SUMO proteases as potential targets for cancer therapy
Piotr Bialik 1 , Katarzyna Woźniak 1Abstract
Sumoylation is one of the post-translational modifications of proteins, responsible for the regulation of many cellular processes, such as DNA replication and repair, transcription, signal transduction and nuclear transport. During sumoylation, SUMO proteins are covalently attached to the ε-amino group of lysine in target proteins via an enzymatic cascade that requires the sequential action of E1, E2 and E3 enzymes. An important aspect of sumoylation is its reversibility, which involves SUMO-specific proteases called SENPs. SENPs (sentrin/SUMO-specific proteases) catalyze the deconjugation of SUMO proteins using their isopeptidase activity. These enzymes participate through hydrolase activity in the reaction of SUMO protein maturation, which involves the removal of a short fragment on the C-terminus of SUMO inactive form and exposure two glycine residues. SENPs are important for maintaining the balance between sumoylated and desumoylated proteins required for normal cellular physiology. Six SENP isoforms (SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7) have been identified in mammals. These SENPs can be divided into three subfamilies based on their sequence homology, substrate specificity and subcellular localization. Results of studies indicate the role of SUMO proteases in the development of human diseases including cancer, suggesting that these proteins may be attractive targets for new drugs.
References
- 1. Albrow V.E., Ponder E.L., Fasci D., Békés M., Deu E., Salvesen G.S., Bogyo M.: Development of small molecule inhibitors and probes of human SUMO deconjugating proteases. Chem. Biol., 2011; 18: 722-732
Google Scholar - 2. Ao Q., Su W., Guo S., Cai L., Huang L.: SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1α. Sci. Rep., 2015; 5: 16396
Google Scholar - 3. Bawa-Khalfe T., Cheng J., Lin S.H., Ittmann M.M., Yeh E.T.: SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J. Biol. Chem., 2010; 285: 25859-25866
Google Scholar - 4. Bawa-Khalfe T., Lu L.S., Zuo Y., Huang C., Dere R., Lin F.M., Yeh E.T.: Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. USA, 2012; 109: 17466-17471
Google Scholar - 5. Bawa-Khalfe T., Yeh E.T.: SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer, 2010; 1: 748-752
Google Scholar - 6. Békés M., Prudenn J., Srikumar T., Raught B., Boddy M.N., Salvesen G.S.: The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J. Biol. Chem., 2011; 286: 10238-10247
Google Scholar - 7. Bettermann K., Benesch M., Weis S., Haybaeck J.: SUMOylation in carcinogenesis. Cancer Lett., 2012; 316: 113-125
Google Scholar - 8. Bohren K.M., Nadkarni V., Song J.H., Owerbach D.: A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem., 2004; 279: 27233-27238
Google Scholar - 9. Caron D., Winstall E., Inaguma Y., Michaud S., Lettre F., Bourassa S., Kelly I., Poirier G.G., Faure R.L., Tanguay R.M.: Proteomic characterization of mouse cytosolic and membrane prostate fractions: high levels of free SUMO peptides are androgen-regulated. J. Proteome Res., 2008; 7: 4492-4499
Google Scholar - 10. Cashman R., Cohen H., Ben-Hamo R., Zilberberg A., Efroni S.: SENP5 mediates breast cancer invasion via a TGFβRI SUMOylation cascade. Oncotarget, 2014; 5: 1071-1082
Google Scholar - 11. Chen Y., Wen D., Huang Z., Huang M., Luo Y., Liu B., Lu H., Wu Y., Peng Y., Zhang J.: 2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: virtual screening, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2012; 22: 6867-6870
Google Scholar - 12. Cheng J., Bawa T., Lee P., Gong L., Yeh E.T.: Role of desumoylation in the development of prostate cancer. Neoplasia, 2006; 8: 667-676
