Stem cell properties, current legal status and medical application

REVIEW ARTICLE

Stem cell properties, current legal status and medical application

Ilona Szabłowska-Gadomska 1 , Leonora Bużańska 2 , Maciej Małecki 1

1. Katedra Farmacji Stosowanej i Bioinżynierii, Warszawski Uniwersytet Medyczny,
2. Pracownia Bioinżynierii Komórek Macierzystych, Instytut Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego PAN, Warszawa,

Published: 2017-12-31
DOI: 10.5604/01.3001.0010.7733
GICID: 01.3001.0010.7733
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1216-1230

 

Abstract

Stem cells due to their unique properties of self-renewal and differentiation play a potential role in the process of damaged tissue repair. Isolated from the inner cell mass of the blastocyst have pluripotential properties and are called embryonic stem cells (ESC). Pluripotential stem cells can be also generated from the differentiated cells by the process of reprogramming and are called induced pluripotent stem cells (iPSC). Stem cells isolated from tissues (somatic or adult stem cells) are more restricted in their differentiation potential and referred as multipotent. The rapid rise in number of clinical trials using somatic stem cells is due to their proved in basic and preclinical studies therapeutic safety and paracrine properties to modulate microenvironment. Increased translation to the clinic of studies using adult stem cells provide hope for patients with diseases for which traditional medicine is powerless .or ineffective. On the other hand progress in iPSC technology allows to derive disease models and personalize future clinical diagnosis and treatment. This paper will focus on characteristics of stem cells, potential application in regenerative medicine, and the current legal status of cell therapy.

References

  • 1. Abbas O., Mahalingam M.: Epidermal stem cells: practical perspectives and potential uses. B.J.D., 2009; 161: 228-236
    Google Scholar
  • 2. Aktas M., Buchheiser A., Houben A., Reimann V., Radke T., Jeltsch K., Maier P., Zeller W.J., Kogler G.:Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood. Cytotherapy, 2010; 12:338-348
    Google Scholar
  • 3. Al-Nbaheen M., Vishnubalaji R., Ali D., Bouslimi A., Al-Jassir F., Megges M., Prigione A., Adjaye J., Kassem M., Aldahmash A.: Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev., 2013; 9:32-43
    Google Scholar
  • 4. Alvare-Buylla A., Garcia-Verdugo J.M.: Neurogenesis in adult subventricular zone. J. Neurosci. 2002; 1; 22:629-34
    Google Scholar
  • 5. Augustyniak J., Zychowicz M., Podobinska M., Barta T., Buzanska L.: Reprogramming of somatic cells: possible methods to derive safe, clinical-grade human induced pluripotent stem cells. Acta Neurobiol. Exp., 2014; 74:373-382
    Google Scholar
  • 6. Bahney C.S and Miclau T.: Therapeutic potential of stem cells in orthopedics. Indian J. Orthop., 2012; 46: 4-9
    Google Scholar
  • 7. Balpain C., Fuchs E.: Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol., 2009; 10: 207-217
    Google Scholar
  • 8. Barthel R. I., Aberdam D.: Epidermal stem cells .J.Eur.Acad. Dermatol. Venerol., 2005; 19:405-413
    Google Scholar
  • 9. Bernstein B.E., Meissner A., Lander E.S. Mammalian Epigenome. Cell, 2007; 128:669-681
    Google Scholar
  • 10. Bianco P.: “Mesenchymal” stem cells. Annu Rev Cell Dev. Biol., 2014; 30:677-704
    Google Scholar
  • 11. Boheler K.R.: Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol., 2009; 221:10-17
    Google Scholar
  • 12. Buzanska L., Jurga M., Stachowiak E.K., Stachowiak M.K., Domanska-Janik K.: Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev., 2006; 3:391-406
    Google Scholar
