TET proteins and epigenetic modifications in cancers

COMMENTARY ON THE LAW

TET proteins and epigenetic modifications in cancers

Piotr Ciesielski 1 , Paweł Jóźwiak 1 , Anna Krześlak 1

1. Uniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska, Katedra Cytobiochemii, Łódź

Published: 2015-12-16
DOI: 10.5604/17322693.1186346
GICID: 01.3001.0009.6608
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1371-1383

 

Abstract

Epigenetic modifications, including DNA methylation and histone modifications, are involved in regulation of gene expression, and alterations in these modifications are implicated in cancer onset and progression. The specific pattern of DNA methylation depends on the balance between methylation and demethylation processes. Recent studies have shown that TET proteins play a key role in DNA demethylation. TET proteins (TET1, TET2, TET3) are iron(II) and α-ketoglutarate dependent dioxygenases, and their enzymatic activity involves hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine and further to 5-formylcytosine and 5-carboxylcytosine. These modified cytosines are removed by enzymes involved in DNA repair. However, the role of TETs in gene expression regulation is not limited to their catalytic activity. TETs can interact with proteins of complexes involved in the modification of histones (i.e. EZH2, OGT, Sin3a or HCF1) and by affecting their activity and, chromatin binding ability, they can cause changes in patterns of histone methylation, acetylation and O-GlcNAcylation. There is growing evidence that decreased expression of TET proteins and mutation in TET genes are associated with cancer onset and progression.

References

  • 1. Abbas S., Lugthart S., Kavelaars F.G., Schelen A., Koenders J.E.,Zeilemaker A., van Putten W.J., Rijneveld A.W., Löwenberg B., ValkP.J.: Acquired mutations in the genes encoding IDH1 and IDH2 bothare recurrent aberrations in acute myeloid leukemia: prevalenceand prognostic value. Blood, 2010; 116: 2122-2126
    Google Scholar
  • 2. Abdel-Wahab O., Mullally A, Hedvat C., Garcia-Manero G., PatelJ., Wadleigh M., Malinge S., Yao J, Kilpivaara O., Bhat R., HubermanK., Thomas S., Dolgalev I., Heguy A., Paietta E. i wsp.: Genetic characterizationof TET1, TET2, and TET3 alterations in myeloid malignancies.Blood, 2009; 114: 144-147
    Google Scholar
  • 3. Bacher U., Haferlach C., Schnittger S., Kohlmann A., Kern W.,Haferlach T.: Mutations of the TET2 and CBL genes: novel molecularmarkers in myeloid malignancies. Ann. Hematol., 2010; 89: 643-652
    Google Scholar
  • 4. Bhutani N., Burns D.M., Blau H.M.: DNA demethylation dynamics.Cell, 2011; 146: 866-872
    Google Scholar
  • 5. Blaschke K., Ebata K.T., Karimi M.M., Zepeda-Martínez J.A., GoyalP., Mahapatra S., Tam A., Laird D.J., Hirst M., Rao A., Lorincz M.C., Ramalho-SantosM.: Vitamin C induces Tet-dependent DNA demethylationand a blastocyst-like state in ES cells. Nature, 2013; 500: 222-226
    Google Scholar
  • 6. Booth M.J., Branco M.R., Ficz G., Oxley D., Krueger F., Reik W.,Balasubramanian S.: Quantitative sequencing of 5-methylcytosineand 5-hydroxymethylcytosine at single-base resolution. Science,2012; 336: 934-937
    Google Scholar
  • 7. Butkinaree C., Park K., Hart G.W.: O-linked β-N-acetylglucosamine(O-GlcNAc): extensive crosstalk with phosphorylation to regulatesignaling and transcription in response to nutrients and stress. Biochim.Biophys. Acta, 2010; 1800: 96-106
    Google Scholar
  • 8. Califano D., Pignata S., Pisano C., Greggi S., Laurelli G., Losito N.S.,Ottaiano A., Gallipoli A., Pasquinelli R., De Simone V., Cirombella R.,Fusco A., Chiappetta G.: FEZ1/LZTS1 protein expression in ovariancancer. J. Cell. Physiol., 2010; 222: 382-386
    Google Scholar