Google Scholar - 13. Dobrotă C., Fasci D., Hădade N.D., Roiban G.D., Pop C., Meier V.M., Dumitru I., Matache M., Salvesen G.S., Funeriu D.P.: Glycine fluoromethylketones as SENP-specific activity based probes. Chembiochem., 2012; 13: 80-84
Google Scholar - 14. Drąg M., Salvesen G.S.: DeSUMOylating enzymes – SENPs. IUBMB Life, 2008; 60: 734-742
Google Scholar - 15. Hay R.T.: Decoding the SUMO signal. Biochem. Soc. Trans., 2013; 41: 463-473
Google Scholar - 16. Hemelaar J., Borodovsky A., Kessler B.M., Reverter D., Cook J., Kolli N., Gan-Erdene T., Wilkinson K.D., Gill G., Lima C.D., Ploegh H.L., Ovaa H.: Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell. Biol., 2004; 24: 84-95
Google Scholar - 17. Huang C., Han Y., Wang Y., Sun X., Yan S., Yeh E.T., Chen Y., Cang H., Li H., Shi G., Cheng J., Tang X., Yi J.: SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 deSUMOylation. EMBO J., 2009; 28: 2748-2762
Google Scholar - 18. Huang W., He T., Chai C., Yang Y., Zheng Y., Zhou P., Qiao X., Zhang B., Liu Z., Wang J., Shi C., Lei L., Gao K., Li H., Zhong S. i wsp.: Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS One, 2012; 7: e37693
Google Scholar - 19. Jacques C., Baris O., Prunier-Mirebeau D., Savagner F., Rodien P., Rohmer V., Franc B., Guyetant S., Malthiery Y., Reynier P.: Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab., 2005; 90: 2314-2320
Google Scholar - 20. Jiang Q.F., Tian Y.W., Shen Q., Xue H.Z., Li K.: SENP2 regulated the stability of β-catenin through WWOX in hepatocellular carcinoma cell. Tumour Biol., 2014; 35: 9677-9682
Google Scholar - 21. Kang J.S., Saunier E.F., Akhurst R.J., Derynck R.: The type I TGF-β receptor is covalently modified and regulated by sumoylation. Nat. Cell Biol., 2008; 10: 654-664
Google Scholar - 22. Kim J.H., Baek S.H.: Emerging roles of desumoylating enzymes. Biochim. Biophys Acta, 2009; 1792: 155-162
Google Scholar - 23. Kim W.Y., Sharpless N.E.: The regulation of INK4/ARF in cancer and aging. Cell, 2006; 127: 265-275
Google Scholar - 24. Kumar A., Ito A., Takemoto M., Yoshida M., Zhang K.Y.: Identification of 1,2,5-oxadiazoles as a new class of SENP2 inhibitors using structure based virtual screening. J. Chem. Inf. Model, 2014; 54: 870-880
Google Scholar - 25. Kumar A., Zhang K.Y.: Advances in the development of SUMO specific protease (SENP) inhibitors. Comput. Struct. Biotechnol. J., 2015; 13: 204-211
Google Scholar - 26. Kuo M.L., den Besten W., Thomas M.C., Sherr C.J.: Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle, 2008; 7: 3378-3387
Google Scholar - 27. Ma C., Wu B., Huang X., Yuan Z., Nong K., Dong B., Bai Y., Zhu H., Wang W., Ai K.: SUMO-specific protease 1 regulates pancreatic cancer cell proliferation and invasion by targeting MMP-9. Tumor Biol., 2014; 35: 12729-12735
Google Scholar - 28. Matic I., van Hagen M., Schimmel J., Macek B., Ogg S.C., Tatham M.H., Hay R.T., Lamond A.I., Mann M., Vertegaal A.C.: In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics, 2008; 7: 132-144
Google Scholar - 29. Mirecka A., Morawiec Z., Wozniak K.: Genetic polymorphism of SUMO-specific cysteine proteases − SENP1 and SENP2 in breast cancer. Pathol. Oncol. Res., 2016; 22: 817-823
Google Scholar - 30. Mooney S.M., Grande J.P., Salisbury J.L., Janknecht R.: Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry, 2010; 49: 1-10
Google Scholar - 31. Mu J., Zuo Y., Yang W., Chen Z., Liu Z., Tu J., Li Y., Yuan Z., Cheng J., He J.: Over-expression of small ubiquitin-like modifier proteases 1 predicts chemo-sensitivity and poor survival in non-small cell lung cancer. Chin. Med. J., 2014; 127: 4060-4065
