Simple and facilitated diffusion of long chain fatty acids in the pathogenesis of nonalcoholic fatty liver disease

REVIEW ARTICLE

Simple and facilitated diffusion of long chain fatty acids in the pathogenesis of nonalcoholic fatty liver disease

Klaudia Berk 1 , Nicoletta Iłowska 1 , Karolina Konstantynowicz-Nowicka 1 , Adrian Chabowski 1

1. Zakład Fizjologii, Uniwersytet Medyczny w Białymstoku,

Published: 2017-12-29
DOI: 10.5604/01.3001.0010.7668
GICID: 01.3001.0010.7668
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1177-1186

 

Abstract

Nonalcoholic fatty liver disease (NAFLD) is defined as lipid accumulation in hepatocytes, in the absence of alcohol use, that exceeds 5% of liver size. The most frequent comorbidities of NAFLD include diabetes mellitus, insulin resistance and hyperlipidemia. The accumulation of various lipid fractions results from excessive hepatic uptake of long chain fatty acids (LCFA) that is not compensated by oxidation. The cellular influx of LCFA occurs in the mechanism of passive diffusion through fenestrations in sinusoidal endothelium, and is due to caveolae system which participates in the endocytosis of macromolecules. The dynamic character of fenestration and their changes caused by the application of a different dietary pattern may indicate that they contribute to the development of metabolic disturbances. The second way of the LCFA entrance to the cells is through a facilitated transport that involves fatty acid transporters: translocase FAT/CD36, fatty acid binding protein FABPpm, fatty acid transport proteins FATP2 and FATP5, which are localized in the cell. It has been proven that changes in the expression of these transporters are strongly associated with abnormal lipid metabolism in the liver. The key aim of this review is to describe the possible ways of intracellular lipid uptake to the liver in terms of NAFLD development and accompanying obesity. The role of facilitated diffusion, being necessary for the efficient function of the liver, is also presented.

References

  • 1. Abumrad N.A., el-Maghrabi M.R., Amri E.Z., Lopez E., Grimaldi P.A.: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem., 1993; 268: 17665-17668
    Google Scholar
  • 2. Aitman T.J., Glazier A.M., Wallace C.A., Cooper L.D., Norsworthy P.J., Wahid F.N., Al-Majali K.M., Trembling P.M., Mann C.J., Shoulders C.C., Graf D., St. Lezin E., Kurtz T.W., Kren V., Pravenec M. i wsp.: Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet., 1999; 21: 76-83
    Google Scholar
  • 3. Awoonor-Williams E., Rowley C.N.: Molecular simulation of nonfacilitated membrane permeation. Biochim. Biophys. Acta, 2016; 1858: 1672-1687
    Google Scholar
  • 4. Baillie A.G., Coburn C.T., Abumrad N.A.: Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membr. Biol., 1996; 153: 75-81
    Google Scholar
  • 5. Barbosa A.D., Savage D.B., Siniossoglou S.: Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr. Opin. Cell Biol., 2015; 35: 91-97
    Google Scholar
  • 6. Bastie C.C., Hajri T., Drover V.A., Grimaldi P.A., Abumrad N.A.:CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness. Diabetes, 2004; 53: 2209-2216
    Google Scholar
  • 7. Bechmann L.P., Gieseler R.K., Sowa J.P., Kahraman A., Erhard J., Wedemeyer I., Emons B., Jochum C., Feldkamp T., Gerken G., Canbay A.: Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis. Liver Int., 2010; 30: 850-859
    Google Scholar
  • 8. Berk P.D., Verna E.C.: Nonalcoholic fatty liver disease: lipids and insulin resistance. Clin. Liver Dis., 2016; 20: 245-262
    Google Scholar