  • 13. Buzanska L., Machaj E.K., Zabłocka B., Pojda Z., Domanska-Janik K.: Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci., 2002; 15:2131-2138
    Google Scholar
  • 14. Buzanska L., Szabłowska-Gadomska I., Zychowicz M.: Neuralne komórki macierzyste: podejmowanie decyzji rozwojowych. W: Glej XXIX Zimowa Szkoła Instytutu Farmakologii PAN„ Kraków, 2012; 19-34
    Google Scholar
  • 15. Buzanska L., Zychowicz M., Sarnowska A., Domańska-Janik K.: Bioinżynieria niszy neuralnych komórek macierzystych. Postepy Biochem., 2013; 59:175-186
    Google Scholar
  • 16. Canesi M., Giordano R., Lazzari L., Isalberti M., Isaias I.U., Benti R., Rampini P., Marotta G., Colombo A., Cereda E., Dipaola M., Montemurro T., Viganò M., Budelli S., Montelatici E., Lavazza C., Cortelezzi A., Pezzoli G.:Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy. J Transl Med., 2016; 10:1-11
    Google Scholar
  • 17. Casaarosa S., Bozzi Y., Conti L.: Neural stem cells: ready for therapeutic applications? Mol Cell Ther., 2014; 1:2-31
    Google Scholar
  • 18. Chou Ch-H., Fan H-Ch., Hueng D-Y.: Potential of Neural Stem Cell-Based Therapy for Parkinson’s Disease. Parkinson’s Disease., 2015; 1:1-9
    Google Scholar
  • 19. ClinicalTrials.gov A service of the U.S. National Institutes of Health https://clinicaltrials.gov/https://clinicaltrials.gov/ct2/results/map?term=%22stem+cells%22 (10.04.2017)
    Google Scholar
  • 20. Davis R.L., Weintraub H., Lassar A.B.: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell., 1987; 24:987-1000
    Google Scholar
  • 21. de Vasconcellos Machado C., Dias da Silva Telles P., Oliveira Nascimento I.L.: Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter., 2013; 35:62-67
    Google Scholar
  • 22. Deng X.Y., Wang H., Wang T., Fang X.T., Zou L.L., Li Z.Y., Liu C.B.: Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther., 2015; 10:153-158
    Google Scholar
  • 23. Dieckmann C., Renner R., Milkova L., Simon J.C.: Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp Dermatol., 2010 19:697-706
    Google Scholar
  • 24. Domanska-Janik K., Buzanska L., Lukomska B.: A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells. Int J Dev Biol., 2008; 52:237-248
    Google Scholar
  • 25. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement., Cytotherapy. 2006; 8, 4:315-317
    Google Scholar
  • 26. Drela K., Lech W., Figiel-Dabrowska A., Zychowicz M., Mikula M., Sarnowska A., Domanska-Janik K.: Enhanced neuro-therapeutic potential of Wharton’s Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy, 2016; 18:497-509
    Google Scholar
  • 27. Drela K, Sarnowska A, Siedlecka P, Szablowska-Gadomska I, Wielgos M, Jurga M, Lukomska B, Domanska-Janik K. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy, 2014; 16:881-892
    Google Scholar
  • 28. Drela K., Siedlecka P., Sarnowska A., Domanska-Janik K.: Human mesenchymal stem cells in the treatment of neurological diseases. Acta Neurobiol Exp., 2013; 73:38-56
    Google Scholar
  • 29. Droz-Georget Lathion S., Rochat A., Knott G., Recchia A., Martinet D., Benmohammed S., Grasset N., Zaffalon A., Besuchet Schmutz N., Savioz-Dayer E., Beckmann J.S., Rougemont J., Mavilio F,, Barrandon Y.: A single epidermal stem cell strategy for safe ex vivo gene therapy. EMBO Mol Med., 2015; 27:380-393
    Google Scholar
  • 30. Dyrektywa Komisji 2006/86/WE z dn. 24 października 2006 wykonująca dyrektywę 2004/23/WE Parlamentu Europejskiego i Rady w zakresie wymagań dotyczących możliwości śledzenia, powiadamiania o poważnych i niepożądanych reakcjach i zdarzeniach oraz niektórych wymagań technicznych dotyczących kodowania, przetwarzania, konserwowania, przechowywania i dystrybucji tkanek i komórek ludzkich
    Google Scholar
