Sirtuins: Enzymes with multidirectional catalytic activity

ORIGINAL ARTICLE

Sirtuins: Enzymes with multidirectional catalytic activity

Ewa Maria Kratz 1 , Katarzyna Sołkiewicz 1 , Agnieszka Kaczmarek 1 , Agnieszka Piwowar 2

1. Katedra Diagnostyki Laboratoryjnej, Zakład Diagnostyki Laboratoryjnej, Wydział Farmaceutyczny, Uniwersytet Medyczny we Wrocławiu,
2. Katedra i Zakład Toksykologii, Wydział Farmaceutyczny, Uniwersytet Medyczny we Wrocławiu,

Published: 2021-03-04
DOI: 10.5604/01.3001.0014.7866
GICID: 01.3001.0014.7866
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 152-174

 

Abstract

Sirtuins (SIRT) are NAD+-dependent histone deacetylases that play an important role in the functioning of the human body. They participate in numerous processes taking place in cells, including in the post-translational modification of proteins, silencing gene transcription, inducing repair processes, as well as in the regulation of metabolic processes. Sirtuins have also been shown to play an important role in reducing the level of reactive oxygen species as well as in stimulating cell growth, aging and death. Such a wide range of processes, which are affected by sirtuins, have recently made sirtuins the object of many studies aimed at a detailed understanding of the mechanisms of their action and the role they play. The aim of our study was to collect and systematize information on sirtuins, mainly from the last 10 years, both regarding the human body and based on the results of research on animal models or cell lines. The article discusses the structure, function and biological role of sirtuins in cellular processes.

References

  • 1. Bannister A.J., Kouzarides T.: Regulation of chromatin by histonemodifications. Cell Res., 2011; 21: 381–395
    Google Scholar
  • 2. Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., MoqtaderiZ., Tennen R.I., Paredes S., Young N.L., Chen K., Struhl K.,Garcia B.A., Gozani O., Li W., Chua K.F.: SIRT7 links H3K18 deacetylationto maintenance of oncogenic transformation. Nature,2012; 487: 114–118
    Google Scholar
  • 3. Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., ApfeldJ., McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J.,Lin S.J., Guarente L.: Sirt1 regulates insulin secretion by repressingUCP2 in pancreatic β cells. PLoS Biol., 2006; 4: e31
    Google Scholar
  • 4. Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y.,Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L.,Jedrychowski M.P., Gygi S.P., Sinclair D.A. i wsp.: Stress-dependentregulation of FOXO transcription factors by the SIRT1 deacetylase.Science, 2004; 303: 2011–2015
    Google Scholar
  • 5. Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I.,Voit R.: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7.Mol. Cell, 2013; 52: 303–313
    Google Scholar
  • 6. Cheng Y., Ren X., Gowda A.S., Shan Y., Zhang L., Yuan Y.S., PatelR., Wu H., Huber-Keener K., Yang J.W., Liu D., Spratt T.E., Yang J.M.:Interaction of Sirt3 with OGG1 contributes to repair of mitochondrialDNA and protects from apoptotic cell death under oxidativestress. Cell Death Dis., 2013; 4: e731
    Google Scholar
  • 7. Christovam A.C., Theodoro V., Mendonça F.A., Esquisatto M.A.,dos Santos G.M., do Amaral M.E.: Activators of SIRT1 in wound repair:An animal model study. Arch Dermatol Res., 2019; 311: 193–201
    Google Scholar
