Stem cells and growth factors in wound healing
Michał Pikuła 1 , Paulina Langa 1 , Paulina Kosikowska 2 , Piotr Trzonkowski 1Abstract
Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.
References
- 1. Andrae J., Gallini R., Betsholtz C.: Role of platelet-derived growthfactors in physiology and medicine. Genes Dev., 2008; 22: 1276-1312
Google Scholar - 2. Atala A., Lanza R., Thomson J.A., Nerem R.: Principles of RegenerativeMedicine. Elsevier, New York 2011
Google Scholar - 3. Auxenfans C., Lequeux C., Perrusel E., Mojallal A., Kinikoglu B.,Damour O.: Adipose-derived stem cells (ASCs) as a source of endothelialcells in the reconstruction of endothelialized skin equivalents.J. Tissue Eng. Regen. Med., 2012; 6: 512-518
Google Scholar - 4. Bao P., Kodra A., Tomic-Canic M., Golinko M.S., Ehrlich H.P., BremH.: The role of vascular endothelial growth factor in wound healing.J. Surg Res., 2009; 153: 347-358
Google Scholar - 5. Beer H.D., Longaker M.T., Werner S.: Reduced expression of PDGFand PDGF receptors during impaired wound healing. J. Invest. Dermatol.,1997; 109: 132-138
Google Scholar - 6. Bernabei R., Landi F., Bonini S., Onder G., Lambiase A., Pola R., AloeL.: Effect of topical application of nerve-growth factor on pressureulcers. Lancet, 1999; 354: 307
Google Scholar - 7. Bhansali A., Venkatesh S., Dutta P., Dhillon M.S., Das S., AgrawalA.: Which is the better option: recombinant human PDGF-BB 0.01%gel or standard wound care, in diabetic neuropathic large plantarulcers off-loaded by a customized contact cast? Diabetes Res. Clin.Pract., 2009; 83: 13-16
Google Scholar - 8. Bielefeld K.A., Amini-Nik S., Alman B.A.: Cutaneous wound healing:recruiting developmental pathways for regeneration. Cell.Mol. Life Sci., 2013; 70: 2059-2081
Google Scholar - 9. Blakytny R., Jude E.: The molecular biology of chronic woundsand delayed healing in diabetes. Diabet. Med., 2006; 23: 594-608
Google Scholar - 10. Brownell I., Guevara E., Bai C.B., Loomis C.A., Joyner A.L.: Nerve–derived sonic hedgehog defines a niche for hair follicle stem cells capableof becoming epidermal stem cells. Cell Stem Cell, 2011; 8: 552-565
Google Scholar - 11. Burgdorf W.H., Plewig G., Wolff N.H., Landthaler M.: Braun-FalcoDermatologia, Wyd. Czelej, Lublin 2011
Google Scholar - 12. Cherubino M., Rubin J.P., Miljkovic N., Kelmendi-Doko A., MarraK.G.: Adipose-derived stem cells for wound healing applications.Ann. Plast. Surg., 2011; 66: 210-215
Google Scholar - 13. Choi J.S., Leong K.W., Yoo H.S.: In vivo wound healing of diabeticulcers using electrospun nanofibers immobilized with human epidermalgrowth factor (EGF). Biomaterials, 2008; 29: 587-596
Google Scholar - 14. Cichorek M., Wachulska M., Stasiewicz A., Tymińska A.: Skinmelanocytes: biology and development. Postępy Dermatol. Alergol.,2013; 30: 30-41
Google Scholar - 15. Demidova-Rice T.N., Geevarghese A., Herman I.M.: Bioactivepeptides derived from vascular endothelial cell extracellular matricespromote microvascular morphogenesis and wound healingin vitro. Wound Repair Regen., 2011; 19: 59-70
Google Scholar - 16. Demidova-Rice T.N., Wolf L., Deckenback J., Hamblin M.R., HermanI.M.: Human platelet-rich plasma- and extracellular matrix–derived peptides promote impaired cutaneous wound healing invivo. PLoS One, 2012; 7: e32146
Google Scholar - 17. Dent C.L., Lau G., Drake E.A., Yoon A., Case C.C., Gregory P.D.:Regulation of endogenous gene expression using small molecule–controlled engineered zinc-finger protein transcription factors.Gene Ther., 2007; 14: 1362-1369