  • 9. Cartron P.F., Nadaradjane A., Lepape F., Lalier L., Gardie B., ValletteF.M.: Identification of TET1 partners that control its DNA-demethylatingfunction. Genes Cancer, 2013; 4: 235-241
    Google Scholar
  • 10. Chen L., Zhu Z., Sun X., Dong X.Y., Wei J., Gu F., Sun Y.L., Zhou J.,Dong J.T., Fu L.: Down-regulation of tumor suppressor gene FEZ1/LZTS1 in breast carcinoma involves promoter methylation and associateswith metastasis. Breast Cancer Res. Treat., 2009; 116: 471-478
    Google Scholar
  • 11. Chen Q., Chen Y., Bian C., Fujiki R., Yu X.: TET2 promotes histoneO-GlcNAcylation during gene transcription. Nature, 2013; 493:561-564
    Google Scholar
  • 12. Cheng J., Guo S., Chen S., Mastriano S.J., Liu C., D’Alessio A.C., HysolliE., Guo Y., Yao H., Megyola C.M., Li D., Liu J., Pan W., Roden C.A.,Zhou X.L. i wsp.: An extensive network of TET2-targeting microRNAsregulates malignant hematopoiesis. Cell Rep., 2013; 5: 471-481
    Google Scholar
  • 13. Chotirat S., Thongnoppakhun W., Wanachiwanawin W., AuewarakulC.U.: Acquired somatic mutations of isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) in preleukemic disorders. Blood CellsMol. Dis., 2015; 54: 286-291
    Google Scholar
  • 14. Cortellino S., Xu J., Sannai M., Moore R., Caretti E., Cigliano A.,Le Coz M., Devarajan K., Wessels A., Soprano D., Abramowitz L.K.,Bartolomei M.S., Rambow F., Bassi M.R., Bruno T. i wsp.: ThymineDNA glycosylase is essential for active DNA demethylation by linkeddeamination-base excision repair. Cell, 2011; 146: 67-79
    Google Scholar
  • 15. Dang L., Jin S., Su S.M.: IDH mutations in glioma and acute myeloidleukemia. Trends Mol. Med., 2010; 16: 387-397
    Google Scholar
  • 16. Dawson M.A., Kouzarides T.: Cancer epigenetics: from mechanismto therapy. Cell, 2012; 150: 12-27
    Google Scholar
  • 17. de Queiroz R.M., Carvalho E., Dias W.B.: O-GlcNAcylation: thesweet side of the cancer. Front. Oncol., 2014; 4: 132
    Google Scholar
  • 18. Delatte B., Fuks F.: TET proteins: on the frenetic hunt for newcytosine modifications. Brief. Funct. Genomics, 2013; 12: 191-204
    Google Scholar
  • 19. Delhommeau F., Dupont S., Della Valle V., James C., Trannoy S.,Massé A., Kosmider O., Le Couedic J.P., Robert F., Alberdi A., LécluseY., Plo I., Dreyfus F.J., Marzac C., Casadevall N. i wsp.: Mutation in TET2in myeloid cancers. N. Engl. J. Med., 2009; 360: 2289-2301
    Google Scholar
  • 20. Deplus R., Delatte B., Schwinn M.K., Defrance M., Méndez J.,Murphy N., Dawson M.A., Volkmar M., Putmans P., Calonne E., ShihA.H., Levine R.L., Bernard O., Mercher T., Solary E. i wsp.: TET2 andTET3 regulate GlcNAcylation and H3K4 methylation through OGTand SET1/COMPASS. EMBO J., 2013; 32: 645-655
    Google Scholar
  • 21. Du C., Kurabe N., Matsushima Y., Suzuki M., Kahyo T., OhnishiI., Tanioka F., Tajima S., Goto M., Yamada H., Tao H., Shinmura K.,Konno H., Sugimura H.: Robust quantitative assessments of cytosinemodifications and changes in the expressions of related enzymes ingastric cancer. Gastric Cancer, 2015; 18: 516-525
    Google Scholar
  • 22. Fardini Y., Dehennaut V., Lefebvre T., Issad T.: O-GlcNAcylation:a new cancer hallmark? Front. Endocrinol., 2013; 4: 99
    Google Scholar
  • 23. Ficz G., Branco M.R., Seisenberger S., Santos F., Krueger F., HoreT.A., Marques C.J., Andrews S., Reik W.: Dynamic regulation of 5-hydroxymethylcytosinein mouse ES cells and during differentiation.Nature, 2011; 473: 398-402
    Google Scholar
  • 24. Figueroa M.E., Abdel-Wahab O., Lu C., Ward P.S., Patel J., Shih A.,Li Y., Bhagwat N., Vasanthakumar A., Fernandez H.F., Tallman M.S.,Sun Z., Wolniak K., Peeters J.K., Liu W. i wsp.: Leukemic IDH1 andIDH2 mutations result in a hypermethylation phenotype, disruptTET2 function, and impair hematopoietic differentiation. CancerCell, 2010; 18: 553-567