  • 8. Cimen H., Han M.J., Yang Y., Tong Q., Koc H., Koc E.C.: Regulationof succinate dehydrogenase activity by SIRT3 in mammalianmitochondria. Biochemistry., 2010; 49: 304–311
    Google Scholar
  • 9. Dominy J.E. Jr, Lee Y., Jedrychowski M.P., Chim H., Jurczak M.J.,Camporez J.P., Ruan H.B., Feldman J., Pierce K., Mostoslavsky R.,Denu J.M., Clish C.B., Yang X., Shulman G.I., Gygi S.P. i wsp.: The deacetylaseSirt6 activates the acetyltransferase GCN5 and suppresseshepatic gluconeogenesis. Mol. Cell, 2012; 48: 900–913
    Google Scholar
  • 10. Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., TainskyM.A.: Role for human SIRT2 NAD-dependent deacetylase activityin control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003;23: 3173–3185
    Google Scholar
  • 11. Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J.,Kim, J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., AuwerxJ. i wsp.: Sirt5 is a NAD-dependent protein lysine demalonylase anddesuccinylase. Science, 2011; 334: 806–809
    Google Scholar
  • 12. Eckschlager T., Plch J., Stiborova M., Hrabeta J.: Histone deacetylaseinhibitors as anticancer drugs. Int. J. Mol. Sci., 2017; 18: 1414
    Google Scholar
  • 13. Espenshade P.J.: SREBPs: Sterol-regulated transcription factors.J. Cell Sci., 2006; 119: 973–976
    Google Scholar
  • 14. Fataftah N., Mohr C., Hajirezaei M.R., von Wirén N., HumbeckK.: Changes in nitrogen availability lead to a reprogramming ofpyruvate metabolism. BMC Plant Biol., 2018; 18: 77
    Google Scholar
  • 15. Feldman J.L., Dittenhafer-Reed K.E., Denu J.M.: Sirtuin catalysisand regulation. J. Biol. Chem., 2012; 287: 42419–42427
    Google Scholar
  • 16. Finley L.W., Haas W., Desquiret-Dumas V., Wallace D.C., ProcaccioV., Gygi S.P., Haigis M.C.: Succinate dehydrogenase is a directtarget of sirtuin 3 deacetylase activity. PLoS One, 2011; 6: e23295
    Google Scholar
  • 17. Flick F., Lüscher B.: Regulation of sirtuin function by posttranslationalmodifications. Front. Pharmacol., 2012; 3: 29
    Google Scholar
  • 18. Frye R.A.: Phylogenetic classification of prokaryotic and eukaryoticSir2-like proteins. Biochem. Biophys. Res. Commun., 2000;273: 793–798
    Google Scholar
  • 19. Gao D., Wang H., Xu Y., Zheng D., Zhang Q., Li W.: Protectiveeffect of astaxanthin against contrast-induced acute kidney injuryvia SIRT1-p53 pathway in rats. Int. Urol. Nephrol., 2019; 51: 351–358
    Google Scholar
  • 20. GeneCards.: https://www.genecards.org (15.06.2020)
    Google Scholar
  • 21. Greiss S., Gartner A.: Sirtuin/Sir2 phylogeny, evolutionaryconsiderations and structural conservation. Mol. Cells, 2009; 28:407–415
    Google Scholar
  • 22. Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., ChristodoulouD.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., KarowM., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W.,Guarente L.: SIRT4 inhibits glutamate dehydrogenase and opposesthe effects of calorie restriction in pancreatic β cells. Cell., 2006;126: 941–954
    Google Scholar
  • 23. Hallows W.C., Yu W., Denu J.M.: Regulation of glycolytic enzymephosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.J. Biol. Chem., 2012; 287: 3850–3858
    Google Scholar
  • 24. Hikosaka K., Yaku K., Okabe K., Nakagawa T.: Implicationsof NAD metabolism in pathophysiology and therapeuticsfor neurodegenerative diseases. Nutr. Neurosci., 2019; DOI:10.1080/1028415X.2019.1637504
