The application of cell cultures, body fluids and tissues in oncoproteomics
Kamila Duś-Szachniewicz 1 , Paweł Ostasiewicz 1 , Marta Woźniak 1 , Andrzej Gamian 2Abstract
Mass spectrometry (MS)-based proteomics is a rapidly developing technology for the large scale analysis of proteins, their interactions and subcellular localization. In recent years proteomics has attracted much attention in medicine. Since a single biomarker might not have sufficient sensitivity and specificity in clinical practice, the identification of biomarker panels that comprise several proteins would improve the detection and clinical management of cancer patients. Additionally, the characteristics of protein profiles of most severe human malignancies certainly contribute to the understanding of the biology of cancer and fill the gap in our knowledge of carcinogenesis. This knowledge also is likely to result in the discovery of novel potential cancer markers and targets for molecular therapeutics. It is believed that the novel biomarkers will help in the development of personalized therapy tailored to the individual patient and will thereby reduce the mortality rate from cancer. In this review, the use of different types of human clinical samples (cell cultures, tissues and body fluids) in oncoproteomics is explained and the latest advances in mass spectrometry-based proteomics biomarker discovery are discussed.
References
- 1. Aebersold R., Mann M.: Mass spectrometry-based proteomics. Nature,2003; 422: 198-207
Google Scholar - 2. Al-Ayadhi L., Halepoto D.M.: Role of proteomics in the discoveryof autism biomarkers. J. Coll. Physicians Surg. Pak., 2013; 23: 137-143
Google Scholar - 3. Altelaar A.F., Munoz J., Heck A.J.: Next-generation proteomics: towardsan integrative view of proteome dynamics. Nat. Rev. Genet., 2013;14: 35-48
Google Scholar - 4. Anderson N.L., Anderson N.G.: The human plasma proteome: history,character, and diagnostic prospects. Mol. Cell. Proteomics, 2002;1: 845-867
Google Scholar - 5. Angel T.E., Aryal U.K., Hengel S.M., Baker E.S., Kelly R.T., RobinsonE.W., Smith R.D.: Mass spectrometry based proteomics: existing capabilitiesand future directions. Chem. Soc. Rev., 2012; 41: 3912-3928
Google Scholar - 6. Apweiler R., Aslanidis C., Deufel T., Gerstner A., Hansen J., HochstrasserD., Kellner R., Kubicek M., Lottspeich F., Maser E., Mewes H.W.,Meyer H.E., Müllner S., Mutter W., Neumaier M.. i wsp.: Approachingclinical proteomics: current state and future fields of application in fluidproteomics. Clin. Chem. Lab. Med., 2009; 47: 724-744
Google Scholar - 7. Bark S.J., Hook V.: The future of proteomic analysis in biological systemsand molecular medicine. Mol. Biosyst., 2007; 3: 14-17
Google Scholar - 8. Barry M.J.: Clinical practice. Prostate-specific-antigen testing forearly diagnosis of prostate cancer. N. Engl. J. Med., 2001; 344: 1373-1377
Google Scholar - 9. Boersema P.J., Geiger T., Wiśniewski J.R., Mann M.: Quantificationof the N-glycosylated secretome by super-SILAC during breast cancerprogression and in human blood samples. Mol. Cell. Proteomics, 2013;12: 158-171
Google Scholar - 10. Byrum S.D., Washam C.L., Montgomery C.O., Tackett A.J.,Suva L.J.:Proteomic technologies for the study of osteosarcoma. Sarcoma, 2012;2012: 169416
Google Scholar - 11. Castagnola M., Cabras T., Vitali A., Sanna M.T., Messana I.: Biotechnologicalimplications of the salivary proteome. Trends Biotechnol.,2011; 29: 409-418
Google Scholar - 12. Chalmers M.J, Gaskell S.J.: Advances in mass spectrometry for proteomeanalysis. Curr. Opin. Biotechnol., 2000; 11: 384-90
