Strategies of current cancer immunotherapy
Zuzanna Rzepka 1 , Marta Knapik 1 , Dorota Wrześniok 1Abstract
Cancers are a significant health problem in the world. The most common therapeutic methods applied in oncology are chemotherapy, radiotherapy and surgical methods. Finding new therapies in this branch of medicine, as well as developing solutions with the highest possible effectiveness, taking into account the multifactorial nature of cancer, is important from both the scientific and medical point of view and, for obvious reasons, it is in the interest of many people. Immunotherapy, despite many years of initial failures, has become one of the most important clinically approved new treatments in oncology and is now successfully used in the treatment of certain types of cancer. Current immunotherapeutic strategies are based on monoclonal antibodies (including inhibitors of immune control points), cytokines, anti-cancer vaccines, oncolytic viruses, as well as adoptive cell transfer. For many cancer immunotherapies, an increase in their effectiveness is observed when they are used with other types of immunotherapy as well as in combination with molecular targeted therapy, chemotherapy or radiotherapy. The dynamic development of cancer immunotherapy since the beginning of the 21st century results from the advances in genetic engineering, as well as from the increase in knowledge about the anticancer immune response and the nature of cancer cells including abnormalities in their metabolism, the ability to create a tumor microenvironment and the induction of immunosuppression. The aim of the study is to present current knowledge in the field of cancer immunotherapy strategies.
References
- 1. Augustyniak J., Sawicki K., Skrzypczak M., Kapka-Skrzypczak L.:Zastosowanie wirusów onkolitycznych w terapii przeciwnowotworowej.Probl. Hig. Epidemiol., 2012; 93: 654–662
Google Scholar - 2. Banday A.H., Jeelani S., Hruby V.J.: Cancer vaccine adjuvants-recentclinical progress and future perspectives. Immunopharmacol.Immunotoxicol., 2015; 37: 1–11
Google Scholar - 3. Biagi E., Marin V., Attianese G.M., Pizzitola I., Tettamanti S., CribioliE., Biondi A.: New advances in leukaemia immunotherapy by theuse of chimeric artificial antigen receptors (CARs): state of the artand perspectives for the near future. Ital. J. Pediatr., 2011; 37: 46
Google Scholar - 4. Boross P., Leusen J.H.: Mechanisms of action of CD20 antibodies.Am. J. Cancer Res., 2012; 2: 676–690
Google Scholar - 5. Brower V.: Approval of provenge seen as first step for cancer treatmentvaccines. J. Natl. Cancer Inst., 2010; 102: 1108–1110
Google Scholar - 6. Brown M.C., Dobrikova E.Y., Dobrikov M.I., Walton R.W., GemberlingS.L., Nair S.K., Desjardins A., Sampson J.H., Friedman H.S.,Friedman A.H., Tyler D.S., Bigner D.D., Gromeier M.: Oncolytic poliovirotherapy of cancer. Cancer, 2014; 120: 3277–3286
Google Scholar - 7. Brüggemann M., Osborn M.J., Ma B., Buelow R.: Strategies to obtain diverse and specific human monoclonal antibodies from transgenicanimals. Transplantation, 2017; 101: 1770–1776
Google Scholar - 8. Cai H.H., Chen X.: Monoclonal antibodies for cancer therapy approvedby FDA. MOJ Immunol., 2016; 4: 00120
Google Scholar - 9. Carvalho S., Levi-Schaffer F., Sela M., Yarden Y.: Immunotherapyof cancer: from monoclonal to oligoclonal cocktails of anticancerantibodies: IUPHAR Review 18. Br. J. Pharmacol., 2016; 173:1407–1424
Google Scholar - 10. Chang Z.L., Chen Y.Y.: CARs: Synthetic immunoreceptors forcancer therapy and beyond. Trends Mol. Med., 2017; 23: 430–450
Google Scholar - 11. Desjardins A., Gromeier M., Herndon J.E., Beaubier N., BolognesiD.P., Friedman A.H., Friedman H.S., McSherry F., Muscat A.M., NairS., Peters K.B., Randazzo D., Sampson J.H., Vlahovic G., Harrison W.T.,McLendon R.E., Ashley D., Bigner D.D.: Recurrent glioblastoma treatedwith recombinant poliovirus. N. Engl. J. Med., 2018; 379: 150–161
