Significance of increased and reduced proteasome activity in the pathomechanism of selected disorders

COMMENTARY ON THE LAW

Significance of increased and reduced proteasome activity in the pathomechanism of selected disorders

Marzena Tylicka 1 , Ewa Matuszczak 2 , Maria Karpińska 1 , Wojciech Dębek 2

1. Zakład Biofizyki, Uniwersytet Medyczny w Białymstoku
2. Klinika Chirurgii Dziecięcej, Uniwersytet Medyczny w Białymstoku

Published: 2016-05-05
DOI: 10.5604/17322693.1201198
GICID: 01.3001.0009.6826
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 448-458

 

Abstract

Proteasomes are structures responsible for the elimination of damaged and misfolded proteins. Thus, they also regulate the most important intracellular processes. Changes in their functions can lead to many molecular diseases. There are two possible disorders in the function of proteasomes. Their increasing activity causes excessive degradation of important cell proteins. On the other hand, their insufficiency can inhibit the degradation of pathological proteins and lead to their accumulation.The increase of proteasome activity and the degradation of important proteins are observed in many pathological disorders. Therefore the study of pharmacological methods using proteasome inhibitors has gained growing interest in the last years. This review summarizes recent findings regarding the role of proteasomes in pathogenesis of selected diseases and discusses the potential use of proteasomes in diagnosis of different disorders.