  • 31. Dyrektywa Komisji 2009/120/WE z dn. 14 września 2009 zmieniają- ca dyrektywę 2001/83/WE Parlamentu Europejskiego i Rady w sprawie wspólnotowego kodeksu odnoszącego się do produktów leczniczych stosowanych u ludzi w zakresie produktów leczniczych terapii zaawansowanej
    Google Scholar
  • 32. Dyrektywy Komisji, 2006/17/WE z dn. 8 lutego 2006 wprowadzająca w życie dyrektywę 2004/23/WE Parlamentu Europejskiego i Rady w odniesieniu do niektórych wymagań technicznych dotyczących dawstwa, pobierania i badania tkanek i komórek ludzkich
    Google Scholar
  • 33. Dyrektywy Parlamentu Europejskiego i Rady 2004/23/WE z dn. 31 marca 2004 w sprawie ustalenia norm jakości i bezpiecznego oddawania, pobierania, testowania, przetwarzania, konserwowania, przechowywania i dystrybucji tkanek i komórek ludzkich
    Google Scholar
  • 34. English K., French A., Wood K.J.: Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell., 2010; 8:431-342
    Google Scholar
  • 35. Eriksson P.S., Perfilieva E., BjÖrk – Eriksson T., Alborn A.M., Nordborg C., Petreson D.A., Gage F.H.: Neurogenesis in the adult human hippocampus. Nat Med., 1998; 4:1313-1317
    Google Scholar
  • 36. Fraser J.K, Wulur I., Alfonso Z., Hedrick M.H.: Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol., 2006; 24:150-154
    Google Scholar
  • 37. Gao F., Chiu S.M., Motan D.A., Zhang Z., Chen L., Ji H.L., Tse H.F., Fu Q.L., Lian Q.: Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis., 2016; 7.1:11
    Google Scholar
  • 38. Gimble J.M., Guilak F., Sathishkumar M.S., Vidal M., Bunnell B.A.: In vitro Differentiation Potential of Mesenchymal Stem Cells. Transfus Med Hemother., 2008; 35:228-238
    Google Scholar
  • 39. Goldman S.: Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol., 2005; 23:862-871
    Google Scholar
  • 40. Gonzalez M.A. and Bednad A.: Characteristics of adult stem.W: Advances in experimental medicine and biology v. 741; Stem Cell Transplantation, Red.: R. López-Larrea, A. López-Vázquez,. B. Suárez-Álvarez. Landes Bioscience and Springer Science+Business Mediacapter, USA 2012; 1:103-120
    Google Scholar
  • 41. Goodell M.A.: Stem cell identification and sorting using the Hoechst 33342 side population (SP). Curr Protoc Cytom., 2005; 9:9-18
    Google Scholar
  • 42. Gurdon J.B., Elsdale T.R., Fischberg M.: Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature., 1958; 182:64-65
    Google Scholar
  • 43. Hallett P.J., Deleidi M., Astradsson A., Smith G.A., Cooper O., Osborn T.M., Sundberg M., Moore M.A., Perez-Torres E., Brownell A.L., Schumacher J.M., Spealman R.D., Isacson O.: Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 2015; 16(3):269-74
    Google Scholar
  • 44. Hass R., Kasper C., Böhm S., Jacobs R.: Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling., 2011; 9:1-14
    Google Scholar
  • 45. Hass R., Kronenwett R.: Hematopoetyczne komórki macierzyste – pytania i odpowiedzi. Podstwaowe informacje, wskazania i korzyści terapeutyczne. MedPharm Polska, Wrocław 2009
    Google Scholar
  • 46. Ito M., Liu Y., Yang Z., Nguyen J., Liang F., Morris R.J., Cotsarelis G.: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005; 11:1351-1354
    Google Scholar
  • 47. Jankowski R.J., Deasy B.M., Cao1 B., Gates C., Huard J.: The role of CD34 expression and cellular fusion in the regeneration capacity of myogenic progenitor cells. J Cell Sci., 2002; 15:4361-4374
    Google Scholar
  • 48. Jedrzejczak W.W.: Translational research in regenerative medicine: an example of bone marrow transplantation. Postepy Biochem. 2013; 59:198-204
    Google Scholar
  • 49. Jezierska-Woźniak K., Nosarzewska D , Tutas A. , Mikołajczyk A., Okliński M., Jurkowski M.K.: Wykorzystanie tkanki tłuszczowej jako źródła mezenchymalnych komórek macierzystych. Postepy Hig Med Dosw , 2010; 64:326-332
    Google Scholar