  • 9. Berk P.D., Zhou S., Bradbury M.W.: Increased hepatocellular uptake of long chain fatty acids occurs by different mechanisms in fatty livers due to obesity or excess ethanol use, contributing to development of steatohepatitis in both settings. Trans. Am. Clin. Climatol. Assoc., 2005; 116: 335-344
    Google Scholar
  • 10. Binnert C., Koistinen H.A., Martin G., Andreelli F., Ebeling P., Koivisto V.A., Laville M., Auwerx J., Vidal H.: Fatty acid transport protein-1 mRNA expression in skeletal muscle and in adipose tissue in humans. Am. J. Physiol. Endocrinol. Metab., 2000; 279: E1072-E1079
    Google Scholar
  • 11. Bonen A., Chabowski A., Luiken J.J., Glatz J.F.: Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology, 2007; 22: 15-29
    Google Scholar
  • 12. Bonen A., Luiken J.J., Arumugam Y., Glatz J.F., Tandon N.N.: Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J. Biol. Chem., 2000; 275: 14501-14508
    Google Scholar
  • 13. Bradbury M.W., Berk P.D.: Mitochondrial aspartate aminotransferase: direction of a single protein with two distinct functions to two subcellular sites does not require alternative splicing of the mRNA. Biochem. J., 2000; 345: 423-427
    Google Scholar
  • 14. Braet F., Riches J., Geerts W., Jahn K.A., Wisse E., Frederik P.: Three-dimensional organization of fenestrae labyrinths in liver sinusoidal endothelial cells. Liver Int., 2009; 29: 603-613
    Google Scholar
  • 15. Brown G.T., Kleiner D.E.: Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism, 2016; 65: 1080-1086
    Google Scholar
  • 16. Chabowski A., Coort S.L., Calles-Escandon J., Tandon N.N., Glatz J.F., Luiken J.J., Bonen A.: Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am. J. Physiol. Endocrinol. Metab., 2004; 287: E781-E789
    Google Scholar
  • 17. Chabowski A., Żendzian-Piotrowska M., Konstantynowicz K., Pankiewicz W., Mikłosz A., Łukaszuk B., Górski J.: Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes. Acta Physiol., 2013; 207: 346-357
    Google Scholar
  • 18. Cheng J.P., Mendoza-Topaz C., Howard G., Chadwick J., Shvets E., Cowburn A.S., Dunmore B.J., Crosby A., Morrell N.W., Nichols B.J.: Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J. Cell. Biol., 2015; 211: 53-61
    Google Scholar
  • 19. Chon Y.E., Kim K.J., Jung K.S., Kim S.U., Park J.Y., Kim do Y., Ahn S.H., Chon C.Y., Chung J.B., Park K.H., Bae J.C., Han K.H.: The relationship between type 2 diabetes mellitus and non-alcoholic fatty liver disease measured by controlled attenuation parameter. Yonsei Med. J., 2016; 57: 885-892
    Google Scholar
  • 20. Clore J.N., Glickman P.S., Nestler J.E., Blackard W.G.: In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am. J. Physiol., 1991; 261: E425-E429
    Google Scholar
  • 21. Coburn C.T., Knapp F.F.Jr., Febbraio M., Beets A.L., Silverstein R.L., Abumrad N.A.: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem., 2000; 275: 32523-32529
    Google Scholar
  • 22. Cogger V.C., McNerney G.P., Nyunt T., DeLeve L.D., McCourt P., Smedsrød B., Le Couteur D.G., Huser T.R.: Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J. Struct. Biol., 2010; 171: 382-388
    Google Scholar
  • 23. Cogger V.C., Mohamad M., Solon-Biet S.M., Senior A.M., Warren A., O’Reilly J.N., Tung B.T., Svistounov D., McMahon A.C., Fraser R., Raubenheimer D., Holmes A.J., Simpson S.J., Le Couteur D.G.: Dietary macronutrients and the aging liver sinusoidal endothelial cell. Am. J. Physiol. Heart Circ. Physiol., 2016; 310: H1064-H1070
    Google Scholar
  • 24. Cogger V.C., Roessner U., Warren A., Fraser R., Le Couteur D.G.: A Sieve-Raft hypothesis for the regulation of endothelial fenestrations. Comput. Struct. Biotechnol. J., 2013; 8: e201308003