    Google Scholar
  • 25. Fong J.J., Nguyen B.L., Bridger R., Medrano E.E., Wells L., Pan S.,Sifers R.N.: β-N-Acetylglucosamine (O-GlcNAc) is a novel regulatorof mitosis-specific phosphorylations on histone H3. J. Biol. Chem.,2012; 287: 12195-12203
    Google Scholar
  • 26. Frauer C., Hoffmann T., Bultmann S., Casa V., Cardoso M.C., Antes I., Leonhardt H.: Recognition of 5-hydroxymethylcytosine by theUhrf1 SRA domain. PLoS One, 2011; 6: e21306
    Google Scholar
  • 27. Fu H.L., Ma Y., Lu L.G., Hou P., Li B.J., Jin W.L., Cui D.X.: TET1 exertsits tumor suppressor function by interacting with p53-EZH2 pathwayin gastric cancer. J. Biomed. Nanotechnol., 2014; 10: 1217-1230
    Google Scholar
  • 28. Fujiki R., Hashiba W., Sekine H., Yokoyama A., Chikanishi T., ItoS., Imai Y., Kim J., He H.H., Igarashi K., Kanno J., Ohtake F., KitagawaH., Roeder R.G., Brown M. i wsp.: GlcNAcylation of histone H2B facilitatesits monoubiquitination. Nature, 2011; 480: 557-560
    Google Scholar
  • 29. Globisch D., Münzel M., Müller M., Michalakis S., Wagner M.,Koch S., Brückl T., Biel M., Carell T.: Tissue distribution of 5-hydroxymethylcytosineand search for active demethylation intermediates.PLoS One, 2010; 5: e15367
    Google Scholar
  • 30. Guo J.U., Su Y., Zhong C., Ming G.L., Song H.: Hydroxylation of5-methylcytosine by TET1 promotes active DNA demethylation inthe adult brain. Cell, 2011; 145: 423-434
    Google Scholar
  • 31. Gutierrez-Arcelus M., Lappalainen T., Montgomery S.B., Buil A.,Ongen H., Yurovsky A., Bryois J., Giger T., Romano L., Planchon A.,Falconnet E., Bielser D., Gagnebin M., Padioleau I., Borel C. i wsp.:Passive and active DNA methylation and the interplay with geneticvariation in gene regulation. Elife, 2013; 2: e00523
    Google Scholar
  • 32. Haffner M.C., Chaux A., Meeker A.K., Esopi D.M., Gerber J., PellakuruL.G., Toubaji A., Argani P., Iacobuzio-Donahue C., Nelson W.G.,Netto G.J., De Marzo A.M., Yegnasubramanian S.: Global 5-hydroxymethylcytosinecontent is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget,2011; 2: 627-637
    Google Scholar
  • 33. Hanover J.A., Krause M.W., Love D.C.: The hexosamine signalingpathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys.Acta, 2010; 1800: 80-95
    Google Scholar
  • 34. Hart G.W., Slawson C., Ramirez-Correa G., Lagerlof O.: Cross talkbetween O-GlcNAcylation and phosphorylation: roles in signaling,transcription, and chronic disease. Annu. Rev. Biochem., 2011; 80:825-858
    Google Scholar
  • 35. Hashimoto H., Liu Y., Upadhyay A.K., Chang Y., Howerton S.B.,Vertino P.M., Zhang X., Cheng X.: Recognition and potential mechanismsfor replication and erasure of cytosine hydroxymethylation.Nucleic Acids Res., 2012; 40: 4841-4849
    Google Scholar
  • 36. Hashimoto H., Zhang X., Cheng X.: Excision of thymine and 5-hydroxymethyluracilby the MBD4 DNA glycosylase domain: structuralbasis and implications for active DNA demethylation. Nucleic AcidsRes., 2012; 40: 8276-8284
    Google Scholar
  • 37. He Y.F., Li B.Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., ChenZ., Li L., Sun Y., Li X., Dai Q., Song C.X., Zhang K. i wsp.: Tet-mediatedformation of 5-carboxylcytosine and its excision by TDG in mammalianDNA. Science, 2011; 333: 1303-1307
    Google Scholar
  • 38. Hsu C.H., Peng K.L., Kang M.L., Chen Y.R., Yang Y.C., Tsai C.H., ChuC.S., Jeng Y.M., Chen Y.T., Lin F.M., Huang H.D., Lu Y.Y., Teng Y.C., LinS.T., Lin R.K. i wsp.: TET1 suppresses cancer invasion by activatingthe tissue inhibitors of metalloproteinases. Cell Rep., 2012; 2: 568-579
    Google Scholar
  • 39. Huang Y., Chavez L., Chang X., Wang X., Pastor W.A., Kang J.,Zepeda-Martínez J.A., Pape U.J., Jacobsen S.E., Peters B., Rao A.: Distinctroles of the methylcytosine oxidases Tet1 and Tet2 in mouseembryonic stem cells. Proc. Natl. Acad. Sci. USA, 2014; 111: 1361-1366