  • 50. Joachimiak R., Bajek A., Drewa T.: Mieszki włosowe nowym źródłem komórek macierzystych. Postępy Hig Med Dosw., 2012; 66:181-186
    Google Scholar
  • 51. Jozwiak S., Habich A., Kotulska K., Sarnowska A., Kropiwnicki T.,Janowski M., Jurkiewicz E., Lukomska B.,Kmiec T., Walecki J., Roszkowski M., Litwin M., Oldak T., Boruczkowski D., Domanska-Janik K.: Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child With Severe Global Brain Ischemic Injury.Cell Medicine, Part B of Cell Transplantation, 2010; 1:71-80
    Google Scholar
  • 52. Kawiak J.: Komórki macierzyste organizmu dorosłego w biologii i medycynie. Postępy Biol. Kom., 2009; 36: 99-110
    Google Scholar
  • 53. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K.: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells., 2006; 24:1294-1301
    Google Scholar
  • 54. Kim D.S., Ross P.J., Zaslavsky K., Ellis J.: Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci., 2014, 8:1-16
    Google Scholar
  • 55. Kitagawa Y.K.M., Toriyama K., Kamei Y., Torii S.: History of discovery of human adipose-derived stem cells and their clinical applications. Jpn J Plast Reconstr Surg., 2006; 49:1097-1104
    Google Scholar
  • 56. Kozłowska-Skrzypczak M., Komarnicki M.: Hematopoetyczne komórki macierzyste i krwiotworzenie. Diagnostyka Laboratoryjna Journal of Laboratory diagnostics. 2008; 44:231-239
    Google Scholar
  • 57. Kubiak JZ., Ciemerych, MA.: From Gurdon to Yamanaka – a brief history of cell reprogramming . Postepy Biochem., 2013; 59:124-130
    Google Scholar
  • 58. Kucia M., i Drukała J.: Postępy w metodach hodowli komórek dla transplantologii Komórki macierzyste. Postępy Biol. Kom., 2002; 2:257-268
    Google Scholar
  • 59. Lalu M.M., McIntyre L., Pugliese C., Fergusson D., Winston B.W., Marshall J.C., Granton J., Duncan J.S.: Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE, 2012; 7:1-21
    Google Scholar
  • 60. Lapouge G., Blanpain C.: Medical applications of epidermal stem cells. 2008 Nov 15. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008; http://www.ncbi.nlm.nih.gov/books/ NBK27047/ (01.08.2015)
    Google Scholar
  • 61. Lech W., Figiel-Dabrowska A., SarnowskaA., Drela K, Obtulowicz P, Bartłomiej Henryk Noszczyk BH.,, Buzanska L., Domanska-Janik K.: Phenotypic, functional and safety control at pre-implantation phase of MSC-based therapy. Stem Cell International, 2016;
    Google Scholar
  • 62. Li J., Zhen G., Tsai S.-Y., Jia X.: Epidermal Stem Cells in Orthopaedic Regenerative Medicine Int. J. Mol. Sci., 2013; 14:11626-11642
    Google Scholar
  • 63. Li X., Zhao X.: Epigenetic regulation of mammalian stem cells. Stem cells and dev., 2008; 17, 1043-1052
    Google Scholar
  • 64. Lin T., Ambasudhan R., Yuan X., Li W., Hilcove S., Abujarour R., Lin X., Hahm H.S., Hao E., Hayek A., Ding S.: A chemical platform for improved induction of human iPSCs. Nat Methods., 2009; 6:805-808
    Google Scholar
  • 65. Lois, C., and Alvarez-Buylla, A.: Long-distance neuronal migration in the adult mammalian brain. Science., 1994; 264: 1145-1148
    Google Scholar
  • 66. Lv F.J., Tuan R.S., Cheung K.M., Leung V.Y: Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells., 2014; 32:1408-1419
    Google Scholar
  • 67. Machaliński B.: Nieembrionalne komórki macierzyste a regeneracja układu nerwowego. Polski Przegląd Neurologiczny, 2008; 4:15-19
    Google Scholar
  • 68. Masayo Takahashi awarded inaugural Ogawa-Yamanaka Stem Cell Prize http://www.cdb.riken.jp/en/news/2015/topics/0911_7778.html (18.09.2015)
    Google Scholar