References

  • 1. Adams J.: The proteasome: structure, function and role in thecell. Cancer Treat. Rev., 2003; 29: 3-9
    Google Scholar
  • 2. Almond J.B., Cohen G.M.: The proteasome: a novel target for cancerchemotherapy. Leukemia, 2002; 16: 433-443
    Google Scholar
  • 3. Balasubramanyam M., Sampathkumar R., Mohan V.: Is insulinsignaling molecules misguided in diabetes for ubiquitin-proteasomemediated degradation. Mol. Cell. Biochem., 2005; 275: 117-125
    Google Scholar
  • 4. Bubko I., Gruber B.M., Anuszewska E.L: Rola proteasomu w terapiichorób nieuleczalnych. Postepy Hig. Med. Dosw., 2010; 64: 314-325
    Google Scholar
  • 5. Bury M., Niemierko A.: Proteasomalna degradacja białek komórkowych.Postępy Biol. Kom., 2005; 32: 435-448
    Google Scholar
  • 6. Caldeira M.V., Salazar I.L., Curcio M., Canzoniero L.M., Duarte C.B.:Role of the ubiquitin-proteasome system in brain ischemia: friendor foe? Prog. Neurobiol., 2014; 112: 50-69
    Google Scholar
  • 7. Calise J., Powell S.R.: The ubiquitin proteasome system and myocardialischemia. Am. J. Physiol. Heart Circ. Physiol, 2013; 304:H337-H349
    Google Scholar
  • 8. Chai J., Wu Y., Sheng Z.: The relationship between skeletal muscleproteolysis and ubiquitin-proteasome proteolytic pathway inburned rats. Burns, 2002; 28: 527-533
    Google Scholar
  • 9. Chang T.L., Chang. C.J., Lee W.J., Lin M.N., Huang Y.W., Fan K.: Theroles of ubiquitin and 26S proteasome in human obesity. Metabolism,2009; 58: 1643-1648
    Google Scholar
  • 10. Edwards M.R., Bartlett N.W., Clarke D., Birrell M., Belvisi M.,Johnston S.L.: Targeting the NF-κB pathway in asthma and chronicobstructive pulmonary disease. Pharmacol. Ther., 2009; 121: 1-13
    Google Scholar
  • 11. Elliott P.J., Pien C.S., McCormack T.A., Chapman I.D., Adams J.:Proteasome inhibition: a novel mechanism to combat asthma. J. AllergyClin. Immunol., 1999; 104: 294-300
    Google Scholar
  • 12. Elliott P.J., Zollner T.M., Boehncke W.H.: Proteasome inhibition:a new anti-inflammatory strategy. J. Mol. Med., 2003; 81: 235-245
    Google Scholar
  • 13. Gerrds W.L., de Jong W.W., Boelens W., Bloemendal H.: Structureand assembly of the 20S proteasome. Cell. Mol. Life Sci.,1998;54: 253-262
    Google Scholar
  • 14. Golab J., Bauer T.M, Daniel V, Naujokat C.: Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases. Clin.Chim. Acta, 2004; 340: 27-40
    Google Scholar
  • 15. Hasselgren P.: Role of the ubiquitine-proteasome pathway insepsis-induced muscle catabolism. Mol. Biol. Rep., 1999; 26: 71-76
    Google Scholar
  • 16. Hatakeyma S., Nakayama K.: Ubiquitylation as a quality controlsystem for intracellural proteins. J. Biochem., 2003; 134: 1-8
    Google Scholar
  • 17. Herrmann J., Ciechanover A., Lerman L.O., Lerman A .: The ubiquitin-proteasome system in cardiovascular diseases – a hypothesisextended. Cardiovasc. Res., 2004; 61: 11-21
    Google Scholar
  • 18. Hilker R., Brotchie J.M., Chapman J.: Pros and cons of a prion likepathogenesis in Parkinson’s disease. BMC Neurol., 2011; 11: 74-78
    Google Scholar
  • 19. Huang L., Chen C.H.: Proteasomes regulators: activators andinhibitors. Curr. Med. Chem., 2009; 16: 931-939
    Google Scholar
  • 20. Kazula A., Kazula E.: Proteasomy a nowe kierunki terapii. Farm.Pol., 2009; 65: 511-523
    Google Scholar
  • 21. Lentsch A.B., Ward P.A.: Regulation of experimental lung inflammation.Respir. Physiol., 2001; 128: 17-22
    Google Scholar
  • 22. Letoha T., Somlai C., Takacs T., Szabolcs A., Rakonczay Z. Jr., JármayK., Szalontai T., Varga I., Kaszaki J., Boros I., Duda E., Hackler L.,Kurucz I., Penke B.: The proteasome inhibitor MG132 protects againstacute pancreatitis. Free Radic. Biol. Med., 2005; 39: 1142-1151
    Google Scholar
  • 23. Li X.J., Li S.: Proteasomal dysfunction in aging and Huntingtondisease. Neurobiol. Dis., 2011; 43: 4-8
    Google Scholar
  • 24. Liu H., Pope R.M.: The role of apoptosis in rheumatoid arthritis.Curr. Opin. Pharmacol., 2003; 3: 317-322
    Google Scholar
  • 25. Matuszczak E., Tylicka M., Dębek W., Hermanowicz A., OstrowskaH.: Correlation between circulating proteasome activity, totalprotein and C-reactive protein levels following burn in children.Burns, 2014; 40: 842-847
    Google Scholar
  • 26. Michalak A., Krzeszowiak J., Markiewicz-Górka I.: Starzenie sięorganizmu a stres oksydacyjny oraz zmniejszona sprawność systemównaprawczych. Postepy Hig. Med. Dosw., 2014; 68: 1483-1491
    Google Scholar
  • 27. Morawe T., Hiebel C., Kern A., Behl C.: Protein homeostasis, agingand Alzheimer’s disease. Mol. Neurobiol., 2012; 46: 41-54
    Google Scholar
  • 28. Muddu A.K., Guha I.N., Elsharkawy A.M., Mann D.A.: Resolvingfibrosis in the diseased liver: translating the scientific promise tothe clinic. Int. J. Biochem. Cell Biol., 2007; 39: 695-714
    Google Scholar
  • 29. Naujokat C., Hoffmann S.: Role and function of the 26S proteasomein proliferation and apoptosis. Lab. Invest., 2002; 82: 965-980
    Google Scholar
  • 30. Orłowski M., Wilk S.: Ubiquitin-independent proteolytic functionsof the proteasome. Arch. Biochem. Biophys., 2003; 415: 1-5
    Google Scholar
  • 31. Pereira C., Murphy K., Jeschke M., Herndon D.N.: Post burnmuscle wasting and the effects of treatments. Int. J. Biochem. CellBiol., 2005; 37: 1948-1961
    Google Scholar
  • 32. Perez R.G., Hastings T.G.: Could a loss of α-synuclein function putdopaminergic neurons at risk?. J. Neurochem., 2004; 89: 1318-1324
    Google Scholar
  • 33. Phillips J.B., Williams A.J., Adams J., Elliott P.J., Tortella F.C.:Proteasome inhibitor PS519 reduces infarction and attenuates leukocyteinfiltration in a rat model of focal cerebral ischemia. Stroke,2000; 31: 1686-1693
    Google Scholar
  • 34. Qureshi N., Vogel S.N., Van Way C. 3rd, Papasian C.J., QureshiA.A., Morrison D.C.: The proteasome. A central regulator ofinflammation and macrophage function. Immunol. Res., 2005;31: 243-260
    Google Scholar
  • 35. Rajan V., Mitch W.E.: Ubiquitin, proteasomes and proteolyticmechanism activated by kidney diseases. Biochim. Biophys. Acta,2008; 1782: 795-799
    Google Scholar
  • 36. Roth G.A., Moser B., Krenn C., Roth-Walter F., Hetz H., RichterS., Brunner M., Jensen-Jarolim E., Wolner E., Hoetzenecker K.,Boltz-Nitulescu G., Ankersmit H.J.: Heightened levels of circulating20S proteasome in critically ill patients. Eur. J. Clin. Invest.,2005; 35: 399-403
    Google Scholar
  • 37. Schmidt M., Finley D.: Regulation of proteasome activity in healthand disease. Biochim. Biophys. Acta, 2014; 1843: 13-25
    Google Scholar
  • 38. Su V., Lau A.F.: Ubiquitin-like and ubiquitin-associated domainproteins: significance in proteasomal degradation. Cell. Mol. Life.Sci., 2009; 66: 2819-2833
    Google Scholar
  • 39. Szwed A., Miłowska K.: Rola białek w chorobach neurodegeneracyjnych.Postepy Hig. Med. Dosw., 2012; 66: 187-195
    Google Scholar
  • 40. Turnbull E.L., Rosser M.F., Cyr D.M.: The role of the UPS in cysticfibrosis. BMC Biochem., 2007; 8: S11
    Google Scholar
  • 41. Tylicka M., Matuszczak E., Dębek W., Hermanowicz A., OstrowskaH.: Circulating proteasome activity following mild head injuryin children. Childs Nerv. Syst., 2014; 30: 1191-1196
    Google Scholar
  • 42. Vankeerberghen A., Cuppens H., Cassiman J.: The cystic fibrosistransmembrane conductance regulator: an intriguing protein withpleiotropic functions. J. Cyst. Fibros., 2002; 1: 13-29
    Google Scholar
  • 43. Visekruna A., Slavova N., Dullat S., Gröne J., Kroesen A.J., RitzJ.P., Buhr H.J., Steinhoff U.: Expression of catalytic proteasome subunitsin the gut of patients with Crohn’s disease. Int. J. Colorectal Dis.,2009; 24: 1133-1139
    Google Scholar
  • 44. Wójcik C.: Proteasomy i szlak degradacji białek zależny od ubikwityny.Postępy Biol. Kom., 1995; 22: 295-315
    Google Scholar

Full text

Skip to content