    Google Scholar
  • 25. Horton J.D., Goldstein J.L., Brown M.S.: SREBPs: Activators ofthe complete program of cholesterol and fatty acid synthesis inthe liver. J. Clin. Invest., 2002; 109: 1125–1131
    Google Scholar
  • 26. Houtkooper R.H., Pirinen E., Auwerx J:. Sirtuins as regulatorsof metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012; 13:225–238
    Google Scholar
  • 27. Hubbi M.E., Hu H., Kshitiz, Gilkes D.M., Semenza G.L.: Sirtuin-7inhibits the activity of hypoxia-inducible factors. J. Biol. Chem.,2013; 288: 20768–20775
    Google Scholar
  • 28. Jacobs K.M., Pennington J.D., Bisht K.S., Aykin-Burns N., KimH.S., Mishra M., Sun L., Nguyen P., Ahn B.H., Leclerc J., Deng C.X.,Spitz D.R., Gius D.: SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent geneexpression. Int. J. Biol. Sci., 2008; 4: 291–299
    Google Scholar
  • 29. Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H.,Park G.H., Lee K.H.: SIRT1 promotes DNA repair activity and deacetylationof Ku70. Exp. Mol. Med., 2007; 39: 8–13
    Google Scholar
  • 30. Jęśko H., Strosznajder R.P.: Sirtuins and their interactions withtranscription factors and poly(ADP-ribose) polymerases. Folia Neuropathol.,2016; 54: 212–233
    Google Scholar
  • 31. Jiang W., Wang S., Xiao M., Lin Y., Zhou L., Lei Q., Xiong Y., GuanK.L., Zhao S.: Acetylation regulates gluconeogenesis by promotingPEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. MolCell., 2011; 43: 33–44
    Google Scholar
  • 32. Jing E., Gesta S., Kahn C.R.: SIRT2 regulates adipocyte differentiationthrough FoxO1 acetylation/deacetylation. Cell Metab.,2007; 6: 105–114
    Google Scholar
  • 33. Jing H., Lin H.: Sirtuins in epigenetic regulation. Chem Rev.,2015; 115: 2350–2375
    Google Scholar
  • 34. Johnson C.A.: Chromatin modification and disease. J. Med.Genet., 2000; 37: 905–915
    Google Scholar
  • 35. Kahl G.: The dictionary of genomics, transcriptomics and proteomics.Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2015; Volume 1 A-D: 2156
    Google Scholar
  • 36. Kaidi A., Weinert B.T., Choudhary C., Jackson S.P.: Human SIRT6promotes DNA end resection through CtIP deacetylation. Science,2010; 329: 1348–1353
    Google Scholar
  • 37. Karim M.F., Yoshizawa T., Sobuz S.U., Sato Y., Yamagata K.:Sirtuin 7-dependent deacetylation of DDB1 regulates the expressionof nuclear receptor TR4. Biochem. Biophys. Res. Commun.,2017; 490: 423–428
    Google Scholar
  • 38. Kouzarides T.: Chromatin modifications and their function.Cell., 2007; 128: 693–705
    Google Scholar
  • 39. Kozako T., Suzuki T., Yoshimitsu M., Arima N., Honda S., SoedaS.: Anticancer agents targeted to sirtuins. Molecules, 2014; 19:20295–20313
    Google Scholar
  • 40. Kupis W., Pałyga J., Tomal E., Niewiadomska E.: The role of sirtuinsin cellular homeostasis. J. Physiol. Biochem., 2016; 72: 371–380
    Google Scholar
  • 41. Kyrylenko S., Kyrylenko O., Suuronen T., Salminen A.: Differentialregulation of the Sir2 histone deacetylase gene familyby inhibitors of class I and II histone deacetylases. Cell. Mol. LifeSci., 2003; 60: 1990–1997
    Google Scholar
  • 42. Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., PillusL., Sternglanz R.: The silencing protein SIR2 and its homologs areNAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA,2000; 97: 5807–5811
    Google Scholar