Google Scholar - 13. Chen C.L., Lin T.S., Tsai C.H., Wu C.C., Chung T., Chien K.Y., Wu M.,Chang Y.S., Yu J.S., Chen Y.T.: Identification of potential bladder cancermarkers in urine by abundant-protein depletion coupled with quantitativeproteomics. J. Proteomics, 2013; 85: 28-43
Google Scholar - 14. Chen J., Xi J., Tian Y., Bova G.S., Zhang H.: Identification, prioritization,and evaluation of glycoproteins for aggressive prostate cancerusing quantitative glycoproteomics and antibody-based assays on tissuespecimens. Proteomics, 2013; 13: 2268-2277
Google Scholar - 15. Craven R.A., Cairns D.A., Zougman A., Harnden P., Selby P.J., BanksR.E.: Proteomic analysis of formalin-fixed paraffin-embedded renal tissuesamples by label-free MS: assessment of overall technical variabilityand the impact of block age. Proteomics Clin. Appl., 2013; 7: 273-282
Google Scholar - 16. de Wit M., Fijneman R.J., Verheul H.M., Meijer G.A., Jimenez C.R.:Proteomics in colorectal cancer translational research: biomarker discoveryfor clinical applications. Clin. Biochem., 2013; 46: 466-479
Google Scholar - 17. Desiderio C., D’Angelo L., Rossetti D.V., Iavarone F., Giardina B., CastagnolaM., Massimi L., Tamburrini G., Di Rocco C.: Cerebrospinal fluidtop-down proteomics evidenced the potential biomarker role of LVVandVV-hemorphin-7 in posterior cranial fossa pediatric brain tumors.Proteomics, 2012; 12: 2158-2166
Google Scholar - 18. Drake R.R., Elschenbroich S., Lopez-Perez O., Kim Y., Ignatchenko V.,Ignatchenko A., Nyalwidhe J.O., Basu G., Wilkins C.E., Gjurich B., LanceR.S., Semmes O.J., Medin J.A., Kislinger T.: In-depth proteomic analysesof direct expressed prostatic secretions. J. Proteome Res., 2010; 9:2109-2116
Google Scholar - 19. Drake R.R., White K.Y., Fuller T.W., Igwe E., Clements M.A., NyalwidheJ.O., Given R.W., Lance R.S., Semmes O.J.: Clinical collectionand protein properties of expressed prostatic secretions as a sourcefor biomarkers of prostatic disease. J. Proteomics, 2009; 72: 907-917
Google Scholar - 20. Duda-Szymańska J., Sporny S.: Praktyczna wartość molekularnejklasyfikacji raków sutka. Pol. Merkur. Lekarski, 2011; 31: 5-8
Google Scholar - 21. Farrah T., Deutsch E.W., Hoopmann M.R., Hallows J.L., Sun Z.,Huang C.Y., Moritz R.L.: The state of the human proteome in 2012as viewed through PeptideAtlas. J. Proteome Res., 2013; 12: 162-171
Google Scholar - 22. Farrah T., Deutsch E.W., Omenn G.S., Campbell D.S., Sun Z., BletzJ.A., Mallick P., Katz J.E., Malmström J., Ossola R., Watts J.D., Lin B.,Zhang H., Moritz R.L., Aebersold R.: A high-confidence human plasmaproteome reference set with estimated concentrations in PeptideAtlas.Mol. Cell. Proteomics, 2011; 10: M110.006353.
Google Scholar - 23. Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M.:Electrospray ionization for mass spectrometry of large biomolecules.Science, 1989; 246: 64-71
Google Scholar - 24. Fletcher C.D., Unni K.K., Mertens F.: World health organizationclassification of tumours, pathology and genetics, tumours of softtissue and bone, IARC Press, Lyon, 2002 259-285
Google Scholar - 25. Fung K.Y., Brierley G.V., Henderson S., Hoffmann P., McCollS.R., Lockett T., Head R., Cosgrove L.: Butyrate-induced apoptosisin HCT116 colorectal cancer cells includes induction of a cell stressresponse. J. Proteome Res., 2011; 10: 1860-1869
