostridium difficilesurface proteins and specific serum antibody response in patientswith Clostridium difficile-associated disease. J. Clin. Microbiol.,2005; 43: 5018-5025
Google Scholar - 88. Pepin J., Alary M.E., Valiquette L., Raiche E., Ruel J., Fulop K.,Godin D., Bourassa C.: Increasing risk of relapse after treatment ofClostridium difficile colitis in Quebec, Canada. Clin. Infect. Dis., 2005;40: 1591-1597
Google Scholar - 89. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X.,Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., RicciardiCastagnoliP., Layton B., Beutler B.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998;282: 2085-2088
Google Scholar - 90. Pothoulakis C., Gilbert R.J., Cladaras C., Castagliuolo I., SemenzaG., Hitti Y., Montcrief J.S., Linevsky J., Kelly C.P., Nikulasson S., DesaiH.P., Wilkins T.D., LaMont J.T.: Rabbit sucrase-isomaltase containsa functional intestinal receptor for Clostridium difficile toxin A. J. Clin.Invest., 1996; 98: 641-649
Google Scholar - 91. Pothoulakis C., LaMont J.T.: Clostridium difficile colitis and diarrhea.Gastroenterol. Clin. North Am., 1993; 22: 623-637
Google Scholar - 92. Rea M.C., Clayton E., O’Connor P.M., Shanahan F., Kiely B., RossR.P., Hill C.: Antimicrobial activity of lacticin 3147 against clinicalClostridium difficile strains. J. Med. Microbiol., 2007; 56: 940-946
Google Scholar - 93. Rea M.C., Sit C.S., Clayton E., O’Connor P.M., Whittal R.M., ZhengJ., Vederas J.C., Ross R.P., Hill C.: Thuricin CD, a posttranslationallymodified bacteriocin with a narrow spectrum of activity againstClostridium difficile. Proc. Natl. Acad. Sci. USA, 2010; 107: 9352-9357
Google Scholar - 94. Redelings M.D., Sorvillo F., Mascola L.: Increase in Clostridiumdifficile-related mortality rates, United States, 1999-2004. Emerg.Infect. Dis., 2007; 13: 1417-1419
Google Scholar - 95. Riley M.A., Wertz J.E.: Bacteriocins: evolution, ecology, and application.Annu. Rev. Microbiol., 2002; 56: 117-137
Google Scholar - 96. Rupnik M.: How to detect Clostridium difficile variant strains ina routine laboratory. Clin. Microbiol. Infect., 2001; 7: 417-420
Google Scholar - 97. Ryan A., Lynch M., Smith S.M., Amu S., Nel H.J., McCoy C.E.,Dowling J.K., Draper E., O’Reilly V., McCarthy C., O’Brien J., Ní EidhinD., O’Connell M.J., Keogh B., Morton C.O. i wsp.: A role for TLR4 inClostridium difficile infection and the recognition of surface layerproteins. PLoS Pathog., 2011; 7: e1002076
Google Scholar - 98. Savidge T.C., Pan W.H., Newman P., O’Brien M., Anton P.M.,Pothoulakis C.: Clostridium difficile toxin B is an inflammatory enterotoxinin human intestine. Gastroenterology, 2003; 125: 413-420
Google Scholar - 99. Sehr P., Joseph G., Genth H., Just I., Pick E., Aktories K.: Glucosylationand ADP ribosylation of Rho proteins: effects on nucleotidebinding, GTPase activity, and effector coupling. Biochemistry,1998; 37: 5296-5304
Google Scholar - 100. Sekirov I., Tam N.M., Jogova M., Robertson M.L., Li Y., LuppC., Finlay B.B.: Antibiotic-induced perturbations of the intestinalmicrobiota alter host susceptibility to enteric infection. Infect. Immun.,2008; 76: 4726-4736
Google Scholar - 101. Sekulovic O., Meessen-Pinard M., Fortier L.C.: Prophage-stimulatedtoxin production in Clostridium difficile NAP1/027 lysogens.J. Bacteriol., 2011; 193: 2726-2734
Google Scholar - 102. Semenyuk E.G., Laning M.L., Foley J., Johnston P.F., Knight K.L.,Gerding D.N., Driks A.: Spore formation and toxin production in Clostridiumdifficile biofilms. PLoS One, 2014; 9: e87757
Google Scholar - 103. Sheehan V.M., Sleator R.D., Fitzgerald G.F., Hill C.: Heterologousexpression of BetL, a betaine uptake system, enhances the stress toleranceof Lactobacillus salivarius UCC118. Appl. Environ. Microbiol.,2006; 72: 2170-2177
Google Scholar - 104. Sheehan V.M., Sleator R.D., Hill C., Fitzgerald G.F.: Improvinggastric transit, gastrointestinal persistence and therapeutic efficacyof the probiotic strain Bifidobacterium breve UCC2003. Microbiology,2007; 153: 3563-3571