  • 43. Langley E., Pearson M., Faretta M., Bauer U.M., Frye RA., MinucciS., Pelicci P.G., Kouzarides T.: Human SIR2 deacetylates p53and antagonizes PML/p53-induced cellular senescence. EMBO J.,2002; 21: 2383–2396
    Google Scholar
  • 44. Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., SchugT.T., Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C.: SIRT4 repressesperoxisome proliferator-activated receptor α activity tosuppress hepatic fat oxidation. Mol. Cell. Biol., 2013; 33: 4552–4561
    Google Scholar
  • 45. Laurent G., German N.J., Saha A.K., de Boer V.C., Davies M.,Koves T.R., Dephoure N., Fischer F., Boanca G., Vaitheesvaran B.,Lovitch S.B., Sharpe A.H., Kurland I.J., Steegborn C., Gygi S.P. iwsp: SIRT4 coordinates the balance between lipid synthesis andcatabolism by repressing malonyl-CoA decarboxylase. Mol. Cell.,2013; 50: 686–698
    Google Scholar
  • 46. Li L., Shi L., Yang S., Yan R., Zhang D., Yang J., He L., Li W., Yi X.,Sun L., Liang J., Cheng Z., Shi L., Shang Y., Yu W.: SIRT7 is a histonedesuccinylase that functionally links to chromatin compaction andgenome stability. Nat. Commun., 2016; 7: 12235
    Google Scholar
  • 47. Li W., Zhang B., Tang J., Cao Q., Wu Y., Wu C., Guo J., Ling E.A.,Liang F.: Sirtuin 2, a mammalian homolog of yeast silent informationregulator-2 longevity regulator, is an oligodendroglial proteinthat decelerates cell differentiation through deacetylatingα-tubulin. J. Neurosci., 2007; 27: 2606–2616
    Google Scholar
  • 48. Lipska K., Filip A.A., Gumieniczek A.: Postępy w badaniachnad inhibitorami deacetylaz histonów jako lekami przeciwnowotworowymi.Postępy Hig. Med. Dośw., 2018; 72: 1018–1031
    Google Scholar
  • 49. Liszt G., Ford E., Kurtev M., Guarente L.: Mouse Sir2 homologSIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem., 2005;280: 21313–21320
    Google Scholar
  • 50. Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., Streeper R.S.,Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., MurphyA., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M. i wsp.:Mammalian Sir2 homolog SIRT3 regulates global mitochondriallysine acetylation. Mol. Cell. Biol., 2007; 27: 8807–8814
    Google Scholar
  • 51. Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., GuarenteL., Gu W.: Negative control of p53 by Sir2α promotes cell survivalunder stress. Cell., 2001; 107: 137–148
    Google Scholar
  • 52. Luo K., Huang W., Tang S.: Sirt3 enhances glioma cell viabilityby stabilizing Ku70-BAX interaction. Onco Targets Ther., 2018;11: 7559–7567
    Google Scholar
  • 53. Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., SeluanovA., Gorbunova V.: SIRT6 promotes DNA repair under stressby activating PARP1. Science, 2011; 332: 1443–1446
    Google Scholar
  • 54. Mathias R.A., Greco T.M., Cristea I.M.: Identification of sirtuin4(SIRT4) protein interactions: Uncovering candidate acyl-modifiedmitochondrial substrates and enzymatic regulators. Methods Mol.Biol., 2016; 1436: 213–239
    Google Scholar
  • 55. Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., ChakrabartiR., Rowland E.A., Kang Y., Shenk T., Cristea I.M.: Sirtuin 4 is alipoamidase regulating pyruvate dehydrogenase complex activity.Cell., 2014; 159: 1615–1625
    Google Scholar
  • 56. Matsushita N., Yonashiro R., Ogata Y., Sugiura A., NagashimaS., Fukuda T., Inatome R., Yanagi S.: Distinct regulation of mitochondriallocalization and stability of two human Sirt5 isoforms.Genes Cells, 2011; 16: 190–202