Google Scholar - 26. Gámez-Pozo A., Sánchez-Navarro I., Calvo E., Diaz E., Miguel–Martin M., López R., Agulló T., Camafeita E., Espinosa E., López J.A.,Nistal M., Vara J.Á.: Protein phosphorylation analysis in archivalclinical cancer samples by shotgun and targeted proteomics approaches.Mol. Biosyst., 2011; 7: 2368-2374
Google Scholar - 27. Ghosh D., Yu H., Tan X.F., Lim T.K., Zubaidah R.M., Tan H.T.,Chung M.C., Lin Q.: Identification of key players for colorectal cancermetastasis by iTRAQ quantitative proteomics profiling of isogenicSW480 and SW620 cell lines. J. Proteome Res., 2011; 10: 4373-4387
Google Scholar - 28. Gygi S.P., Rochon Y., Franza B.R., Aebersold R.: Correlation betweenprotein and mRNA abundance in yeast. Mol. Cell Biol., 1999;19: 1720-1730
Google Scholar - 29. Han C.L., Chen J.S., Chan E.C., Wu C.P., Yu K.H., Chen K.T., TsouC.C., Tsai C.F., Chien C.W., Kuo Y.B., Lin P.Y., Yu J.S., Hsueh C., Chen M.C.,Chan C.C., Chang Y.S., Chen Y.J.: An informatics-assisted label-freeapproach for personalized tissue membrane proteomics: case studyon colorectal cancer. Mol. Cell. Proteomics, 2011; 10: M110.003087
Google Scholar - 30. Hanash S.M., Pitteri S.J., Faca V.M.: Mining the plasma proteomefor cancer biomarkers. Nature, 2008; 452: 571-579
Google Scholar - 31. Hu S., Arellano M., Boontheung P., Wang J., Zhou H., Jiang J.,Elashoff D., Wei R., Loo J.A., Wong D.T.: Salivary proteomics for oralcancer biomarker discovery. Clin. Cancer Res., 2008; 14: 6246-6252
Google Scholar - 32. Hu Y., Malone J.P., Fagan A.M., Townsend R.R., Holtzman D.M.:Comparative proteomic analysis of intra- and interindividual variationin human cerebrospinal fluid. Mol. Cell. Proteomics, 2005;4: 2000-2009
Google Scholar - 33. Jou Y.J., Lin C.D., Lai C.H., Chen C.H., Kao J.Y., Chen S.Y., Tsai M.H.,Huang S.H., Lin C.W.: Proteomic identification of salivary transferrinas a biomarker for early detection of oral cancer. Anal. Chim.Acta, 2010; 681: 41-48
Google Scholar - 34. Karagiannis G.S., Pavlou M.P., Diamandis E.P.: Cancer secretomicsreveal pathophysiological pathways in cancer molecular oncology.Mol. Oncol., 2010; 4: 496-510
Google Scholar - 35. Karas M., Bachmann D., Bahr U., Hillenkamp F.: Matrix-assistedultraviolet laser desorption of non-volatile compounds. Int. J. MassSpectrom. Ion Process., 1987; 78: 53-68
Google Scholar - 36. Kawai A., Kondo T., Suehara Y., Kikuta K., Hirohashi S.: Globalprotein-expression analysis of bone and soft tissue sarcomas. Clin. Orthop.Relat. Res., 2008; 466: 2099-2106
Google Scholar - 37. Kellie J.F., Tran J.C., Lee J.E., Ahlf D.R., Thomas H.M., Ntai I., CathermanA.D., Durbin K.R., Zamdborg L., Vellaichamy A., Thomas P.M.,Kelleher N.L.: The emerging process of Top Down mass spectrometryfor protein analysis: biomarkers, protein-therapeutics, and achievinghigh throughput. Mol. Biosyst., 2010; 6: 1532-1539
Google Scholar - 38. Khan R., Zahid S., Wan Y.J., Forster J., Karim A.B., Nawabi A.M., AzharA., Rahman M.A., Ahmed N.: Protein expression profiling of nuclearmembrane protein reveals potential biomarker of human hepatocellularcarcinoma. Clin. Proteomics, 2013; 10: 6
Google Scholar - 39. Kikuta K., Tochigi N., Saito S., Shimoda T., Morioka H., ToyamaY., Hosono A., Suehara Y., Beppu Y., Kawai A., Hirohashi S., Kondo T.:Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidatein osteosarcoma revealed by proteomics. Proteomics Clin. Appl.,2010; 4: 560-567
Google Scholar - 40. Kim Y., Ignatchenko V., Yao C.Q., Kalatskaya I., Nyalwidhe J.O., LanceR.S., Gramolini A.O., Troyer D.A., Stein L.D., Boutros P.C., Medin J.A.,Semmes O.J., Drake R.R., Kislinger T.: Identification of differentiallyexpressed proteins in direct expressed prostatic secretions of men withorgan-confined versus extracapsular prostate cancer. Mol. Cell. Proteomics,2012; 11: 1870-1884