Google Scholar - 105. Simor A.E., Bradley S.F., Strausbaugh L.J., Crossley K., NicolleL.E., SHEA Long-Term-Care Committee: Clostridium difficile in longterm-carefacilities for the elderly. Infect. Control Hosp. Epidemiol.,2002; 23: 696-703
Google Scholar - 106. Sleator R.D., Francis G.A., O’Beirne D., Gahan C.G., Hill C.: Betaineand carnitine uptake systems in Listeria monocytogenes affectgrowth and survival in foods and during infection. J. Appl. Microbiol.,2003; 95: 839-846
Google Scholar - 107. Strobel S., Mowat A.M.: Immune responses to dietary antigens:oral tolerance. Immunol. Today, 1998; 19: 173-181
Google Scholar - 108. Sundriyal A., Roberts A.K., Shone C.C., Acharya K.R.: Structuralbasis for substrate recognition in the enzymatic component of ADPribosyltransferasetoxin CDTa from Clostridium difficile. J. Biol. Chem.,2009; 284: 28713-28719
Google Scholar - 109. Szajewska H., Ruszczyński M., Radzikowski A.: Probiotics inthe prevention of antibiotic-associated diarrhea in children: a metaanalysisof randomized controlled trials. J. Pediatr., 2006; 149: 367-372
Google Scholar - 110. Tasteyre A., Karjalainen T., Avesani V., Delmee M., Collignon A.,Bourlioux P., Barc M.C.: Phenotypic and genotypic diversity of theflagellin gene (fliC) among Clostridium difficile isolates from differentserogroups. J. Clin. Microbiol., 2000; 38: 3179-3186
Google Scholar - 111. Torres J.F., Lyerly D.M., Hill J.E., Monath T.P.: Evaluation offormalin-inactivated Clostridium difficile vaccines administered byparenteral and mucosal routes of immunization in hamsters. Infect.Immun., 1995; 63: 4619-4627
Google Scholar - 112. Triadafilopoulos G., Pothoulakis C., O’Brien M.J., LaMont J.T.:Differential effects of Clostridium difficile toxins A and B on rabbitileum. Gastroenterology, 1987; 93: 273-279
Google Scholar - 113. Tucker K.D., Wilkins T.D.: Toxin A of Clostridium difficile bindsto the human carbohydrate antigens I, X, and Y. Infect. Immun.,1991; 59: 73-78
Google Scholar - 114. Ubeda C., Taur Y., Jenq R.R., Equinda M.J., Son T., Samstein M.,Viale A., Socci N.D., van den Brink M.R., Kamboj M., Pamer E.G.: Vancomycin-resistantEnterococcus domination of intestinal microbiotais enabled by antibiotic treatment in mice and precedes bloodstreaminvasion in humans. J. Clin. Invest., 2010; 120: 4332-4341
Google Scholar - 115. van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., ZoetendalE.G., de Vos W.M., Visser C.E., Kuijper E.J., Bartelsman J.F., Tijssen J.G.,Speelman P., Dijkgraaf M.G., Keller J.J.: Duodenal infusion of donor fecesfor recurrent Clostridium difficile. N. Engl. J. Med., 2013; 368: 407-415
Google Scholar - 116. Waligora A.J., Barc M.C., Bourlioux P., Collignon A., KarjalainenT.: Clostridium difficile cell attachment is modified by environmentalfactors. Appl. Environ. Microbiol., 1999; 65: 4234-4238
Google Scholar - 117. Waligora A.J., Hennequin C., Mullany P., Bourlioux P., Collignon A.,Karjalainen T.: Characterization of a cell surface protein of Clostridiumdifficile with adhesive properties. Infect. Immun., 2001; 69: 2144-2153
Google Scholar - 118. Ward S.J., Douce G., Dougan G., Wren B.W.: Local and systemicneutralizing antibody responses induced by intranasal immunizationwith the nontoxic binding domain of toxin A from Clostridiumdifficile. Infect. Immun., 1999; 67: 5124-5132
Google Scholar - 119. Wemekamp-Kamphuis H.H., Sleator R.D., Wouters J.A., Hill C.,Abee T.: Molecular and physiological analysis of the role of osmolytetransporters BetL, Gbu, and OpuC in growth of Listeria monocytogenesat low temperatures. Appl. Environ. Microbiol., 2004; 70: 2912-2918
Google Scholar - 120. Wright A., Drudy D., Kyne L., Brown K., Fairweather N.F.: Immunoreactivecell wall proteins of Clostridium difficile identified byhuman sera. J. Med. Microbiol., 2008; 57: 750-756
Google Scholar - 121. Xia Y., Hu H.Z., Liu S., Pothoulakis C., Wood J.D.: Clostridium difficiletoxin A excites enteric neurones and suppresses sympatheticneurotransmission in the guinea pig. Gut, 2000; 46: 481-486
Google Scholar