    Google Scholar
  • 57. Maxwell P.H., Pugh C.W., Ratcliffe P.J.: The pVHL-hIF-1 system.A key mediator of oxygen homeostasis. Adv. Exp. Med. Biol.,2001; 502: 365–376
    Google Scholar
  • 58. McCord R.A., Michishita E., Hong T., Berber E., Boxer L.D., KusumotoR., Guan S., Shi X., Gozani O., Burlingame A.L., Bohr V.A.,Chua K.F.: SIRT6 stabilizes DNA-dependent protein kinase at chromatinfor DNA double-strand break repair. Aging, 2009; 1: 109–121
    Google Scholar
  • 59. Mei Z., Zhang X., Yi J., Huang J., He J., Tao Y.: Sirtuins in metabolism,DNA repair and cancer. J. Exp. Clin. Cancer Res., 2016; 35: 182
    Google Scholar
  • 60. Meijer A.J., Lamers W.H., Chamuleau R.A.: Nitrogen metabolismand ornithine cycle function. Physiol Rev., 1990; 70: 701–748
    Google Scholar
  • 61. Michan S., Sinclair D.: Sirtuins in mammals: Insights into theirbiological function. Biochem. J., 2007; 404: 1–13
    Google Scholar
  • 62. Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H.,Damian M., Cheung P., Kusumoto R., Kawahara T.L., Barrett J.C.,Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F.: SIRT6 is a histoneH3 lysine 9 deacetylase that modulates telomeric chromatin.Nature, 2008; 452: 492–496
    Google Scholar
  • 63. Muth V., Nadaud S., Grummt I., Voit R.: Acetylation of TAFI68,a subunit of TIF-IB/SL1, activates RNA polymerase I transcription.EMBO J., 2001; 20: 1353–1362
    Google Scholar
  • 64. Nakae J., Oki M., Cao Y.: The FoxO transcription factors andmetabolic regulation. FEBS Lett., 2008; 582: 54–67
    Google Scholar
  • 65. Nakagawa T., Lomb D.J., Haigis M.C., Guarente L.: SIRT5 deacetylatescarbamoyl phosphate synthetase 1 and regulates the ureacycle. Cell, 2009; 137: 560–570
    Google Scholar
  • 66. Nakamura Y., Ogura M., Ogura K., Tanaka D., Inagaki N.: SIRT5deacetylates and activates urate oxidase in liver mitochondria ofmice. FEBS Lett., 2012; 586: 4076–4081
    Google Scholar
  • 67. Nishida Y., Rardin M.J., Carrico C., He W., Sahu A.K., Gut P., NajjarR., Fitch M., Hellerstein M., Gibson B.W., Verdin E.: SIRT5 regulatesboth cytosolic and mitochondrial protein malonylation withglycolysis as a major target. Mol. Cell., 2015; 59: 321–332
    Google Scholar
  • 68. North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E.: Thehuman Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase.Mol. Cell, 2003; 11: 437–444
    Google Scholar
  • 69. Obsil T., Obsilova V.: Structure/function relationships underlyingregulation of FOXO transcription factors. Oncogene, 2008;27: 2263–2275
    Google Scholar
  • 70. Osborne T.F., Espenshade P.J.: Evolutionary conservation andadaptation in the mechanism that regulates SREBP action: What along, strange tRIP it’s been. Genes Dev., 2009; 23: 2578–2591
    Google Scholar
  • 71. Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z.,Zhang Y., Zwaans B.M., Skinner M.E., Lombard D.B., Zhao Y.: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.Mol. Cell, 2013; 50: 919–930
    Google Scholar
  • 72. Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., ZhangY., He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D.,He T.C. i wsp.: The first identification of lysine malonylation substratesand its regulatory enzyme. Mol. Cell Proteomics, 2011; 10:M111.012658
    Google Scholar