    Google Scholar
  • 40. Huang Y., Rao A.: Connections between TET proteins and aberrantDNA modification in cancer. Trends Genet., 2014; 30: 464-474
    Google Scholar
  • 41. Iqbal K., Jin S.G., Pfeifer G.P., Szabó P.E.: Reprogramming of thepaternal genome upon fertilization involves genome-wide oxidationof 5-methylcytosine. Proc. Natl. Acad. Sci. USA, 2011; 108: 3642-3647
    Google Scholar
  • 42. Ito R., Katsura S., Shimada H., Tsuchiya H., Hada M., OkumuraT., Sugawara A., Yokoyama A.: TET3-OGT interaction increases thestability and the presence of OGT in chromatin. Genes Cells, 2014;19: 52-65
    Google Scholar
  • 43. Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., ZhangY.: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewaland inner cell mass specification. Nature, 2010; 466: 1129-1133
    Google Scholar
  • 44. Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., HeC., Zhang Y.: Tet proteins can convert 5-methylcytosine to 5-formylcytosineand 5-carboxylcytosine. Science, 2011; 333: 1300-1303
    Google Scholar
  • 45. Jankowska A.M., Szpurka H., Tiu R.V., Makishima H., Afable M.,Huh J., O’Keefe C.L., Ganetzky R., McDevitt M.A., Maciejewski J.P.: Lossof heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferativeneoplasms. Blood, 2009; 113: 6403-6410
    Google Scholar
  • 46. Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., KrexD., Lu Q., Pfeifer G.P.: 5-Hydroxymethylcytosine is strongly depletedin human cancers but its levels do not correlate with IDH1 mutations.Cancer Res., 2011; 71: 7360-7365
    Google Scholar
  • 47. Knowles M.A., Aveyard J.S., Taylor C.F., Harnden P., Bass S.: Mutationanalysis of the 8p candidate tumour suppressor genes DBC2(RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett., 2005; 225:121-130
    Google Scholar
  • 48. Ko M., Bandukwala H.S., An J., Lamperti E.D., Thompson E.C.,Hastie R., Tsangaratou A., Rajewsky K., Koralov S.B., Rao A.: Ten–Eleven-Translocation 2 (TET2) negatively regulates homeostasisand differentiation of hematopoietic stem cells in mice. Proc. Natl.Acad. Sci. USA, 2011; 108: 14566-14571
    Google Scholar
  • 49. Ko M., Huang Y., Jankowska A.M., Pape U.J., Tahiliani M., BandukwalaH.S., An J., Lamperti E.D., Koh K.P., Ganetzky R., Liu X.S.,Aravind L., Agarwal S., Maciejewski J.P., Rao A.: Impaired hydroxylationof 5-methylcytosine in myeloid cancers with mutant TET2.Nature, 2010; 468: 839-843
    Google Scholar
  • 50. Kraus T.F., Globisch D., Wagner M., Eigenbrod S., Widmann D.,Münzel M., Müller M., Pfaffeneder T., Hackner B., Feiden W., SchüllerU., Carell T., Kretzschmar H.A.: Low values of 5-hydroxymethylcytosine(5hmC), the “sixth base,” are associated with anaplasia inhuman brain tumors. Int. J. Cancer, 2012; 131: 1577-1590
    Google Scholar
  • 51. Kriaucionis S., Heintz N.: The nuclear DNA base 5-hydroxymethylcytosineis present in Purkinje neurons and the brain. Science,2009; 324: 929-930
    Google Scholar
  • 52. Kudo Y., Tateishi K., Yamamoto K., Yamamoto S., Asaoka Y., IjichiH., Nagae G., Yoshida H., Aburatani H., Koike K.: Loss of 5-hydroxymethylcytosineis accompanied with malignant cellular transformation.Cancer Sci., 2012; 103: 670-676
    Google Scholar
  • 53. Langemeijer S.M., Aslanyan M.G., Jansen J.H.: TET proteins inmalignant hematopoiesis. Cell Cycle, 2009; 8: 4044-4048
    Google Scholar
  • 54. Li W., Liu M.: Distribution of 5-hydroxymethylcytosine in differenthuman tissues. J. Nucleic Acids, 2011; 2011: 870726
    Google Scholar
  • 55. Li Z., Cai X., Cai C.L., Wang J., Zhang W., Petersen B.E., Yang F.C.,Xu M.: Deletion of Tet2 in mice leads to dysregulated hematopoieticstem cells and subsequent development of myeloid malignancies.Blood, 2011; 118: 4509-4518