  • 69. Mazzini L., Gelati M., Profico D.C., Sgaravizzi G., Projetti Pensi M., Muzi G., Ricciolini C., Rota Nodari L., Carletti S., Giorgi C., Spera C., Domenico F., Bersano E., Petruzzelli F., Cisari C., Maglione A., Sarnelli M.F., Stecco A., Querin G., Masiero S., Cantello R., Ferrari D., Zalfa C., Binda E., Visioli A., Trombetta D., Novelli A., Torres B., Bernardini L., Carriero A., Prandi P., Servo S., Cerino A., Cima V., Gaiani A., Nasuelli N., Massara M., Glass J., Sorarù G., Boulis N.M., Vescovi A.L.: Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med. 2015; 27:13-17
    Google Scholar
  • 70. McGuckin C.P., Forraz N., Allouard Q., Pettengell R.: Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res., 2004; 1:350-359
    Google Scholar
  • 71. Mimeault M., Batra S.K.: Great promise of tissue –residet adult stem/progenitor cells in transplantation and cancer therapies; Stem Cell Transplantation, Red.: R. López-Larrea, A. López-Vázquez,. B. Suárez-Álvarez. Landes Bioscience and Springer Science+Business Mediacapter., USA 2012, 1:171-187
    Google Scholar
  • 72. Molofsky A.V, Pardal R., Morrison S.J.: Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol., 2004; 16 6 :700-707
    Google Scholar
  • 73. Nakamura S., Takayama N., Hirata S., Seo H., Endo H., Ochi K., Fujita K., Koike T., Harimoto K., Dohda T., Watanabe A., Okita K., Takahashi N., Sawaguchi A., Yamanaka S., Nakauchi H., Nishimura S., Eto K.: Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell., 2014; 3:535-548
    Google Scholar
  • 74. Obtulowicz P., Lech W., Strojek L., Sarnowska A., Domanska-Janik K.: Induction of Endothelial Phenotype From Wharton’s Jelly-Derived MSCs and Comparison of Their Vasoprotective and Neuroprotective Potential With Primary WJ-MSCs in CA1 Hippocampal Region Ex Vivo. Cell Transplant., 2016; 25:715-727
    Google Scholar
  • 75. Ojeh N., Pastar I., Tomic-Canic M., Stojadinovic O.: Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. Int J Mol Sci. 2015; 23:25476-25501
    Google Scholar
  • 76. Oki T, Nishimura K., Kitaura J., Togami K., Maehara A., Izawa K., Sakaue-Sawano A., Niida A., Miyano S., Aburatani H., Kiyonari H., Miyawaki A., Kitamura T.: A novel cell-cycle-indicator, mVenus-p27K−, identifies quiescent cells and visualizes G0–G1 transition. Sci Rep., 2014; 4:1-10
    Google Scholar
  • 77. Opiela J.: Mezenchymalne komórki macierzyste w transplantologii. Wiadomości Zootechniczne, R. L. 2012; 3:37-43
    Google Scholar
  • 78. Panich U., Sittithumcharee G., Rathviboon N., Jirawatnotai S.: Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging. Stem Cells Internat., 2016; 1:1-14
    Google Scholar
  • 79. Park K.I., Teng Y.D., Snyder E.Y.: The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol., 2002; 20:1111-1117
    Google Scholar
  • 80. Pikuła M., Trzonkowski P.: Biologia komórek macierzystych naskórka oraz ich znaczenie w medycynie. Postepy Hig Med Dosw., 2009; 63:449-456
    Google Scholar
  • 81. Pojda Z., Machaj E., Kurzyk A., Mazur S., Debski T., Gilewicz J., Wysocki J.: Meznchymalne komórki macierzyste. Postepy Biochem., 2013; 59:187-197
    Google Scholar
  • 82. Prabhakaran M.P., Venugopal J.R., Ramakrishna S.: Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials., 2009; 30:4996-5003
    Google Scholar
  • 83. Przybycień K., Komacewicz-Jach Z., Machaliński B.: Komórki macierzyste w klinicznych badaniach kardiologicznych. Kardiologia Polska, 2011; 69:601-609
    Google Scholar
  • 84. Radzisheuskaya A., Chia Gle B., dos Santos R.L., Theunissen T.W., Castro L.F., Nichols J., Silva J.C.: A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol., 2013; 15:579-590
    Google Scholar
  • 85. Ramalho-Santos M., Willenbring H.: On the origin of the term “stem cell”. Cell Stem Cell, 2007; 7:35-38
    Google Scholar
  • 86. Ramon y Cajal S.: Degeneration and Regeneration of the Nervous System.Journal of Neurology and Psychopathology,1929; 9:378-379.