    Google Scholar
  • 25. Day C.P., James O.F.: Hepatic steatosis: innocent bystander or guilty party? Hepatology, 1998; 27: 1463-1466
    Google Scholar
  • 26. Degrace-Passilly P., Besnard P.: CD36 and taste of fat. Curr. Opin. Clin. Nutr. Metab. Care, 2012; 15: 107-111
    Google Scholar
  • 27. Diede H.E., Rodilla-Sala E., Gunawan J., Manns M., Stremmel W.: Identification and characterization of a monoclonal antibody to the membrane fatty acid binding protein. Biochim. Biophys. Acta, 1992; 1125: 13-20
    Google Scholar
  • 28. Doege H., Baillie R.A., Ortegon A.M., Tsang B., Wu Q., Punreddy S., Hirsch D., Watson N., Gimeno R.E., Stahl A.: Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology, 2006; 130: 1245-1258
    Google Scholar
  • 29. Doege H., Grimm D., Falcon A., Tsang B., Storm T.A., Xu H., Ortegon A.M., Kazantzis M., Kay M.A., Stahl A.: Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. J. Biol. Chem., 2008; 283: 22186-22192
    Google Scholar
  • 30. Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J.: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest., 2005; 115: 1343-1351
    Google Scholar
  • 31. Ducharme N.A., Bickel P.E.: Lipid droplets in lipogenesis and lipolysis. Endocrinology, 2008; 149: 942-949
    Google Scholar
  • 32. Eyre N.S., Cleland L.G., Tandon N.N., Mayrhofer G.: Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake. J. Lipid Res., 2007; 48: 528-542
    Google Scholar
  • 33. Falcon A., Doege H., Fluitt A., Tsang B., Watson N., Kay M.A., Stahl A.: FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am. J. Physiol. Endocrinol. Metab., 2010; 299: E384-E393
    Google Scholar
  • 34. Febbraio M., Abumrad N.A., Hajjar D.P., Sharma K., Cheng W., Pearce S.F., Silverstein R.L.: A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem., 1999; 274: 19055-19062
    Google Scholar
  • 35. Feng R.N., Du S.S., Wang C., Li Y.C., Liu L.Y., Guo F.C., Sun C.H.: Lean-non-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population. World J. Gastroenterol., 2014; 20: 17932-17940
    Google Scholar
  • 36. Fernández-Real J.M., Catalán V., Moreno-Navarrete J.M., Gómez-Ambrosi J., Ortega F.J., Rodriguez-Hermosa J.I., Ricart W., Frühbeck G.: Study of caveolin-1 gene expression in whole adipose tissue and its subfractions and during differentiation of human adipocytes. Nutr. Metab., 2010; 7: 20
    Google Scholar
  • 37. Fernández-Rojo M.A., Restall C., Ferguson C., Martel N., Martin S., Bosch M., Kassan A., Leong G.M., Martin S.D., McGee S.L., Muscat G.E., Anderson R.L., Enrich C., Pol A., Parton R.G.: Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology, 2012; 55: 1574-1584
    Google Scholar
  • 38. Frank P.G., Cheung M.W., Pavlides S., Llaverias G., Park D.S., Lisanti M.P.: Caveolin-1 and regulation of cellular cholesterol homeostasis. Am. J. Physiol. Heart Circ. Physiol., 2006; 291: H677-H686
    Google Scholar
  • 39. Frank P.G., Lee H., Park D.S., Tandon N.N., Scherer P.E., Lisanti M.P.: Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2004; 24: 98-105
    Google Scholar
  • 40. Frayn K.N., Arner P., Yki-Järvinen H.: Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem., 2006; 42: 89-103
    Google Scholar
  • 41. Fushiki T.: Why fat is so preferable: from oral fat detection to inducing reward in the brain. Biosci. Biotechnol. Biochem., 2014; 78: 363-369
    Google Scholar
  • 42. Galbiati F., Volonté D., Liu J., Capozza F., Frank P.G., Zhu L., Pestell R.G., Lisanti M.P.: Caveolin-1 expression negatively regulates cell cycle progression by inducing G0 /G1 arrest via a p53/p21WAF1/ Cip1-dependent mechanism. Mol. Biol. Cell, 2001; 12: 2229-2244