    Google Scholar
  • 56. Lian C.G., Xu Y., Ceol C., Wu F., Larson A., Dresser K., Xu W., TanL., Hu Y., Zhan Q., Lee C.W., Hu D., Lian B.Q., Kleffel S., Yang Y. i wsp.:Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.Cell, 2012; 150: 1135-1146
    Google Scholar
  • 57. Lin L.L., Wang W., Hu Z., Wang L.W., Chang J., Qian H.: Negativefeedback of miR-29 family TET1 involves in hepatocellular cancer.Med. Oncol., 2014; 31: 291
    Google Scholar
  • 58. Liu C., Liu L., Chen X., Shen J., Shan J., Xu Y., Yang Z., Wu L., XiaF., Bie P., Cui Y., Bian X.W., Qian C.: Decrease of 5-hydroxymethylcytosineis associated with progression of hepatocellular carcinomathrough downregulation of TET1. PLoS One, 2013; 8: e62828
    Google Scholar
  • 59. Liu X., Zhang G., Yi Y., Xiao L., Pei M., Liu S., Luo Y., Zhong H., XuY., Zheng W., Shen J.: Decreased 5-hydroxymethylcytosine levels areassociated with TET2 mutation and unfavorable overall survival inmyelodysplastic syndromes. Leuk. Lymphoma, 2013; 54: 2466-2473
    Google Scholar
  • 60. Liu Y., Jiang W., Liu J., Zhao S., Xiong J., Mao Y., Wang Y.: IDH1mutations inhibit multiple α-ketoglutarate-dependent dioxygenaseactivities in astroglioma. J. Neurooncol., 2012; 109: 253-260
    Google Scholar
  • 61. Loriot A., Van Tongelen A., Blanco J., Klaessens S., Cannuyer J.,van Baren N., Decottignies A., De Smet C.: A novel cancer-germlinetranscript carrying pro-metastatic miR-105 and TET-targetingmiR-767 induced by DNA hypomethylation in tumors. Epigenetics,2014; 9: 1163-1171
    Google Scholar
  • 62. Lorsbach R.B., Moore J., Mathew S., Raimondi S.C., Mukatira S.T.,Downing J.R.: TET1, a member of a novel protein family, is fused toMLL in acute myeloid leukemia containing the t(10;11)(q22;q23).Leukemia, 2003; 17: 637-641
    Google Scholar
  • 63. Ma Z., Vosseller K.: O-GlcNAc in cancer biology. Amino Acids,2013; 45: 719-733
    Google Scholar
  • 64. Maiti A., Drohat A.C.: Thymine DNA glycosylase can rapidlyexcise 5-formylcytosine and 5-carboxylcytosine: potential implicationsfor active demethylation of CpG sites. J. Biol. Chem., 2011;286: 35334-35338
    Google Scholar
  • 65. Marcucci G., Maharry K., Wu Y.Z., Radmacher M.D., Mrózek K.,Margeson D., Holland K.B., Whitman S.P., Becker H., Schwind S., MetzelerK.H., Powell B.L., Carter T.H., Kolitz J.E., Wetzler M. i wsp.: IDH1and IDH2 gene mutations identify novel molecular subsets within denovo cytogenetically normal acute myeloid leukemia: a Cancer andLeukemia Group B study. J. Clin. Oncol., 2010; 28: 2348-2355
    Google Scholar
  • 66. McKenney A.S., Levine R.L.: Isocitrate dehydrogenase mutationsin leukemia. J. Clin. Invest., 2013; 123: 3672-3677
    Google Scholar
  • 67. Mellén M., Ayata P., Dewell S., Kriaucionis S., Heintz N.: MeCP2binds to 5hmC enriched within active genes and accessible chromatinin the nervous system. Cell, 2012; 151: 1417-1430
    Google Scholar
  • 68. Minor E.A., Court B.L., Young J.I., Wang G.: Ascorbate inducesten-eleven translocation (Tet) methylcytosine dioxygenase-mediatedgeneration of 5-hydroxymethylcytosine. J. Biol. Chem., 2013;288: 13669-13674
    Google Scholar
  • 69. Mohr F., Döhner K., Buske C., Rawat V.P.: TET genes: new playersin DNA demethylation and important determinants for stemness.Exp. Hematol., 2011; 39: 272-281
    Google Scholar
  • 70. Müller T., Gessi M., Waha A., Isselstein L.J., Luxen D., Freihoff D.,Freihoff J., Becker A., Simon M., Hammes J., Denkhaus D., zur MühlenA., Pietsch T., Waha A.: Nuclear exclusion of TET1 is associated withloss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am. J.Pathol., 2012; 181: 675-683
    Google Scholar