    Google Scholar
  • 87. Rao M.S., Malik N.: Assessing iPSC Reprogramming Methods for Their Suitability in Translational Medicine J Cell Biochem., 2012; 113:3061-3068
    Google Scholar
  • 88. Rozporządzenie (WE) nr 1394/2007 Pralamentu Europejskiego i Rady z dnia 13 listopada 2007. w sprawie produktów leczniczych terapii zaawansowanej i zmieniające dyrektywę 2001/83/WE oraz rozporządzenie (WE) nr 726/2004 http://ec.europa.eu/health/files/ eudralex/vol-1/reg_2007_1394/reg_2007_1394_pl. pdf (28.08.2015)
    Google Scholar
  • 89. Rozporządzenie Ministra Zdrowia z dnia 9 października 2008 r. w sprawie wymagań, jakie powinien spełniać system zapewnienia jakości w bankach tkanek i komórek. Dz.U. 2008 nr 190 poz. 1169 z późn. zm Dz.U..2014 poz. 772
    Google Scholar
  • 90. Santilli G., Lamorte G., Carlessi L., Ferrari D., Rota Nodari L., Binda E., Delia D., Vescovi A.L., De Filippis L.: Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One, 2010; 5:1-12
    Google Scholar
  • 91. Sarnowska A., Habich A., Maksymowicz W., Domańska-Janik K.: Terapia komórkowa w neurologii – obawy i nadzieje. Polski Przegląd Neurologiczny, 2014; 10:1-14
    Google Scholar
  • 92. Seita J., Weissman I.L.: Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med., 2010; 2:640-653
    Google Scholar
  • 93. Shen Q., Jin H., and Wang X.: Epidermal Stem Cells and Their Epigenetic Regulation. Int. J. Mol. Sci., 2013; 14:17861-17880
    Google Scholar
  • 94. Siller R., Greenhough S., Park I.H., Sullivan G.J.: Modelling human disease with pluripotent stem cells Curr Gene Ther., 2013; 13:99-110
    Google Scholar
  • 95. Son M.Y., Lee M.O., Jeon H., Seol B., Kim J.H., Chang J.S., Cho Y.S.:Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med., 2016; 13: 1-10
    Google Scholar
  • 96. Suzuki S., Namiki J., Shibata S., Mastuzaki Y., Okano H.: The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010; 58:721-730
    Google Scholar
  • 97. Szabłowska-Gadomska I., Górska A., Małecki M.: Induced pluripotent stem cells (iPS) for gene therapy. Developmental Period Medicine. 2013; 3:191-195
    Google Scholar
  • 98. Szablowska-Gadomska I., Sypecka J., Zayat V., Podobinska M., Pastwinska A., Pienkowska-Grela B.,Buzanska L.: Treatment with small molecules is an important milestone towards the induction of pluripotency in neural stem cells derived from human cord blood. Acta Neurobiol Exp., 2012;72:337-350
    Google Scholar
  • 99. Tabakow P., Jarmundowicz W., Czapiga B., Fortuna W., Miedzybrodzki R., Czyz M., Huber J., Szarek D., Okurowski S., Szewczyk P., Gorski A., Raisman G.: Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013; 22:1591-1612
    Google Scholar
  • 100. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell., 2007; 30:861-872
    Google Scholar
  • 101. Takahashi K., Yamanka S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell., 2006; 126:663-676
    Google Scholar
  • 102. Takeda Y.S., Xu Q.: Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLoS One., 2015; 10:1-26
    Google Scholar
  • 103. Tarkowski A.K., Maleszewski M., Rogulska T., Ciemerych M., Borsuk E.: Mammalian and avian embryology at the University of Warsaw (Poland) from XIX century to the present. Int J Dev Biol. 2008; 52:121-134
    Google Scholar
  • 104. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M.: Embryonic stem cell lines derived from human blastocysts. Science. 1998; 6:1145-1147
    Google Scholar
  • 105. Till J.E., McCulloch E. A.: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res., 1961;14:213-222
    Google Scholar
  • 106. Till J.E, McCulloch E. A., Siminovitch L.: A stochastic model of stem cell proliferation, based on the growth of spleen colony forming cells. Proc Natl Acad Sci U S A., 1964; 51:29-36
    Google Scholar