    Google Scholar
  • 43. Gimeno R.E., Ortegon A.M., Patel S., Punreddy S., Ge P., Sun Y., Lodish H.F., Stahl A.: Characterization of a heart-specific fatty acid transport protein. J. Biol. Chem., 2003; 278: 16039-16044
    Google Scholar
  • 44. Glatz J.F.: Lipids and lipid binding proteins: a perfect match. Prostaglandins Leukot. Essent. Fatty Acids, 2015; 93: 45-49
    Google Scholar
  • 45. Glatz J.F., Luiken J.J.: Fatty acids in cell signaling: historical perspective and future outlook. Prostaglandins Leukot. Essent. Fatty Acids, 2015; 92: 57-62
    Google Scholar
  • 46. Glatz J.F., Luiken J.J., Bonen A.: Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev., 2010; 90: 367-417
    Google Scholar
  • 47. Glatz J.F., Luiken J.J., van Bilsen M., van der Vusse G.J.: Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. Mol. Cell. Biochem., 2002; 239: 3-7
    Google Scholar
  • 48. Glatz J.F., Nabben M., Heather L.C., Bonen A., Luiken J.J.: Regulation of the subcellular trafficking of CD36, a major determinant of cardiac fatty acid utilization. Biochim. Biophys. Acta, 2016; 1861: 1461-1471
    Google Scholar
  • 49. ] Glatz J.F., Schaap F.G., Binas B., Bonen A., van der Vusse G.J., Luiken J.J.: Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiol. Scand., 2003; 178: 367-371
    Google Scholar
  • 50. Goudriaan J.R., Dahlmans V.E., Teusink B., Ouwens D.M., Febbraio M., Maassen J.A., Romijn J.A., Havekes L.M., Voshol P.J.: CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J. Lipid Res., 2003; 44: 2270-2277
    Google Scholar
  • 51. Greco D., Kotronen A., Westerbacka J., Puig O., Arkkila P., Kiviluoto T., Laitinen S., Kolak M., Fisher R.M., Hamsten A., Auvinen P., Yki-Järvinen H.: Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol., 2008; 294: G1281-G1287
    Google Scholar
  • 52. Grossi M., Rippe C., Sathanoori R., Swärd K., Forte A., Erlinge D., Persson L., Hellstrand P., Nilsson B.O.: Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci. Rep., 2014; 34: e00153
    Google Scholar
  • 53. Hajri T., Abumrad N.A.: Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu. Rev. Nutr., 2002; 22: 383-415
    Google Scholar
  • 54. Han B., Copeland C.A., Tiwari A., Kenworthy A.K.: Assembly and turnover of caveolae: what do we really know? Front. Cell. Dev. Biol., 2016; 4: 68
    Google Scholar
  • 55. Hara T., Kashihara D., Ichimura A., Kimura I., Tsujimoto G., Hirasawa A.: Role of free fatty acid receptors in the regulation of energy metabolism. Biochim. Biophys. Acta, 2014; 1841: 1292-1300
    Google Scholar
  • 56. Harmon C.M., Abumrad N.A.: Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol., 1993; 133: 43-49
    Google Scholar
  • 57. Harmon C.M., Luce P., Abumrad N.A.: Labelling of an 88 kDa adipocyte membrane protein by sulpho-N-succinimidyl long-chain fatty acids: inhibition of fatty acid transport. Biochem. Soc. Trans., 1992; 20: 811-813
    Google Scholar
  • 58. Harmon C.M., Luce P., Beth A.H., Abumrad N.A.: Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J. Membr. Biol., 1991; 121: 261-268
    Google Scholar
  • 59. He Y., Yang X., Wang H., Estephan R., Francis F., Kodukula S., Storch J., Stark R.E.: Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein. Biochemistry, 2007; 46: 12543-12556
    Google Scholar
  • 60. Hellemans K., Kerckhofs K., Hannaert J.C., Martens G., Van Veldhoven P., Pipeleers D.: Peroxisome proliferator-activated receptor α-retinoid X receptor agonists induce beta-cell protection against palmitate toxicity. FEBS J., 2007; 274: 6094-6105
    Google Scholar