Google Scholar - 18. Deveza L., Choi J., Imanbayev G., Yang F.: Paracrine release fromnonviral engineered adipose-derived stem cells promotes endothelialcell survival and migration in vitro. Stem Cells Dev., 2013;22: 483-491
Google Scholar - 19. Ebrahimian T.G., Pouzoulet F., Squiban C., Buard V., André M.,Cousin B., Gourmelon P., Benderitter M., Casteilla L., Tamarat R.:Cell therapy based on adipose tissue-derived stromal cells promotesphysiological and pathological wound healing. Arterioscler. Thromb.Vasc. Biol., 2009; 29: 503-510
Google Scholar - 20. Ennis W.J., Sui A., Bartholomew A.: Stem Cells and Healing: Impacton Inflammation. Adv. Wound Care (New Rochelle), 2013; 2:369-378
Google Scholar - 21. Faler B.J., Macsata R.A., Plummer D., Mishra L., Sidawy A.N.:Transforming growth factor-β and wound healing. Perspect. Vasc.Surg. Endovasc. Ther., 2006; 18: 55-62
Google Scholar - 22. Fan Q., Yee C.L., Ohyama M., Tock C., Zhang G., Darling T.N.,Vogel J.C.: Bone marrow-derived keratinocytes are not detected innormal skin and only rarely detected in wounded skin in two differentmurine models. Exp. Hematol., 2006; 34: 672-679
Google Scholar - 23. Fathke C., Wilson L., Shah K., Kim B., Hocking A., Moon R., IsikF.: Wnt signaling induces epithelial differentiation during cutaneouswound healing. BMC Cell Biol., 2006; 7: 4
Google Scholar - 24. Fiddes J.C., Hebda P.A., Hayward P., Robson M.C., Abraham J.A.,Klingbeil C.K.: Preclinical wound-healing studies with recombinanthuman basic fibroblast growth factor. Ann. N.Y. Acad. Sci., 1991;638: 316-328
Google Scholar - 25. Friedlander M., Brooks P.C., Shaffer R.W., Kincaid C.M., VarnerJ.A., Cheresh D.A.: Definition of 2 angiogenic pathways by distinctalpha(V) integrins. Science, 1995; 270: 1500-1502
Google Scholar - 26. Fujita Y., Inokuma D., Abe R., Sasaki M., Nakamura H., ShimizuT., Shimizu H.: Conversion from human haematopoietic stem cellsto keratinocytes requires keratinocyte secretory factors. Clin. Exp.Dermatol., 2012; 37: 658-664
Google Scholar - 27. Gale N.W., Yancopoulos G.D.: Growth factors acting via endothelialcell-specific receptor tyrosine kinases: VEGFs, angiopoietins, andephrins in vascular development. Genes Dev., 1999; 13: 1055-1066
Google Scholar - 28. Galiano R.D., Tepper O.M., Pelo C.R., Bhatt K.A., Callaghan M.,Bastidas N., Bunting S., Steinmetz H.G., Gurtner G.C.: Topical vascularendothelial growth factor accelerates diabetic wound healing throughincreased angiogenesis and by mobilizing and recruiting bonemarrow-derived cells. Am. J. Pathol., 2004; 164: 1935-1947
Google Scholar - 29. Ghahary A., Shen Y.J., Nedelec B., Scott P.G., Tredget E.E.: Enhancedexpression of messenger-RNA for insulin-like growth factor-I inpost-burn hyperthrophic scar tissue and its fibrogenic role by dermalfibroblasts. Mol. Cell. Biochem., 1995; 148: 25-32
Google Scholar - 30. Gherardi E., Sandin S., Petoukhov M.V., Finch J., Youles M.E.,Öfverstedt L.G., Miguel R.N., Blundell T.L., Vande Woude G.F., SkoglundU., Svergun D.I.: Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc. Natl. Acad. Sci. USA, 2006;103: 4046-4051
Google Scholar - 31. Gibran N.S., Isik F.F., Heimbach D.M., Gordon D.: Basic fibroblastgrowth factor in the early human burn wound. J. Surg. Res.,1994; 56: 226-234