  • 107. Tsai C.C., Su P.F., Huang Y.F., Yew T.L., Hung S.C.: Oct4 and Nanog Directly Regulate Dnmt1 to Maintain Self-Renewal and Undifferentiated State in Mesenchymal Stem Cells. Mol Cell., 2012; 27:169-182
    Google Scholar
  • 108. Umar S.: Intestinal Stem Cells. Curr Gastroenterol Rep., 2010; 12: 340-348
    Google Scholar
  • 109. Ustawa z dn. 6 września 2001 Prawo farmaceutyczne Dz.U.2001 nr 126 poz.1381
    Google Scholar
  • 110. Ustawa z dn. 9 kwietnia 2015 Ustawa o zmianie ustawy Prawo farmaceutyczne oraz niektórych innych ustaw Dz.U. 2015 poz.788
    Google Scholar
  • 111. Ustawa z dnia 1 lipca 2005 r. o pobieraniu, przechowywaniu i przeszczepianiu komórek, tkanek i narządów Opracowano na podstawie: Dz. U. z 2005 r. Nr 169, poz. 1411, z 2009 r. Nr 141, poz. 1149
    Google Scholar
  • 112. Ustawa z dnia 17 lipca 2009 r o zmianie ustawy o pobieraniu, przechowywaniu i przeszczepianiu komórek, tkanek i narządów oraz o zmianie ustawy – Przepisy wprowadzające Kodeks karny. Dz.U. 2009 nr 141 poz. 1149
    Google Scholar
  • 113. Ustawa z dnia 27 lipca 2001 r. o diagnostyce laboratoryjnej Dz.U. 2014 poz. 1384
    Google Scholar
  • 114. Ustawa z dnia 28 kwietnia 2011 r o zmianie ustawy o zawodach lekarza i lekarza dentysty Dz.U.2011.113.658
    Google Scholar
  • 115. Ustawa z dnia. 5 grudnia 1996 O zawodach lekarza i lekarza dentysty Dz. U. z 2008 r. Nr 136, poz. 857, z późn. zm.
    Google Scholar
  • 116. Uzarska M, Porowińska D, Bajek A, Drewa T.: Komórki macierzyste naskórka – biologia i potencjalne zastosowanie w medycynie regeneracyjnej. Postępy Biochem., 2013; 59:219-226
    Google Scholar
  • 117. Vasileva E.A., Shuvalov O.U., Garabadgiu A.V., Melino G., Barlev N.A.: Genome-editing tools for stem cell biology. Cell Death Dis., 2015; 1831:1-8
    Google Scholar
  • 118. Vierbuchen T., Ostermeier A., Pang Z.P., Kokubu Y., Südhof T.C., Wernig M.: Direct conversion of fibroblasts to functional neurons by defined factors. Nature., 2010; 25:1035-1041
    Google Scholar
  • 119. Wakitani S., Okabe T., Horibe S., Mitsuoka T., Saito M., Koyama T., Nawata M., Tensho K., Kato H., Uematsu K., Kuroda R., Kurosaka M., Yoshiya S., Hattori K., Ohgushi H.: Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med., 2011; 5:146-150
    Google Scholar
  • 120. Wang M., Yang Y., Yang D., Luo F., Liang W., Guo S., Xu J.: The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology, 2009; 126:220-232
    Google Scholar
  • 121. Wang X., Chen X., Zhang H., Qin W., Xue Y., Zeng F.: Shared gene regulation during human somatic cell reprogramming. J Genet Genomics., 2012; 20:613-623
    Google Scholar
  • 122. Wang Z., Oron E., Nelson B., Razis S., Ivanova N.: Distinct Lineage Specification Roles for NANOG, OCT4, and SOX2 in Human Embryonic Stem Cells. Cell Stem Cell., 2012; 10:440-454
    Google Scholar
  • 123. Woodbury D., Schwarz E.J., Prockop D.J., Black I.B.: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res., 2000; 15:364-70
    Google Scholar
  • 124. Yamanaka Interview on Clinical Use of Pluripotent Stem Cells https://www.ipscell.com/2014/10/yamanaka-interview-on-clinical-use-of-pluripotent-stem-cells/(08.12.2015)
    Google Scholar
  • 125. Yin H., Price F., Rudnicki M.A.: Satellite Cells and the Muscle Stem Cell Niche. Physiol Rev., 2013; 93:23-67
    Google Scholar
  • 126. Zhang Z., Wu W.S.: Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster. Stem Cells Dev., 2013; 15:2268-2277
    Google Scholar
  • 127. Zhao W., Ji X., Zhang F., Li L., Ma L.: Embryonic stem cell markers. Molecules., 2012;  25:6196-6236
    Google Scholar
  • 128. Ziemka-Nałęcz M., Zalewska T.: Endogenous neurogenesis induced by ischemic brain injury or neurodegenerative diseases in adults. Acta Neurobiol Exp., 2012; 72:309-324
    Google Scholar

Full text

Skip to content