Google Scholar - 41. Krajowy rejestr nowotworów. http://www.onkologia.org.pl/(20.04.2013)
Google Scholar - 42. Kristjansdottir B., Partheen K., Fung E.T., Marcickiewicz J., Yip C.,Brännström M., Sundfeldt K.: Ovarian cyst fluid is a rich proteome resourcefor detection of new tumor biomarkers. Clin. Proteomics, 2012; 9: 14
Google Scholar - 43. Kusio-Kobialka M., Wolanin K., Podszywalow-Bartnicka P., Sikora E.,Skowronek K., McKenna S.L., Ghizzoni M., Dekker F.J., Piwocka K.: Increasedacetylation of lysine 317/320 of p53 caused by BCR-ABL protectsfrom cytoplasmic translocation of p53 and mitochondria-dependentapoptosis in response to DNA damage. Apoptosis, 2012; 17: 950-963
Google Scholar - 44. Lemmon M.A., Schlessinger J.: Cell signaling by receptor tyrosinekinases. Cell, 2010; 141: 1117-1134
Google Scholar - 45. Li Y., Dang T.A., Shen J., Hicks J., Chintagumpala M., Lau C.C., ManT.K.: Plasma proteome predicts chemotherapy response in osteosarcomapatients. Oncol. Rep., 2011; 25: 303-314
Google Scholar - 46. Liebler D.C., Zimmerman L.J.: Targeted quantitation of proteinsby mass spectrometry. Biochemistry, 2013; 52: 3797-3806
Google Scholar - 47. Lowenthal M.S., Liang Y., Phinney K.W., Stein S.E.: Quantitativebottom-up proteomics depends on digestion conditions. Anal. Chem.,2014; 86: 551-558
Google Scholar - 48. Maes E., Broeckx V., Mertens I., Sagaert X., Prenen H., Landuyt B.,Schoofs L.: Analysis of the formalin-fixed paraffin-embedded tissueproteome: pitfalls, challenges, and future prospectives. Amino Acids,2013; 45: 205-218
Google Scholar - 49. Manza L.L., Stamer S.L., Ham A.J., Codreanu S.G., Liebler D.C.: Samplepreparation and digestion for proteomic analyses using spin filters.Proteomics, 2005; 5: 1742-1745
Google Scholar - 50. Martin C., Zhang Y.: The diverse functions of histone lysine methylation.Nat. Rev. Mol. Cell Biol., 2005; 6: 838-849
Google Scholar - 51. Metzger J., Luppa P.B., Good D.M., Mischak H.: Adapting mass spectrometry-basedplatforms for clinical proteomics applications: The capillaryelectrophoresis coupled mass spectrometry paradigm. Crit. Rev.Clin. Lab. Sci., 2009; 46: 129-152
Google Scholar - 52. Mischak H., Delles C., Klein J., Schanstra J.P.: Urinary proteomicsbased on capillary electrophoresis-coupled mass spectrometry in kidneydisease: discovery and validation of biomarkers, and clinical application.Adv. Chronic Kidney Dis., 2010; 17: 493-506
Google Scholar - 53. Mischak H., Massy Z.A., Jankowski J.: Proteomics in uremia andrenal disease. Semin. Dial., 2009; 22: 409-416
Google Scholar - 54. M’Koma A.E., Blum D.L., Norris J.L., Koyama T., Billheimer D.,Motley S., Ghiassi M., Ferdowsi N., Bhowmick I., Chang S.S., FowkeJ.H., Caprioli R.M., Bhowmick N.A.: Detection of pre-neoplastic andneoplastic prostate disease by MALDI profiling of urine. Biochem.Biophys. Res. Commun., 2007; 353: 829-834
Google Scholar - 55. Narimatsu H., Sawaki H., Kuno A., Kaji H., Ito H., Ikehara Y.:A strategy for discovery of cancer glyco-biomarkers in serum usingnewly developed technologies for glycoproteomics. FEBS J., 2010;277: 95-105
Google Scholar - 56. Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., SteenH., Pandey A., Mann M.: Stable isotope labeling by amino acids incell culture, SILAC, as a simple and accurate approach to expressionproteomics. Mol. Cell. Proteomics, 2002; 1: 376-386