Google Scholar - 32. Gołąb K., Kizilel S., Bal T., Hara M., Zielinski M., Grose R., SavariO., Wang X.J., Wang L.J., Tibudan M., Krzystyniak A., Marek–Trzonkowska N., Millis J.M., Trzonkowski P., Witkowski P.: Improvedcoating of pancreatic islets with regulatory T cells to create localimmunosuppression by using the biotin-polyethylene glycol-succinimidylvaleric acid ester molecule. Transplant. Proc., 2014; 46:1967-1971
Google Scholar - 33. Grayson L.S., Hansbrough J.F., Zapata-Sirvent R.L., Dore C.A.,Morgan J.L., Nicolson M.A.: Quantification of cytokine levels in skingraft donor site wound fluid. Burns, 1993; 19: 401-405
Google Scholar - 34. Grazul-Bilska A.T., Johnson M.L., Bilski J.J., Redmer D.A., ReynoldsL.P., Abdullah A., Abdullah K.M.: Wound healing: the role ofgrowth factors. Drugs Today, 2003; 39: 787-800
Google Scholar - 35. Gurtner G.C., Werner S., Barrandon Y., Longaker M.T.: Woundrepair and regeneration. Nature, 2008; 453: 314-321
Google Scholar - 36. Hao L., Wang J., Zou Z., Yan G., Dong S., Deng J., Ran X., FengY., Luo C., Wang Y., Cheng T.: Transplantation of BMSCs expressinghPDGF-A/hBD2 promotes wound healing in rats with combined radiation-woundinjury. Gene Ther., 2009; 16: 34-42
Google Scholar - 37. Hardwicke J., Schmaljohann D., Boyce D., Thomas D.: Epidermalgrowth factor therapy and wound healing – past, present and future.Surgeon, 2008; 6: 172-177
Google Scholar - 38. Hawinkels L.J., Ten Dijke P.: Exploring anti-TGF-β therapies incancer and fibrosis. Growth Factors, 2011; 29: 140-152
Google Scholar - 39. Holmes O., Pillozzi S., Deakin J.A., Carafoli F., Kemp L., ButlerP.J., Lyon M., Gherardi E.: Insights into the structure/function of hepatocytegrowth factor/scatter factor from studies with individualdomains. J. Mol. Biol., 2007; 367: 395-408
Google Scholar - 40. Hong J.P., Jung H.D., Kim Y.W.: Recombinant human epidermalgrowth factor (EGF) to enhance healing for diabetic foot ulcers. Ann.Plast. Surg., 2006; 56: 394-398
Google Scholar - 41. Hu C., Yong X., Li C., Lü M., Liu D., Chen L., Hu J., Teng M., ZhangD., Fan Y., Liang G.: CXCL12/CXCR4 axis promotes mesenchymal stemcell mobilization to burn wounds and contributes to wound repair.J. Surg. Res., 2013; 183: 427-434
Google Scholar - 42. Imko-Walczuk B., Okuniewska A., Pikuła M., Nowacka-Pikuła D.,Jaśkiewicz J., Trzonkowski P.: Możliwość klinicznego wykorzystaniahodowli keratynocytów i komórek macierzystych naskórka w leczeniuprzewlekłych owrzodzeń podudzi: doniesienie wstępne. Przegl.Dermatol., 2012; 99: 230-234
Google Scholar - 43. Ito M., Liu Y., Yang Z., Nguyen J., Liang F., Morris R.J., CotsarelisG.: Stem cells in the hair follicle bulge contribute to wound repair butnot to homeostasis of the epidermis. Nat. Med., 2005; 11: 1351-1354
Google Scholar - 44. Itoh N., Ornitz D.M.: Fibroblast growth factors: from molecularevolution to roles in development, metabolism and disease. J. Biochem.,2011; 149: 121-130
Google Scholar - 45. Jaks V., Barker N., Kasper M., van Es J.H., Snippert H.J., CleversH,. Toftgård R.: Lgr5 marks cycling, yet long-lived, hair follicle stemcells. Nat. Genet., 2008; 40: 1291-1299
Google Scholar - 46. Johnson D.E., Williams L.T.: Structural and functional diversityin the FGF receptor multigene family. Adv. Cancer Res., 1992; 60: 1-41
Google Scholar - 47. Kalinin A.E., Kajava A.V., Steinert P.M.: Epithelial barrier function:assembly and structural features of the cornified cell envelope.Bioessays, 2002; 24, 789-800
Google Scholar - 48. Korta K., Kupczyk P., Skóra J., Pupka A., Zejler P., Hołysz M., GajdaM., Nowakowska B., Barć P., Dorobisz A.T., Dawiskiba T., Szyber P.,Bar J.: Komórki macierzyste i progenitorowe w biostrukturze ścian naczyń krwionośnych. Postępy Hig. Med. Dośw., 2013; 18: 982-995