  • 71. Müller U., Bauer C., Siegl M., Rottach A., Leonhardt H.: TET-mediatedoxidation of methylcytosine causes TDG or NEIL glycosylasedependent gene reactivation. Nucleic Acids Res., 2014; 42: 8592-8604
    Google Scholar
  • 72. Nakajima H., Kunimoto H.: TET2 as an epigenetic master regulatorfor normal and malignant hematopoiesis. Cancer Sci., 2014;105: 1093-1099
    Google Scholar
  • 73. Navarro A., Yin P., Ono M., Monsivais D., Moravek M.B., CoonJ.S.5th, Dyson M.T., Wei J.J., Bulun S.E.: 5-Hydroxymethylcytosinepromotes proliferation of human uterine leiomyoma: a biologicallink to a new epigenetic modification in benign tumors. J. Clin. Endocrinol.Metab., 2014; 99: E2437-E2445
    Google Scholar
  • 74. Neri F., Dettori D., Incarnato D., Krepelova A., Rapelli S., MaldottiM., Parlato C., Paliogiannis P., Oliviero S.: TET1 is a tumour suppressorthat inhibits colon cancer growth by derepressing inhibitors ofthe WNT pathway. Oncogene, 2015; 34: 4168-4176
    Google Scholar
  • 75. Niehrs C., Schäfer A.: Active DNA demethylation by Gadd45 andDNA repair. Trends Cell Biol., 2012; 22: 220-227
    Google Scholar
  • 76. Nonaka D., Fabbri A., Roz L., Mariani L., Vecchione A., MooreG.W., Tavecchio L., Croce C.M., Sozzi G.: Reduced FEZ1/LZTS1 expressionand outcome prediction in lung cancer. Cancer Res., 2005;65: 1207-1212
    Google Scholar
  • 77. Ooi S.K., O’Donnell A.H., Bestor T.H.: Mammalian cytosine methylation at a glance. J. Cell Sci., 2009; 122: 2787-2791
    Google Scholar
  • 78. Orr B.A., Haffner M.C., Nelson W.G., Yegnasubramanian S., EberhartC.G.: Decreased 5-hydroxymethylcytosine is associated withneural progenitor phenotype in normal brain and shorter survivalin malignant glioma. PLoS One, 2012; 7: e41036
    Google Scholar
  • 79. Ozcan S., Andrali S.S., Cantrell J.E.: Modulation of transcriptionfactor function by O-GlcNAc modification. Biochim. Biophys. Acta,2010; 1799: 353-364
    Google Scholar
  • 80. Parsons D.W., Jones S., Zhang X., Lin J.C., Leary R.J., Angenendt P.,Mankoo P., Carter H., Siu I.M., Gallia G.L., Olivi A., McLendon R., RasheedB.A., Keir S., Nikolskaya T. i wsp.: An integrated genomic analysisof human glioblastoma multiforme. Science, 2008; 321: 1807-1812
    Google Scholar
  • 81. Paschka P., Schlenk R.F., Gaidzik V.I., Habdank M., Krönke J., BullingerL., Späth D., Kayser S., Zucknick M., Götze K., Horst H.A., GermingU., Döhner H., Döhner K.: IDH1 and IDH2 mutations are frequentgenetic alterations in acute myeloid leukemia and confer adverseprognosis in cytogenetically normal acute myeloid leukemia withNPM1 mutation without FLT3 internal tandem duplication. J. Clin.Oncol., 2010; 28: 3636-3643
    Google Scholar
  • 82. Penn N.W., Suwalski R., O’Riley C., Bojanowski K., Yura R.: Thepresence of 5-hydroxymethylcytosine in animal deoxyribonucleicacid. Biochem. J., 1972; 126: 781-790
    Google Scholar
  • 83. Pérez C., Martínez-Calle N., Martín-Subero J.I., Segura V., DelabesseE., Fernandez-Mercado M., Garate L., Alvarez S., Rifon J.,Varea S., Boultwood J., Wainscoat J.S., Cruz Cigudosa J., CalasanzM.J., Cross N.C. i wsp.: TET2 mutations are associated with specific5-methylcytosine and 5-hydroxymethylcytosine profiles in patientswith chronic myelomonocytic leukemia. PLoS One, 2012; 7: e31605
    Google Scholar
  • 84. Pollyea D.A., Kohrt H.E., Zhang B., Zehnder J., Schenkein D.,Fantin V., Straley K., Vasanthakumar A., Abdel-Wahab O., Levine R.,Godley L.A., Medeiros B.C.: 2-Hydroxyglutarate in IDH mutant acutemyeloid leukemia: predicting patient responses, minimal residualdisease and correlations with methylcytosine and hydroxymethylcytosinelevels. Leuk. Lymphoma, 2013; 54: 408-410
    Google Scholar