Google Scholar - 57. Ostasiewicz P., Zielinska D.F., Mann M., Wiśniewski J.R.: Proteome,phosphoproteome, and N-glycoproteome are quantitatively preservedin formalin-fixed paraffin-embedded tissue and analyzable by highresolutionmass spectrometry. J. Proteome Res., 2010; 9: 3688-3700
Google Scholar - 58. Palmblad M., Tiss A., Cramer R.: Mass spectrometry in clinicalproteomics – from the present to the future. Proteomics Clin.Appl., 2009; 3: 6-17
Google Scholar - 59. Pavlou M.P., Diamandis E.P.: The cancer cell secretome: a goodsource for discovering biomarkers? J. Proteomics, 2010; 73: 1896-1906
Google Scholar - 60. Picotti P., Aebersold R.: Selected reaction monitoring–basedproteomics: workflows, potential, pitfalls and future directions. Nat.Methods, 2012; 9: 555-566
Google Scholar - 61. Pieragostino D., Del Boccio P., Di Ioia M., Pieroni L., Greco V., DeLuca G., D’Aguanno S., Rossi C., Franciotta D., Centonze D., SacchettaP., Di Ilio C., Lugaresi A., Urbani A.: Oxidative modifications ofcerebral transthyretin are associated with multiple sclerosis. Proteomics,2013; 13: 1002-1009
Google Scholar - 62. Pin E., Fredolini C., Petricoin E.F.3rd: The role of proteomics inprostate cancer research: biomarker discovery and validation. Clin.Biochem., 2013; 46: 524-538
Google Scholar - 63. Principe S., Kim Y., Fontana S., Ignatchenko V., Nyalwidhe J.O.,Lance R.S., Troyer D.A., Alessandro R., Semmes O.J., Kislinger T.,Drake R.R., Medin J.A.: Identification of prostate-enriched proteinsby in-depth proteomic analyses of expressed prostatic secretions inurine. J. Proteome Res., 2012; 11: 2386-2396
Google Scholar - 64. Rajagopal M.U., Hathout Y., MacDonald T.J., Kieran M.W., GururanganS., Blaney S.M., Phillips P., Packer R., Gordish-Dressman H.,Rood B.R.: Proteomic profiling of cerebrospinal fluid identifies prostaglandinD2 synthase as a putative biomarker for pediatric medulloblastoma:A pediatric brain tumor consortium study. Proteomics,2011; 11: 935-943
Google Scholar - 65. Sanchez-Carbayo M.: Antibody array-based technologies forcancer protein profiling and functional proteomic analyses usingserum and tissue specimens. Tumour Biol., 2010; 31: 103-112
Google Scholar - 66. Savino R., Paduano S., Preianò M., Terracciano R.: The proteomicsbig challenge for biomarkers and new drug-targets discovery.Int. J. Mol. Sci., 2012; 13: 13926-13948
Google Scholar - 67. Scott D., Aebersold R.H.: Proteomics: the first decade and beyond.Nature Genetics, 2003; 33 (Suppl. 3): 311-323
Google Scholar - 68. Silberring J., Ciborowski P.: Biomarker discovery and clinicalproteomics. Trends Analyt. Chem., 2010; 29: 128
Google Scholar - 69. Shah F.D., Begum R., Vajaria B.N., Patel K.R., Patel J.B., ShuklaS.N., Patel P.S.: A review on salivary genomics and proteomics biomarkersin oral cancer. Indian J. Clin. Biochem., 2011; 26: 326-334
Google Scholar - 70. Singh B.N., Zhang G., Hwa Y.L., Li J., Dowdy S.C., Jiang S.W.: Nonhistoneprotein acetylation as cancer therapy targets. Expert Rev.Anticancer Ther., 2010; 10: 935-954
Google Scholar - 71. Steen H., Mann M.: The ABC’s (and XYZ’s) of peptide sequencing.Nat. Rev. Mol. Cell. Biol., 2004; 5: 699-711
Google Scholar - 72. Stepulak A., Stryjecka-Zimmer M., Kupisz K., Polberg K.: Inhibitorydeacetylaz histonów jako potencjalne cytostatyki nowej generacji.Postępy Hig. Med. Dośw., 2005; 59: 68-74
Google Scholar - 73. Suehara Y., Kubota D., Kikuta K., Kaneko K., Kawai A., Kondo T.:Discovery of biomarkers for osteosarcoma by proteomics approaches.Sarcoma, 2012; 2012: 425636