  • 73. Picard F., Kurtev M., Chung N., Topark-Ngarm A., SenawongT., Machado de Oliviera R., Leid M., McBurney M.W., Guarente L.:Sirt1 promotes fat mobilization in white adipocytes by repressingPPAR-γ. Nature, 2004; 429: 771–776
    Google Scholar
  • 74. Polletta L., Vernucci E., Carnevale I., Arcangeli T., Rotili D.,Palmerio S., Steegborn C., Nowak T., Schutkowski M., PellegriniL., Sansone L., Villanova L., Runci A., Pucci B., Morgante E. i wsp.:SIRT5 regulation of ammonia-induced autophagy and mitophagy.Autophagy, 2015; 11: 253–270
    Google Scholar
  • 75. Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., WuS.Y., Chiang C.M., Veenstra T.D., Kemper J.K.: SIRT1 deacetylatesand inhibits SREBP-1C activity in regulation of hepatic lipid metabolism.J. Biol. Chem., 2010; 285: 33959–33970
    Google Scholar
  • 76. Ramsey K.M., Mills K.F., Satoh A., Imai S.I.: Age-associated lossof Sirt1-mediated enhancement of glucose-stimulated insulin secretionin beta cell-specific Sirt1-overexpressing (BESTO) mice.Aging Cell, 2008; 7: 78–88
    Google Scholar
  • 77. Rangarajan P., Karthikeyan A., Lu J., Ling E.A., Dheen S.T.: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia.Neuroscience, 2015; 311: 398–414
    Google Scholar
  • 78. Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., DanielsonS.R., Guo A., Gut P., Sahu A.K,. Li B., Uppala R., Fitch M.,Riiff T., Zhu L., Zhou J. i wsp.: SIRT5 regulates the mitochondriallysine succinylome and metabolic networks. Cell Metab., 2013;18: 920–933
    Google Scholar
  • 79. Rodgers J.T., Lerin C., Gerhart-Hines Z., Puigserver P.: Metabolicadaptations through the PGC-1α and SIRT1 pathways. FEBSLett., 2008; 582: 46–53
    Google Scholar
  • 80. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M.,Puigserver P.: Nutrient control of glucose homeostasis through acomplex of PGC-1α and SIRT1. Nature, 2005; 434: 113–118
    Google Scholar
  • 81. Rodgers J.T., Puigserver P.: Fasting-dependent glucose and lipidmetabolic response through hepatic sirtuin 1. Proc. Natl. Acad.Sci. USA, 2007; 104: 12861–12866
    Google Scholar
  • 82. Rorbach-Dolata A., Kubis A., Piwowar A.: Modyfikacje epigenetyczne– ważny mechanizm w zaburzeniach cukrzycy. PostępyHig. Med. Dośw., 2017; 71: 960–974
    Google Scholar
  • 83. Ryu D., Jo Y.S., Lo Sasso G., Stein S., Zhang H., Perino A., LeeJ.U., Zeviani M., Romand R., Hottiger M.O., Schoonjans K., AuwerxJ.: A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrialfunction. Cell. Metab., 2014; 20: 856–869
    Google Scholar
  • 84. Sanders B.D., Jackson B., Marmorstein R.: Structural basis forsirtuin function: What we know and what we don’t. Biochim. Biophys.Acta, 2010; 1804: 1604–1616
    Google Scholar
  • 85. Scher M.B., Vaquero A., Reinberg D.: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondriaupon cellular stress. Genes Dev., 2007; 21: 920–928
    Google Scholar
  • 86. Schiedel M., Robaa D., Rumpf T., Sippl W., Jung M.: The currentstate of NAD+-dependent histone deacetylases (sirtuins) as noveltherapeutic targets. Med. Res. Rev., 2017; 37: 147–200
    Google Scholar
  • 87. Schwer B., North B.J., Frye R.A., Ott M., Verdin E.: The humansilent information regulator (Sir)2 homologue hSIRT3 is a mitochondrialnicotinamide adenine dinucleotide-dependent deacetylase.J. Cell. Biol., 2002; 158: 647–657
    Google Scholar