Google Scholar - 32. Mukhopadhyay D., Ayaydin F., Kolli N., Tan S.H., Anan T., Kametaka A., Azuma Y., Wilkinson K.D., Dasso M.: SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J. Cell. Biol., 2006; 174: 939-949
Google Scholar - 33. Nait Achour T., Sentis S., Teyssier C., Philippat A., Lucas A., Corbo L., Cavailles V., Jalaguier S.: Transcriptional repression of estrogen receptor α signaling by SENP2 in breast cancer cells. Mol. Endocrinol., 2014; 28: 183-196
Google Scholar - 34. Owerbach D., Mckay E.M., Yeh E.T., Gabbay K.H., Bohren K.M.: A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun., 2005; 337: 517-520
Google Scholar - 35. Ponder E.L., Albrow V.E., Leader B.A., Békés M., Mikolajczyk J., Fonović U.P., Shen A., Drąg M, Xiao J., Deu E., Campbell A.J., Powers J.C., Salvesen G.S., Bogyo M.: Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors. Chem. Biol., 2011; 18: 711-721
Google Scholar - 36. Qiao Z., Wang W., Wang L., Wen D., Zhao Y., Wang Q., Meng Q., Chen G., Wu Y., Zhou H.: Design, synthesis, and biological evalaution of benzodiazepine-based SUMO-specific protease 1 inhibitors. Bioorg. Med. Chem. Lett., 2011; 21: 6389-6392
Google Scholar - 37. Song J.G., Xie H.H., Li N., Wu K., Qiu J.G., Shen D.M., Huang C.J.: SUMO-specific protease 6 promotes gastric cancer cell growth via deSUMOylation of FoxM1. Tumour Biol., 2015; 36: 9865-9871
Google Scholar - 38. Sun Z., Hu S., Luo Q., Ye D., Hu D., Chen F.: Overexpression of SENP3 in oral squamous cell carcinoma and its association with differentiation. Oncol. Rep., 2013; 29: 1701-1706
Google Scholar - 39. Tan M.Y., Mu X.Y., Liu B., Wang Y., Bao E.D., Qiu J.X., Fan Y.: SUMO-specific protease 2 suppresses cell migration and invasion through inhibiting the expression of MMP13 in bladder cancer cells. Cell Physiol. Biochem., 2013; 32: 542-548
Google Scholar - 40. Ulrich H.D.: SUMO teams up with ubiquitin to manage hypoxia. Cell, 2007; 131, 446-447
Google Scholar - 41. Uno M., Koma Y., Ban H.S., Nakamura H.: Discovery of 1-[4-(Nbenzylamino)phenyl]-3-phenylurea derivatives as non-peptidic selective SUMO-sentrin specific protease (SENP)1 inhibitors. Bioorg. Med. Chem. Lett., 2012; 22: 5169-5173
Google Scholar - 42. Wang C., Tao W., Ni S., Chen Q., Zhao Z., Ma L., Fu Y., Jiao Z.: Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci., 2015; 106: 375-382
Google Scholar - 43. Wang Q., Xia N., Li T., Xu Y., Zou Y., Zou Y., Fan Q., Bawa-Khalfe T., Yeh E.T., Cheng J.: SUMO-specific protease 1 promotes prostate cancer progression and metastasis. Oncogene, 2013; 32: 2493-2498
Google Scholar - 44. Wasik U., Filipek A.: Non-nuclear function of sumoylated proteins. Biochim. Biophys. Acta, 2014; 1843: 2878-2885
Google Scholar - 45. Woo C.H., Abe J.: SUMO – a post-translational modification with therapeutic potential? Curr. Opin. Pharmacol., 2010; 10: 146-155
Google Scholar - 46. Xu Y., Li J., Zou Y., Deng J., Wang L.S., Chen G.Q.: SUMO-specific protease 1 regulates the in vitro and in vivo growth of colon cancer cells with the upregulated expression of CDK inhibitors. Cancer Lett., 2011; 309: 78-84
Google Scholar - 47. Xu Y., Zuo Y., Zhang H., Kang X., Yue F., Yi Z., Liu M., Yeh E.T., Chen G., Cheng J.: Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J. Biol. Chem., 2010; 285: 36682-36688
Google Scholar - 48. Yang X.J., Chiang C.M.: Sumoylation in gene regulation, human disease, and therapeutic action. F1000Prime Reports, 2013; 5: 45
Google Scholar - 49. Yeh E.T.: SUMOylation and De-SUMOylation: wrestling with life’s processes. J. Biol. Chem., 2009; 284: 8223-8227
Google Scholar - 50. Zhao J.: Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci., 2007; 64: 3017-3033
Google Scholar