Google Scholar - 49. Kruszewski W.J., Rzepko R., Ciesielski M., Szefel J., Zieliński J.,Szajewski M., Jasiński W., Kawecki K., Wojtacki J.: Expression of HER2in colorectal cancer does not correlate with prognosis. Dis. Markers,2010, 29: 207-212
Google Scholar - 50. Lal B.K., Saito S., Pappas P.J., Padberg F.T.Jr., Cerveira J.J., HobsonR.W.2nd, Duran W.N.: Altered proliferative responses of dermalfibroblasts to TGF-β1 may contribute to chronic venous stasis ulcer.J. Vasc. Surg., 2003; 37: 1285-1293
Google Scholar - 51. Lanza R., Langer R., Vacanti J.: Principles of Tissue Engineering,Elsevier, 2007
Google Scholar - 52. Lau K., Paus R., Tiede S., Day P., Bayat A.: Exploring the role ofstem cells in cutaneous wound healing. Exp. Dermatol., 2009; 18:921-933
Google Scholar - 53. Le Roy H., Zuliani T., Wolowczuk I., Faivre N., Jouy N., MasselotB., Kerkaert J.P., Formstecher P., Polakowska R.: Asymmetric distributionof epidermal growth factor receptor directs the fate of normaland cancer keratinocytes in vitro. Stem Cells Dev., 2010; 19: 209-220
Google Scholar - 54. Lee S.H., Jin S.Y., Song J.S., Seo K.K., Cho K.H.: Paracrine effects ofadipose-derived stem cells on keratinocytes and dermal fibroblasts.Ann. Dermatol., 2012; 24: 136-143
Google Scholar - 55. Lee S.H., Lee J.H., Cho K.H.: Effects of human adipose-derivedstem cells on cutaneous wound healing in nude mice. Ann. Dermatol.,2011; 23: 150-155
Google Scholar - 56. Levy V., Lindon C., Zheng Y., Harfe B.D., Morgan B.A.: Epidermalstem cells arise from the hair follicle after wounding. FASEB J.,2007; 21: 1358-1366
Google Scholar - 57. Li J.F., Duan H.F., Wu C.T., Zhang D.J., Deng Y., Yin H.L., Han B.,Gong H.C., Wang H.W., Wang Y.L.: HGF accelerates wound healingby promoting the dedifferentiation of epidermal cells through β1-integrin/ILK pathway. Biomed Res. Int., 2013, 2013: 470418
Google Scholar - 58. Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y.,Brooks M., Reinhard F., Zhang C.C., Shipitsin M., Campbell L.L., PolyakK., Brisken C., Yang J., Weinberg R.A.: The epithelial-mesenchymaltransition generates cells with properties of stem cells. Cell, 2008;133: 704-715
Google Scholar - 59. Mann A., Breuhahn K., Schirmacher P., Blessing M.: Keratinocyte-derivedgranulocyte-macrophage colony stimulating factoraccelerates wound healing: Stimulation of keratinocyte proliferation,granulation tissue formation, and vascularization. J. Invest.Dermatol., 2001; 117: 1382-1390
Google Scholar - 60. Martin P.: Wound healing – aiming for perfect skin regeneration.Science, 1997; 276: 75-81
Google Scholar - 61. Martino M.M., Briquez P.S., Güc E., Tortelli F., Kilarski W.W.,Metzger S., Rice J.J., Kuhn G.A., Müller R., Swartz M.A., Hubbell J.A.:Growth factors engineered for super-affinity to the extracellularmatrix enhance tissue healing. Science, 2014, 343: 885-888
Google Scholar - 62. Moffatt C.J., Doherty D.C., Smithdale R., Franks P.J.: Clinical predictorsof leg ulcer healing. Br. J. Dermatol., 2010; 162: 51-58
Google Scholar - 63. Montemurro F., Di Cosimo S., Arpino G.: Human epidermalgrowth factor receptor 2 (HER2)-positive and hormone receptor–positive breast cancer: new insights into molecular interactionsand clinical implications. Ann. Oncol., 2013; 24: 2715-2724
Google Scholar - 64. Morasso M.I., Tomic-Canic M.: Epidermal stem cells: the cradleof epidermal determination, differentiation and wound healing.Biol. Cell, 2005; 97: 173-183