  • 88. Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., WatsonD.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E.:Succinate links TCA cycle dysfunction to oncogenesis by inhibitingHIF-α prolyl hydroxylase. Cancer Cell, 2005; 7: 77–85
    Google Scholar
  • 89. Semenza G.L.: Regulation of oxygen homeostasis by hypoxiainduciblefactor 1. Physiology, 2009; 24: 97–106
    Google Scholar
  • 90. Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., QiuX., Nabavi N., Mohrin M., Wojnoonski K. Li P., Cheng H.L., MurphyA.J., Valenzuela D.M., Luo H. i wsp.: SIRT7 represses Myc activityto suppress ER stress and prevent fatty liver disease. Cell Rep.,2013; 5: 654–665
    Google Scholar
  • 91. Siedlecka K., Bogusławski W.: Sirtuiny – enzymydługowieczności? Gerontol. Pol., 2005; 13: 147–152
    Google Scholar
  • 92. Snyder C.A., Goodson M.L., Schroeder A.C., Privalsky M.L.:Regulation of corepressor alternative mRNA splicing by hormonaland metabolic signaling. Mol. Cell. Endocrinol., 2015; 413: 228–235
    Google Scholar
  • 93. Sundaresan N.R., Samant S.A., Pillai V.B., Rajamohan S.B., GuptaM.P.: SIRT3 is a stress responsive deacetylase in cardiomyocytesthat protects cells from stress-mediated cell death by deacetylationof Ku70. Mol. Cell. Biol., 2008; 28: 6384–6401
    Google Scholar
  • 94. Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., ParkJ., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F.,Madsen A.S., Schmiesing J. i wsp.: Lysine glutarylation is a proteinposttranslational modification regulated by SIRT5. Cell. Metab.,2014; 19: 605–617
    Google Scholar
  • 95. Tavares C.D., Sharabi K., Dominy J.E., Lee Y., Isasa M., OrozcoJ.M., Jedrychowski M.P., Kamenecka T.M., Griffin P.R., Gygi S.P.,Puigserver P.: The methionine transamination pathway controlshepatic glucose metabolism through regulation of the GCN5 acetyltransferaseand the PGC-1α transcriptional coactivator. J. Biol.Chem., 2016; 291: 10635–10645
    Google Scholar
  • 96. Tennen R.I., Bua D.J., Wright W.E., Chua K.F.: SIRT6 is requiredfor maintenance of telomere position effect in human cells. Nat.Commun., 2011; 2: 433
    Google Scholar
  • 97. Tsai Y.C., Greco T.M., Cristea I.M.: Sirtuin7 plays a role in ribosomebiogenesis and protein synthesis. Mol. Cell. Proteomics,2014; 13: 73–83
    Google Scholar
  • 98. van der Horst A., Tertoolen L.G., de Vries-Smits L.M., Frye R.A.,Medema R.H., Burgering B.M.: FOXO4 is acetylated upon peroxidestress and deacetylated by the longevity protein hSir2(SIRT1). J.Biol. Chem., 2004; 279: 28873–28879
    Google Scholar
  • 99. Vaquero A., Scher M., Lee D., Erdjument-Bromage H., TempstP., Reinberg D.: Human SirT1 interacts with histone H1 and promotesformation of facultative heterochromatin. Mol. Cell., 2004;16: 93–105
    Google Scholar
  • 100. Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., AltF.W., Serrano L., Sternglanz R., Reinberg D.: SirT2 is a histone deacetylasewith preference for histone H4 Lys 16 during mitosis.Genes Dev., 2006; 20: 1256–1261
    Google Scholar
  • 101. Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., PanditaT.K., Guarente L., Weinberg R.A.: hSIR2 (SIRT1) functions as anNAD-dependent p53 deacetylase. Cell, 2001; 107: 149–159
    Google Scholar
  • 102. Walker A.K., Yang F., Jiang K., Ji J.Y., Watts J.L., PurushothamA,. Boss O., Hirsch M.L., Ribich S., Smith J.J., Israelian K., WestphalC.H., Rodgers J.T., Shioda T., Elson S.L. i wsp.: Conserved role ofSIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterolregulator SREBP. Genes Dev., 2010; 24: 1403–1417