  • 85. Quivoron C., Couronné L., Della Valle V., Lopez C.K., Plo I., Wagner-BallonO., Do Cruzeiro M., Delhommeau F., Arnulf B., Stern M.H.,Godley L., Opolon P., Tilly H., Solary E., Duffourd Y. i wsp.: TET2 inactivationresults in pleiotropic hematopoietic abnormalities inmouse and is a recurrent event during human lymphomagenesis.Cancer Cell, 2011; 20: 25-38
    Google Scholar
  • 86. Rai K., Huggins I.J., James S.R., Karpf A.R., Jones D.A., Cairns B.R.:DNA demethylation in zebrafish involves the coupling of a deaminase,a glycosylase, and gadd45. Cell, 2008; 135: 1201-1212
    Google Scholar
  • 87. Rampal R., Alkalin A., Madzo J., Vasanthakumar A., Pronier E.,Patel J., Li Y., Ahn J., Abdel-Wahab O., Shih A., Lu C., Ward P.S., TsaiJ.J., Hricik T., Tosello V. i wsp.: DNA hydroxymethylation profilingreveals that WT1 mutations result in loss of TET2 function in acutemyeloid leukemia. Cell Rep., 2014; 9: 1841-1855
    Google Scholar
  • 88. Ruan H.B., Singh J.P., Li M.D., Wu J., Yang X.: Cracking the OGlcNAccode in metabolism. Trends Endocrinol. Metab., 2013; 24:301-309
    Google Scholar
  • 89. Sakabe K., Wang Z., Hart G.W.: β-N-acetylglucosamine (OGlcNAc)is part of the histone code. Proc. Natl. Acad. Sci. USA, 2010;107: 19915-19920
    Google Scholar
  • 90. Sarkies P., Sale J.E.: Cellular epigenetic stability and cancer.Trends Genet., 2012; 28: 118-127
    Google Scholar
  • 91. Sharma S., Kelly T.K., Jones P.A.: Epigenetics in cancer. Carcinogenesis,2010; 31: 27-36
    Google Scholar
  • 92. Shi F.T., Kim H., Lu W., He Q., Liu D., Goodell M.A., Wan M., SongyangZ.: Ten-eleven translocation 1 (Tet1) is regulated by O-linkedN-acetylglucosamine transferase (Ogt) for target gene repression inmouse embryonic stem cells. J. Biol. Chem., 2013; 288: 20776-20784
    Google Scholar
  • 93. Song S.J., Ito K., Ala U., Kats L., Webster K., Sun S.M., JongenLavrencic M., Manova-Todorova K., Teruya-Feldstein J., Avigan D.E.,Delwel R., Pandolfi P.P.: The oncogenic microRNA miR-22 targetsthe TET2 tumor suppressor to promote hematopoietic stem cellself-renewal and transformation. Cell Stem Cell, 2013; 13: 87-101
    Google Scholar
  • 94. Song S.J., Poliseno L., Song M.S., Ala U., Webster K., Ng C., BeringerG., Brikbak N.J., Yuan X., Cantley L.C., Richardson A.L., PandolfiP.P.: MicroRNA-antagonism regulates breast cancer stemness andmetastasis via TET family dependent chromatin remodeling. Cell,2013; 154: 311-324
    Google Scholar
  • 95. Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W.,Bauer C., Münzel M., Wagner M., Müller M., Khan F., Eberl H.C.,Mensinga A., Brinkman A.B., Lephikov K., Müller U. i wsp.: Dynamicreaders for 5-(hydroxy)methylcytosine and its oxidized derivatives.Cell, 2013; 152: 1146-1159
    Google Scholar
  • 96. Sun M., Song C.X., Huang H., Frankenberger C.A., SankarasharmaD., Gomes S., Chen P., Chen J., Chada K.K., He C., Rosner M.R.: HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth andmetastasis. Proc. Natl. Acad. Sci. USA, 2013; 110: 9920-9925
    Google Scholar
  • 97. Suvà M.L., Riggi N., Bernstein B.E.: Epigenetic reprogrammingin cancer. Science, 2013; 339: 1567-1570
    Google Scholar
  • 98. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., BrudnoY., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A.: Conversion of5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNAby MLL partner TET1. Science, 2009; 324: 930-935
    Google Scholar
  • 99. Vecchione A., Croce C.M., Baldassarre G.: Fez1/Lzts1 a new mitoticregulator implicated in cancer development. Cell Div., 2007; 2: 24
    Google Scholar
  • 100. Vella P., Scelfo A., Jammula S., Chiacchiera F., Williams K., CuomoA., Roberto A., Christensen J., Bonaldi T., Helin K., Pasini D.: Tetproteins connect the O-linked N-acetylglucosamine transferase Ogtto chromatin in embryonic stem cells. Mol. Cell, 2013; 49: 645-656
    Google Scholar