Google Scholar - 12. Dreno B., Thompson J.F., Smithers B.M., Santinami M., Jouary T.,Gutzmer R., Levchenko E., Rutkowski P., Grob J.J., Korovin S., DrucisK., Grange F., Machet L., Hersey P., Krajsova I. i wsp.: MAGE-A3 immunotherapeuticas adjuvant therapy for patients with resected,MAGE-A3-positive, stage III melanoma (DERMA): a double-blind,randomised, placebo-controlled, phase 3 trial. Lancet Oncol., 2018;19: 916–929
Google Scholar - 13. Dyck L., Mills K.H.: Immune checkpoints and their inhibition incancer and infectious diseases. Eur. J. Immunol., 2017; 47: 765–779
Google Scholar - 14. Farkona S., Diamandis E.P., Blasutig I.M.: Cancer immunotherapy:the beggining of the end of cancer? BMC Med., 2016; 14: 73
Google Scholar - 15. Food and Drug Administration: FDA Approved Drug Products.https://www.accessdata.fda.gov/scripts/cder/daf/(18.01.2019)
Google Scholar - 16. Food and Drug Administration: Novel drug approvals for 2016.https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm483775.htm (18.01.2019)
Google Scholar - 17. Food and Drug Administration: Novel drug approvals for 2017.https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm537040.htm (18.01.2019)
Google Scholar - 18. Food and Drug Administration: Novel drug approvals for 2018.https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm592464.htm (18.01.2019)
Google Scholar - 19. Gao X., McDermott D.F.: Ipilimumab in combination with nivolumabfor the treatment of renal cell carcinoma. Expert Opin. Biol.Ther., 2018; 18: 947–957
Google Scholar - 20. Goetz C., Gromeier M.: Preparing an oncolytic poliovirus recombinantfor clinical application against glioblastoma multiforme.Cytokine Growth Factor Rev., 2010; 21: 197–203
Google Scholar - 21. Golubovskaya V., Wu L.: Different subsets of T cells, memory,effector functions, and CAR-T immunotherapy. Cancers, 2016; 8: E36
Google Scholar - 22. Guo C., Manjili M.H., Subjeck J.R., Sarkar D., Fisher P.B., WangX.Y.: Therapeutic cancer vaccines: past, present, and future. Adv.Cancer Res., 2013; 119: 421–475
Google Scholar - 23. Guo Z.S.: The 2018 Nobel Prize in medicine goes to cancer immunotherapy(editorial for BMC Cancer). BMC Cancer, 2018; 18: 1086
Google Scholar - 24. Hastie E., Grdzelishvili V.Z.: Vesicular stomatitis virus as a flexibleplatform for oncolytic virotherapy against cancer. J. Gen. Virol.,2012; 93: 2529–2545
Google Scholar - 25. Jiang H., Gomez-Manzano C., Lang F.F., Alemany R., Fueyo J.:Oncolytic adenovirus: preclinical and clinical studies in patientswith human malignant gliomas. Curr. Gene Ther., 2009; 9: 422–427
Google Scholar - 26. Kamta J., Chaar M., Ande A., Altomare D.A., Ait-Oudhia S.: Advancingcancer therapy with present and emerging immuno-oncologyapproaches. Front. Oncol., 2017; 7: 64
Google Scholar - 27. Karlitepe A., Ozalp O., Avci C.B.: New approaches for cancer immunotherapy.Tumour Biol., 2015; 36: 4075–4078
Google Scholar - 28. Khansari N., Bonab S.F.: Virotherapy with Newcastle diseasevirus for cancer treatment and its efficacy in clinical trials. MOJImmunol., 2017; 5: 00176
Google Scholar - 29. Kyi C., Postow M.A.: Checkpoint blocking antibodies in cancerimmunotherapy. FEBS Lett., 2014; 588: 368–376
Google Scholar - 30. Lichty B.D., Breitbach C.J., Stojdl D.F., Bell J.C.: Going viral withcancer immunotherapy. Nat. Rev. Cancer, 2014; 14: 559–567
Google Scholar - 31. Liu S.Y., Wu Y.L.: An immunological storm for cancer therapy: 2018 Nobel Prize in Physiology or Medicine. Sci. Bull., 2018; 63:1608–1610
Google Scholar - 32. Ma W., He H., Wang H.: Oncolytic herpes simplex virus and immunotherapy.BMC Immunol., 2018; 19: 40
Google Scholar - 33. Makkouk A., Weiner G.J.: Cancer immunotherapy and breakingimmune tolerance. New approaches to an old challenge. CancerRes., 2015; 75: 5–10
Google Scholar - 34. Marchini A., Bonifati S., Scott E.M., Angelova A.L., RommelaereJ.: Oncolytic parvoviruses: from basic virology to clinical applications.Virol. J., 2015; 12: 6