  • 61. Huang H., Starodub O., McIntosh A., Kier A.B., Schroeder F.: Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J. Biol. Chem., 2002; 277: 29139-29151
    Google Scholar
  • 62. Ibrahimi A., Bonen A., Blinn W.D., Hajri T., Li X., Zhong K., Cameron R., Abumrad N.A.: Muscle-specific overexpression of FAT/ CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J. Biol. Chem., 1999; 274: 26761-26766
    Google Scholar
  • 63. Ibrahimi A., Sfeir Z., Magharaie H., Amri E.Z., Grimaldi P., Abumrad N.A.: Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc. Natl. Acad. Sci. USA, 1996; 93: 2646-2651
    Google Scholar
  • 64. Iwakiri Y., Grisham M., Shah V.: Vascular biology and pathobiology of the liver: report of a single-topic symposium. Hepatology, 2008; 47: 1754-1763
    Google Scholar
  • 65. Jochen A.L., Hays J., Mick G.: Inhibitory effects of cerulenin on protein palmitoylation and insulin internalization in rat adipocytes. Biochim. Biophys. Acta, 1995; 1259: 65-72
    Google Scholar
  • 66. Kagawa Y., Yasumoto Y., Sharifi K., Ebrahimi M., Islam A., Miyazaki H., Yamamoto Y., Sawada T., Kishi H., Kobayashi S., Maekawa M., Yoshikawa T., Takaki E., Nakai A., Kogo H. i wsp.: Fatty acid-binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin-1. Glia, 2015; 63: 780-794
    Google Scholar
  • 67. Kazantzis M., Stahl A.: Fatty acid transport proteins, implications in physiology and disease. Biochim. Biophys. Acta, 2012; 1821: 852-857
    Google Scholar
  • 68. Koo S.H.: Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin. Mol. Hepatol., 2013; 19: 210-215
    Google Scholar
  • 69. Langelier B., Linard A., Bordat C., Lavialle M., Heberden C.: Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures. J. Cell. Biochem., 2010; 110: 1356-1364
    Google Scholar
  • 70. Lazo M., Hernaez R., Eberhardt M.S., Bonekamp S., Kamel I., Guallar E., Koteish A., Brancati F.L., Clark J.M.: Prevalence of nonalcoholic fatty liver disease in the United States: The Third National Health and Nutrition Examination Survey, 1988-1994. Am. J. Epidemiol., 2013; 178: 38-45
    Google Scholar
  • 71. Lewis G.F., Carpentier A., Adeli K., Giacca A.: Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev., 2002; 23: 201-229
    Google Scholar
  • 72. Maslak E., Gregorius A., Chlopicki S.: Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol. Rep., 2015; 67: 689-694
    Google Scholar
  • 73. Meshulam T., Simard J.R., Wharton J., Hamilton J.A., Pilch P.F.: Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry, 2006; 45: 2882-2893
    Google Scholar
  • 74. Miyamoto J., Hasegawa S., Kasubuchi M., Ichimura A., Nakajima A., Kimura I.: Nutritional signaling via free fatty acid receptors. Int. J. Mol. Sci., 2016; 17: 450
    Google Scholar
  • 75. Miyaoka K., Kuwasako T., Hirano K., Nozaki S., Yamashita S., Matsuzawa Y.: CD36 deficiency associated with insulin resistance. Lancet, 2001; 357: 686-687
    Google Scholar
  • 76. Nakadate K., Motojima K., Tanaka-Nakadate S.: Dilatation of sinusoidal capillary and swelling of sinusoidal fenestration in obesity: an ultrastructural study. Ultrastruct Pathol., 2015; 39: 30-37
    Google Scholar
  • 77. Newberry E.P., Xie Y., Kennedy S., Han X., Buhman K.K., Luo J., Gross R.W., Davidson N.O.: Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J. Biol. Chem., 2003; 278: 51664-51672
    Google Scholar
  • 78. Nickerson J.G., Alkhateeb H., Benton C.R., Lally J., Nickerson J., Han X.X., Wilson M.H., Jain S.S., Snook L.A., Glatz J.F., Chabowski A.Luiken J.J., Bonen A.: Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J. Biol. Chem., 2009; 284: 16522-16530,