  • 101. Wang X.X., Zhu Z., Su D., Lei T., Wu X., Fan Y., Li X., Zhao J., FuL., Dong J.T., Fu L.: Down-regulation of leucine zipper putative tumorsuppressor 1 is associated with poor prognosis, increased cell motilityand invasion, and epithelial-to-mesenchymal transition characteristicsin human breast carcinoma. Hum. Pathol., 2011; 42: 1410-1419
    Google Scholar
  • 102. Wen L., Tang F.: Genomic distribution and possible functions ofDNA hydroxymethylation in the brain. Genomics, 2014; 104: 341-346
    Google Scholar
  • 103. Wielscher M., Liou W., Pulverer W., Singer C.F., Rappaport-FuerhauserC., Kandioler D., Egger G., Weinhäusel A.: Cytosine 5-hydroxymethylationof the LZTS1 gene is reduced in breast cancer.Transl. Oncol., 2013; 6: 715-721
    Google Scholar
  • 104. Williams K., Christensen J., Pedersen M.T., Johansen J.V., CloosP.A., Rappsilber J., Helin K.: TET1 and hydroxymethylcytosinein transcription and DNA methylation fidelity. Nature, 2011; 473:343-348
    Google Scholar
  • 105. Wossidlo M., Nakamura T., Lepikhov K., Marques C.J., ZakhartchenkoV., Boiani M., Arand J., Nakano T., Reik W., Walter J.: 5-Hydroxymethylcytosinein the mammalian zygote is linked with epigeneticreprogramming. Nat. Commun., 2011; 2: 241
    Google Scholar
  • 106. Wu B.K., Brenner C.: Suppression of TET1-dependent DNAdemethylation is essential for KRAS-mediated transformation. CellRep., 2014; 9: 1827-1840
    Google Scholar
  • 107. Wu H., D’Alessio A.C., Ito S., Xia K., Wang Z., Cui K., Zhao K., SunY.E., Zhang Y.: Dual functions of Tet1 in transcriptional regulation inmouse embryonic stem cells. Nature, 2011; 473: 389-393
    Google Scholar
  • 108. Xu W., Yang H., Liu Y., Yang Y., Wang P., Kim S.H., Ito S., YangC., Wang P., Xiao M.T., Liu L.X., Jiang W.Q., Liu J., Zhang J.Y., WangB. i wsp.: Oncometabolite 2-hydroxyglutarate is a competitive inhibitorof α-ketoglutarate-dependent dioxygenases. Cancer Cell,2011; 19: 17-30
    Google Scholar
  • 109. Xu Y., Wu F., Tan L., Kong L., Xiong L., Deng J., Barbera A.J.,Zheng L., Zhang H., Huang S., Min J., Nicholson T., Chen T., Xu G., ShiY. i wsp.: Genome-wide regulation of 5hmC, 5mC, and gene expressionby Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell,2011; 42: 451-464
    Google Scholar
  • 110. Yan H., Parsons D.W., Jin G., McLendon R., Rasheed B.A., YuanW., Kos I., Batinic-Haberle I., Jones S., Riggins G.J., Friedman H., FriedmanA., Reardon D., Herndon J., Kinzler K.W. i wsp.: IDH1 and IDH2mutations in gliomas. N. Engl. J. Med., 2009; 360: 765-773
    Google Scholar
  • 111. Yang H., Liu Y., Bai F., Zhang J.Y., Ma S.H., Liu J., Xu Z.D., ZhuH.G., Ling Z.Q., Ye D., Guan K.L., Xiong Y.: Tumor development is associatedwith decrease of TET gene expression and 5-methylcytosinehydroxylation. Oncogene, 2013; 32: 663-669
    Google Scholar
  • 112. Yin R., Mao S.Q., Zhao B., Chong Z., Yang Y., Zhao C., ZhangD., Huang H., Gao J., Li Z., Jiao Y., Li C., Liu S., Wu D., Gu W. i wsp.:Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidationand promotes DNA demethylation in mammals. J. Am. Chem. Soc.,2013; 135: 10396-10403
    Google Scholar
  • 113. You J.S., Jones P.A.: Cancer genetics and epigenetics: two sidesof the same coin? Cancer Cell, 2012; 22: 9-20
    Google Scholar
  • 114. Zhang H., Zhang X., Clark E., Mulcahey M., Huang S., Shi Y.G.:TET1 is a DNA-binding protein that modulates DNA methylationand gene transcription via hydroxylation of 5-methylcytosine. CellRes., 2010; 20: 1390-1393
    Google Scholar
  • 115. Zhang Q., Liu X., Gao W., Li P., Hou J., Li J., Wong J.: Differentialregulation of the ten-eleven translocation (TET) family of dioxygenasesby O-linked β-N-acetylglucosamine transferase (OGT). J. Biol.Chem., 2014; 289: 5986-5996
    Google Scholar

Full text

Skip to content