Google Scholar - 65. Morris R.J., Liu Y., Marles L., Yang Z., Trempus C., Li S., Lin J.S.,Sawicki J.A., Cotsarelis G.: Capturing and profiling adult hair folliclestem cells. Nat. Biotech., 2004; 22: 411-417
Google Scholar - 66. Nair R.P., Krishnan L.K.: Identification of p63+ keratinocyte progenitorcells in circulation and their matrix-directed differentiationto epithelial cells. Stem Cell Res. Ther., 2013; 4: 38
Google Scholar - 67. Nessler M., Puchala J., Wood F.M., Wallace H.J., Fear M.W., NesslerK., Drukala J.: Changes in the plasma cytokine and growth factorprofile are associated with impaired healing in pediatric patientstreated with INTEGRA® for reconstructive procedures. Burns, 2013;39: 667-673
Google Scholar - 68. Niessen F.B., Andriessen M.P., Schalkwijk J., Visser L., Timens W.:Keratinocyte-derived growth factors play a role in the formation ofhypertrophic scars. J. Pathol., 2001; 194: 207-216
Google Scholar - 69. Nowak J.A., Polak L., Pasolli H.A., Fuchs E.: Hair follicle stemcells are specified and function in early skin morphogenesis. CellStem Cell, 2008; 3: 33-43
Google Scholar - 70. Oyama N., Kaneko F.: Cell-type-specific differentiation and molecularprofiles in skin transplantation: implication of medical approachfor genetic skin diseases. J. Transplant., 2011; 2011: 501857
Google Scholar - 71. Peplow P.V., Chatterjee M.P.: A review of the influence of growthfactors and cytokines in in vitro human keratinocyte migration.Cytokine, 2013; 62: 1-21
Google Scholar - 72. Pierce G.F., Tarpley J.E., Tseng J., Bready J., Chang D., KenneyW.C., Rudolph R., Robson M.C., Vande Berg J., Reid P.: Detection ofplatelet-derived growth factor (PDGF)-AA in actively healing humanwounds treated with recombinant PDGF-BB and absence of PDGFin chronic non-healing wounds. J. Clin. Invest., 1995; 96: 1336-1350
Google Scholar - 73. Pikuła M., Imko-Walczuk B., Nowacka-Pikuła D., Okuniewska A.,Langa P., Jaśkiewicz J., Trzonkowski P.: Możliwości hodowli keratynocytóworaz komórek macierzystych naskórka i ich zastosowania w leczeniutrudno gojących się ran. Przegl. Dermatol., 2012; 99: 222-229
Google Scholar - 74. Pikuła M., Kondej K., Jaśkiewicz J., Skokowski J., Trzonkowski P.:Flow cytometric sorting and analysis of human epidermal stem cellcandidates. Cell Biol. Int., 2010, 34: 911-915
Google Scholar - 75. Pikuła M., Marek-Trzonkowska N., Wardowska A., Renkielska A.,Trzonkowski P.: Adipose tissue-derived stem cells in clinical applications.Expert Opin. Biol. Ther., 2013; 13: 1357-1370
Google Scholar - 76. Pikuła M., Trzonkowski P.: Biologia komórek macierzystych naskórkaoraz ich znaczenie w medycynie. Postępy Hig. Med. Dośw.,2009; 63: 449-456
Google Scholar - 77. Proksch E., Brandner J.M., Jensen J.M.: The skin: an indispensablebarrier. Exp. Dermatol., 2008; 17: 1063-1072
Google Scholar - 78. Roubelakis M.G., Trohatou O., Roubelakis A., Mili E., KalaitzopoulosI., Papazoglou G., Pappa K.I., Anagnou N.P.: Platelet-rich plasma(PRP) promotes fetal mesenchymal stem/stromal cell migration andwound healing process. Stem Cell Rev., 2014; 10: 417-428
Google Scholar - 79. Santoro M.M., Gaudino G.: Cellular and molecular facets of keratinocytereepithelization during wound healing. Exp. Cell Res.,2005; 304: 274-286
Google Scholar - 80. Schreml S., Szeimies R.M., Prantl L., Landthaler M., Babilas P.:Wound healing in the 21st century. J. Am. Acad. Dermatol., 2010;63: 866-881