    Google Scholar
  • 79. Nopanitaya W., Grisham J.W.: Scanning electron microscopy of mouse intrahepatic structures. Exp. Mol. Pathol., 1975; 23: 441-458
    Google Scholar
  • 80. O’Reilly J.N., Cogger V.C., Fraser R., Le Couteur D.G.: The effect of feeding and fasting on fenestrations in the liver sinusoidal endothelial cell. Pathology, 2010; 42: 255-258
    Google Scholar
  • 81. Pelkmans L., Bürli T., Zerial M., Helenius A.: Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell, 2004; 118: 767-780
    Google Scholar
  • 82. Pohl J., Ring A., Ehehalt R., Herrmann T., Stremmel W.: New concepts of cellular fatty acid uptake: role of fatty acid transport proteins and of caveolae. Proc. Nutr. Soc., 2004; 63: 259-262
    Google Scholar
  • 83. Portillo-Sanchez P., Bril F., Maximos M., Lomonaco R., Biernacki D., Orsak B., Subbarayan S., Webb A., Hecht J., Cusi K.: High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J. Clin. Endocrinol. Metab., 2015; 100: 2231-2238
    Google Scholar
  • 84. Qiu Y., Liu S., Chen H.T., Yu C.H., Teng X.D., Yao H.T., Xu G.Q.: Upregulation of caveolin-1 and SR-B1 in mice with non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int., 2013; 12: 630-636
    Google Scholar
  • 85. Razani B., Combs T.P., Wang X.B., Frank P.G., Park D.S., Russell R.G., Li M., Tang B., Jelicks L.A., Scherer P.E., Lisanti M.P.: Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem., 2002; 277: 8635-8647
    Google Scholar
  • 86. Richieri G.V, Ogata R.T., Zimmerman A.W., Veerkamp J.H., Kleinfeld A.M.: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry, 2000; 39: 7197-7204
    Google Scholar
  • 87. Ring A., Le Lay S., Pohl J., Verkade P., Stremmel W.: Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta, 2006; 1761: 416-423
    Google Scholar
  • 88. Robenek H., Buers I., Robenek M.J., Hofnagel O., Ruebel A., Troyer D., Severs N.J.: Topography of lipid droplet-associated proteins: insights from freeze-fracture replica immunogold labeling. J. Lipids, 2011; 2011: 409371
    Google Scholar
  • 89. Rosso N., Chavez-Tapia N.C., Tiribelli C., Bellentani S.: Translational approaches: from fatty liver to non-alcoholic steatohepatitis. World J. Gastroenterol., 2014; 20: 9038-9049
    Google Scholar
  • 90. Rothberg K.G., Heuser J.E., Donzell W.C., Ying Y.S., Glenney J.R., Anderson R.G.: Caveolin, a protein component of caveolae membrane coats. Cell, 1992; 68: 673-682
    Google Scholar
  • 91. Rui H., Root K.T., Lee J., Glover K.J., Im W.: Probing the U-shaped conformation of caveolin-1 in a bilayer. Biophys. J., 2014; 106: 1371-1380
    Google Scholar
  • 92. Sahini N., Borlak J.: Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog. Lipid Res., 2014; 54: 86-112
    Google Scholar
  • 93. Saponaro C., Gaggini M., Carli F., Gastaldelli A.: The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients, 2015; 7: 9453-9474
    Google Scholar
  • 94. Schaffer J.E., Lodish H.F.: Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 1994; 79: 427-436
    Google Scholar
  • 95. Schinner S., Scherbaum W.A., Bornstein S.R., Barthel A.: Molecular mechanisms of insulin resistance. Diabet. Med., 2005; 22: 674-682
    Google Scholar
  • 96. Schroeder B., McNiven M.A.: Importance of endocytic pathways in liver function and disease. Compr. Physiol., 2014; 4: 1403-1417
    Google Scholar
  • 97. Silverstein R.L., Febbraio M.: CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal., 2009; 2: re3
    Google Scholar
  • 98. Smart E.J., Ying Y.S., Donzell W.C., Anderson R.G.: A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem., 1996; 271: 29427-29435
    Google Scholar