    Google Scholar
  • 103. Wang F., Chan C.H., Chen K., Guan X., Lin H.K., Tong Q.: Deacetylationof FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3ubiquitination and degradation. Oncogene, 2012; 31: 1546–1557
    Google Scholar
  • 104. Wang F., Nguyen M., Qin F.X., Tong Q.: SIRT2 deacetylatesFOXO3a in response to oxidative stress and caloric restriction.Aging Cell, 2007; 6: 505–514
    Google Scholar
  • 105. Wang F., Tong Q.: SIRT2 suppresses adipocyte differentiationby deacetylating FOXO1 and enhancing FOXO1’s repressive interactionwith PPARγ. Mol. Biol. Cell, 2009; 20: 801–808
    Google Scholar
  • 106. Webb A.E., Brunet A.: FOXO transcription factors: Key regulatorsof cellular quality control. Trends Biochem. Sci., 2014; 39:159–169
    Google Scholar
  • 107. Wiercińska M., Rosołowska-Huszcz D.: Naturalne i syntetycznemodulatory aktywności sirtuin. Kosmos, 2017; 66: 365–377
    Google Scholar
  • 108. Yamamoto H., Schoonjans K., Auwerx J.: Sirtuin functions inhealth and disease. Mol. Endocrinol., 2007; 21: 1745–1755
    Google Scholar
  • 109. Yang B., Zwaans B.M., Eckersdorff M., Lombard D.B.: Thesirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomicstability. Cell Cycle, 2009; 8: 2662–2663
    Google Scholar
  • 110. Yang S.R., Wright J., Bauter M., Seweryniak K., Kode A., RahmanI.: Sirtuin regulates cigarette smoke-induced proinflammatorymediator release via RelA/p65 NF-κB in macrophages in vitro andin rat lungs in vivo: Implications for chronic inflammation and aging.Am. J. Physiol. Lung Cell Mol. Physiol., 2007; 292: L567–L576
    Google Scholar
  • 111. Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R.,Frye R.A., Mayo M.W.: Modulation of NF-κB-dependent transcriptionand cell survival by the SIRT1 deacetylase. EMBO J., 2004; 23:2369–2380
    Google Scholar
  • 112. Zhang M., Pan Y., Dorfman R.G., Yin Y., Zhou Q., Huang S., LiuJ., Zhao S.: Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesisby inhibiting deacetylase SIRT2. Sci Rep., 2017; 7: 7
    Google Scholar
  • 113. Zhang P.Y., Li G., Deng Z.J., Liu L.Y., Chen L., Tang J.Z., WangY.Q., Cao S.T., Fang Y.X., Wen F., Xu Y., Chen X., Shi K.Q., Li W.F., XieC. i wsp.: Dicer interacts with SIRT7 and regulates H3K18 deacetylationin response to DNA damaging agents. Nucleic Acids Res.,2016; 44: 3629–3642
    Google Scholar
  • 114. Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., ZhouL., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S.M., He F. i wsp.:Regulation of cellular metabolism by protein lysine acetylation.Science, 2010; 327: 1000–1004
    Google Scholar
  • 115. Zhao T., Alam H.B., Liu B., Bronson R.T., Nikolian V.C., Wu E.,Chong W., Li Y.: Selective inhibition of SIRT2 improves outcomes ina lethal septic model. Curr. Mol. Med., 2015; 15: 634–641
    Google Scholar
  • 116. Zhong L., Mostoslavsky R.: SIRT6: A master epigenetic gatekeeperof glucose metabolism. Transcription, 2010; 1: 17–21
    Google Scholar
  • 117. Zhong L., D’Urso A., Toiber D., Sebastian C., Henry R.E., VadysirisackD.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., ClishC.B., Vaitheesvaran B., Iliopoulos O., Kurland I., Dor Y. i wsp.: Thehistone deacetylase Sirt6 regulates glucose homeostasis via Hif1α.Cell, 2010; 140: 280–293
    Google Scholar

Full text

Skip to content