Google Scholar - 81. Segrelles C., García-Escudero R., Garín M.I., Aranda J.F., HernándezP., Ariza J.M., Santos M., Paramio J.M., Lorz C.: Akt signalingleads to stem cell activation and promotes tumour development inepidermis. Stem Cells, 2014; 32: 1917-1928
Google Scholar - 82. Shokrgozar M.A., Fattahi M., Bonakdar S., Ragerdi Kashani I.,Majidi M., Haghighipour N., Bayati V., Sanati H., Saeedi S.N.: Healingpotential of mesenchymal stem cells cultured on a collagen-basedscaffold for skin regeneration. Iran Biomed. J., 2012; 16: 68-76
Google Scholar - 83. Silva-Vargas V., Lo Celso C., Giangreco A., Ofstad T., Prowse D.M.,Braun K.M., Watt F.M.: β-catenin and Hedgehog signal strength canspecify number and location of hair follicles in adult epidermiswithout recruitment of bulge stem cells. Dev. Cell, 2005; 9: 121-131
Google Scholar - 84. Staniszewska M., Słuczanowska-Głąbowska S., Drukała J.: Stemcells and skin regeneration. Folia Histochem. Cytobiol., 2011; 49:375-380
Google Scholar - 85. Terada N., Hamazaki T., Oka M., Hoki M., Mastalerz D.M., NakanoY., Meyer E.M., Morel L., Petersen B.E., Scott E.W.: Bone marrowcells adopt the phenotype of other cells by spontaneous cell fusion.Nature, 2002: 416: 542-545
Google Scholar - 86. Tomioka H., Nakagami H., Tenma A., Saito Y., Kaga T., KanamoriT., Tamura N., Tomono K., Kaneda Y., Morishita R.: Novel anti-microbialpeptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One, 2014; 9: e92597
Google Scholar - 87. Toyoda M., Takayama H., Horiguchi N., Otsuka T., Fukusato T.,Merlino G., Takagi H., Mori M.: Overexpression of hepatocyte growthfactor/scatter factor promotes vascularization and granulation tissueformation in vivo. Febs Lett., 2001; 509: 95-100
Google Scholar - 88. Trusolino L., Comoglio P.M.: Scatter-factor and semaphorin receptors:cell signalling for invasive growth. Nat. Rev. Cancer, 2002;2: 289-300
Google Scholar - 89. Urbich C., Dimmeler S.: Endothelial progenitor cells: characterizationand role in vascular biology. Circ. Res., 2004; 95: 343-353
Google Scholar - 90. Wang X.J., Leveson-Gower D., Golab K., Wang L.J., Marek-TrzonkowskaN., Krzystyniak A., Wardowska A., Millis J.M., TrzonkowskiP., Witkowski P.: Influence of pharmacological immunomodulatoryagents on CD4+CD25highFoxP3+ T regulatory cells in humans. Int. Immunopharmacol.,2013; 16: 364-370
Google Scholar - 91. Werner S.: Keratinocyte growth factor: a unique player in epithelialrepair processes. Cytokine Growth Factor Rev.,1998; 9: 153-165
Google Scholar - 92. Werner S., Grose R.: Regulation of wound healing by growthfactors and cytokines. Physiol. Rev., 2003; 83: 835-870
Google Scholar - 93. Werner S., Krieg T., Smola H.: Keratinocyte-fibroblast interactionsin wound healing. J. Invest. Dermatol., 2007; 127: 998-1008
Google Scholar - 94. Wettstein R., Savic M., Pierer G., Scheufler O., Haug M., Halter J.,Gratwohl A., Baumberger M., Schaefer D.J., Kalbermatten D.F.: Progenitorcell therapy for sacral pressure sore: a pilot study with a novelhuman chronic wound model. Stem Cell Res. Ther., 2014; 29: 18
Google Scholar - 95. Wight T.N., Potter-Perigo S.: The extracellular matrix: an activeor passive player in fibrosis? Am. J. Physiol. Gastrointest. LiverPhysiol., 2011; 301: 950-955
Google Scholar - 96. Wu Y., Wang J., Scott P.G., Tredget E.E.: Bone marrow-derived stemcells in wound healing: a review. Wound Rep. Reg., 2007; 15: S18-S26
Google Scholar - 97. Yarden Y.: The EGFR family and its ligands in human cancer:signalling mechanisms and therapeutic opportunities. Eur. J. Cancer,2001; 37: S3-S8
Google Scholar