  • 99. Stahl A., Hirsch D.J., Gimeno R.E., Punreddy S., Ge P., Watson N., Patel S., Kotler M., Raimondi A., Tartaglia L.A., Lodish H.F.: Identification of the major intestinal fatty acid transport protein. Mol. Cell, 1999; 4: 299-308
    Google Scholar
  • 100. Strålfors P.: Caveolins and caveolae, roles in insulin signalling and diabetes. Adv. Exp. Med. Biol., 2012; 729: 111-126
    Google Scholar
  • 101. Stremmel W., Pohl L., Ring A., Herrmann T.: A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids, 2001; 36: 981-989
    Google Scholar
  • 102. Stump D.D., Zhou S.L., Berk P.D.: Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am. J. Physiol., 1993; 265: G894-G902
    Google Scholar
  • 103. Sullivan M.P., Cristofaro V., Radisavljevic Z.M., Yalla S. V.: Regional distribution and molecular interaction of caveolins in bladder smooth muscle. BJU Int., 2012; 110: E1163-E1172
    Google Scholar
  • 104. Tappy L., Minehira K.: New data and new concepts on the role of the liver in glucose homeostasis.Curr. Opin. Clin. Nutr. Metab. Care, 2001; 4: 273-277
    Google Scholar
  • 105. Thamer C., Machann J., Haap M., Stefan N., Heller E., Schnödt B., Stumvoll M., Claussen C., Fritsche A., Schick F., Häring H.: Intrahepatic lipids are predicted by visceral adipose tissue mass in healthy subjects. Diabetes Care, 2004; 27: 2726-2729
    Google Scholar
  • 106. Trigatti B.L., Anderson R.G., Gerber G.E.: Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun., 1999; 255: 34-39
    Google Scholar
  • 107. Uchiyama A., Aoyama T., Kamijo K., Uchida Y., Kondo N., Orii T., Hashimoto T.: Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J. Biol. Chem., 1996; 271: 30360-30365
    Google Scholar
  • 108. Warren A., Cogger V.C., Arias I.M., McCuskey R.S., Le Couteur D.G.: Liver sinusoidal endothelial fenestrations in caveolin-1 knockout mice. Microcirculation, 2010; 17: 32-38
    Google Scholar
  • 109. Westerbacka J., Kolak M., Kiviluoto T., Arkkila P., Sirén J., Hamsten A., Fisher R.M., Yki-Järvinen H.: Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes, 2007; 56: 2759-2765
    Google Scholar
  • 110. WHO. Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en (05.10.2016)
    Google Scholar
  • 111. Wu Q., Kazantzis M., Doege H., Ortegon A.M., Tsang B., Falcon A., Stahl A.: Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes, 2006; 55: 3229-3237
    Google Scholar
  • 112. Wu Q., Ortegon A.M., Tsang B., Doege H., Feingold K.R., Stahl A.: FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol. Cell. Biol., 2006; 26: 3455-3467
    Google Scholar
  • 113. Yamamoto T., Yamamoto A., Watanabe M., Matsuo T., Yamazaki N., Kataoka M., Terada H., Shinohara Y.: Classification of FABP isoforms and tissues based on quantitative evaluation of transcript levels of these isoforms in various rat tissues. Biotechnol. Lett., 2009; 31: 1695-1701
    Google Scholar
  • 114. Yanai H., Chiba H., Morimoto M., Jamieson G.A., Matsuno K.: Type I CD36 deficiency in humans is not associated with insulin resistance syndrome. Thromb. Haemost., 2000; 83: 786
    Google Scholar
  • 115. Yokomori H., Oda M., Yoshimura K., Nagai T., Fujimaki K., Watanabe S., Hibi T.: Caveolin-1 and Rac regulate endothelial capillary-like tubular formation and fenestral contraction in sinusoidal endothelial cells. Liver Int., 2009; 29: 266-276
    Google Scholar
  • 116. Zhou J., Febbraio M., Wada T., Zhai Y., Kuruba R., He J., Lee J.H., Khadem S., Ren S., Li S., Silverstein R.L., Xie W.: Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology, 2008; 134: 556-567
    Google Scholar

Full text

Skip to content