Google Scholar - 35. Marin-Acevedo J.A., Soyano A.E., Dholaria B., Knutson K.L, LouY.: Cancer immunotherapy beyond immune checkpoint inhibitors.J. Hematol. Oncol., 2018; 11: 8
Google Scholar - 36. National Cancer Institute: CAR T-cell therapy approved for somechildren and young adults with leukemia. https://www.cancer.gov/news-events/cancer-currents-blog/2017/tisagenlecleucel-fda-childhood-leukemia (18.01.2019)
Google Scholar - 37. National Cancer Institute: NCI Dictionary of Cancer Terms –oncolytic virus. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/oncolytic-virus?redirect=true (18.01.2019)
Google Scholar - 38. National Cancer Institute: NCI Drug Dictionary – GVAX pancreaticcancer vaccine. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/gvax-pancreatic-cancer-vaccine (18.01.2019)
Google Scholar - 39. National Cancer Institute: PVSRIPO with/without Lomustine.https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2019-00002&r=1 (18.01.2019)
Google Scholar - 40. Nobelprize.org: Press release: The Nobel Prize in Physiology orMedicine 2018. https://www.nobelprize.org/prizes/medicine/2018/press-release/(18.01.2019)
Google Scholar - 41. Papaioannou N.E., Beniata O.V., Vitsos P., Tsitsilonis O., SamaraP.: Harnessing the immune system to improve cancer therapy. Ann.Transl. Med., 2016; 4: 261
Google Scholar - 42. Powroźnik B., Kubowicz P., Pękala E.: Przeciwciała monoklonalnew terapii celowanej. Postępy Hig. Med. Dośw., 2012; 66: 663–673
Google Scholar - 43. Ramos C.A., Dotti G.: Chimeric antigen receptor (CAR)-engineeredlymphocytes for cancer therapy. Expert Opin. Biol. Ther.,2011; 11: 855–873
Google Scholar - 44. Ribas A.: Tumor immunotherapy directed at PD-1. N. Engl. J.Med., 2012; 366: 2517–2519
Google Scholar - 45. Rutkowski P., Zdzienicki M.: Talimogen laherparepwek (T-VEC)– nowa terapia czerniaków skóry zmodyfikowanym genetyczniewirusem onkolitycznym. Nowotwory J. Oncol., 2016; 66: 234–237
Google Scholar - 46. Sadelain M., Brentjens R., Rivière I.: The basic principles ofchimeric antigen receptor design. Cancer Discov., 2013; 3: 388–398
Google Scholar - 47. Schuster M., Nechansky A., Kircheis R.: Cancer immunotherapy.Biotechnol. J., 2006; 1: 138–147
Google Scholar - 48. Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A.: Primary, adaptive,and acquired resistance to cancer immunotherapy. Cell, 2017;168: 707–723
Google Scholar - 49. Sharma S.K., Bagshawe K.D.: Antibody directed enzyme prodrugtherapy (ADEPT): Trials and tribulations. Adv. Drug. Deliv. Rev.,2017; 118: 2–7
Google Scholar - 50. Skoczyńska M., Wiland P.: Mechanizmy immunologiczne odpowiedzialneza działania niepożądane leków biologicznych. Alerg.Astma Immun., 2018; 23: 14–23
Google Scholar - 51. Stańczak A., Szumilak M.: Proleki w terapii nowotworów. CzęśćII. Strategie ADEPT i V/GDEPT. Farm. Prz. Nauk., 2010; 5: 11–16
Google Scholar - 52. The American Cancer Society medical and editorial contentteam: What is cancer immunotherapy? https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/what-is-immunotherapy.html (18.01.2019)
Google Scholar - 53. United States Adopted Names: Monoclonal antibodies. https://www.ama-assn.org/about/united-states-adopted-names/monoclonal-antibodies (18.01.2019)
Google Scholar - 54. Vinay D.S., Ryan E.P., Pawelec G., Talib W.H., Stagg J., Elkord E.,Lichtor T., Decker W.K., Whelan R.L., Kumara H.M., Signori E., HonokiK., Georgakilas A.G., Amin A., Helferich W.G., et al.: Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. CancerBiol., 2015; 35: S185–S198
Google Scholar - 55. World Health Organization: Revised mAb nomenclature scheme.http://www.who.int/medicines/services/inn/Revised_mAb_nomenclature_scheme.pdf (19.01.2019)
Google Scholar - 56. Zamarin D., Palese P.: Oncolytic Newcastle disease virus forcancer therapy: old challenges and new directions. Future Microbiol.,2012; 7: 347–367
Google Scholar - 57. Zhu Y., Choi S.H., Shah K.: Multifunctional receptor-targetingantibodies for cancer therapy. Lancet Oncol., 2015; 16: e543–e554
Google Scholar