Google Scholar - 74. Sun H., Chua M.S., Yang D., Tsalenko A., Peter B.J., So S.: Antibodyarrays identify potential diagnostic markers of hepatocellular carcinoma.Biomark. Insights, 2008; 3: 1-18
Google Scholar - 75. Suzuki M., Tarin D.: Gene expression profiling of human lymph nodemetastases and matched primary breast carcinomas: clinical implications.Mol. Oncol., 2007; 1: 172-180
Google Scholar - 76. Tan H.T., Lee Y.H., Chung M.C.: Cancer proteomics. Mass Spectrom.Rev. 2012; 31: 583-605
Google Scholar - 77. Tanca A., Addis M.F., Pagnozzi D., Cossu-Rocca P., Tonelli R., FalchiG., Eccher A., Roggio T., Fanciulli G., Uzzau S.: Proteomic analysis of formalin-fixed,paraffin-embedded lung neuroendocrine tumor samplesfrom hospital archives. J. Proteomics, 2011; 74: 359-370
Google Scholar - 78. The Human Protein Atlas. http://www.proteinatlas.org/(20.04.2013)
Google Scholar - 79. Thingholm T.E., Jensen O.N.: Enrichment and characterizationof phosphopeptides by immobilized metal affinity chromatography(IMAC) and mass spectrometry. Methods Mol. Biol., 2009; 527: 47-56
Google Scholar - 80. U.S. Food and Drug Administration. FDA clears a test for ovariancancer. September 11, 2009. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2009/ucm182057.htm.(02.03.2013)
Google Scholar - 81. van Swelm R.P., Laarakkers C.M., van der Kuur E.C., Morava-KoziczE., Wevers R.A., Augustijn K.D., Touw D.J., Sandel M.H., Masereeuw R.,Russel F.G.: Identification of novel translational urinary biomarkers foracetaminophen-induced acute liver injury using proteomic profiling inmice. PLoS One, 2012; 7: e49524
Google Scholar - 82. Végvári A., Kondo T., Marshall J.G.: Clinical proteomics. Int. J. Proteomics,2012; 2012: 641491
Google Scholar - 83. Wang E.S., Yao H.B., Chen Y.H., Wang G., Gao W.W., Sun Y.R., Guo J.G.,Hu J.W., Jiang C.C., Hu J.: Proteomic analysis of the cerebrospinal fluidof Parkinson’s disease patients pre- and post-deep brain stimulation.Cell. Physiol. Biochem., 2013; 31: 625-637
Google Scholar - 84. Wang P., Whiteaker J.R., Paulovich A.G.: The evolving role of massspectrometry in cancer biomarker discovery. Cancer Biol. Ther., 2009;8: 1083-1094
Google Scholar - 85. Washburn M.P., Wolters D., Yates J.R.3rd: Large-scale analysis of theyeast proteome by multidimensional protein identification technology.Nat. Biotechnol., 2001; 19: 242-247
Google Scholar - 86. Wasinger V.C., Corthals G.L.: Proteomic tools for biomedicine. J.Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 2002; 771: 33-48
Google Scholar - 87. Wiśniewski J.R., Duś K., Mann M.: Proteomic workflow for analysisof archival formalin-fixed and paraffin-embedded clinical samplesto a depth of 10 000 proteins. Proteomics Clin. Appl., 2013; 7: 225-233
Google Scholar - 88. Wiśniewski J.R., Ostasiewicz P., Duś K., Zielińska D.F., Gnad F., MannM.: Extensive quantitative remodeling of the proteome between normalcolon tissue and adenocarcinoma. Mol. Syst. Biol., 2012; 8: 611
Google Scholar - 89. Wiśniewski J.R., Ostasiewicz P., Mann M.: High recovery FASP appliedto the proteomic analysis of microdissected formalin fixed paraffinembedded cancer tissues retrieves known colon cancer markers. J.Proteome Res., 2011; 10: 3040-3049
Google Scholar - 90. Wiśniewski J.R., Zougman A., Mann M.: Combination of FASP andStageTip-based fractionation allows in-depth analysis of the hippocampalmembrane proteome. J. Proteome Res., 2009; 8: 5674-5678
Google Scholar - 91. Wiśniewski J.R., Zougman A., Nagaraj N., Mann M.: Universal samplepreparation method for proteome analysis. Nat. Methods, 2009;6: 359-362
Google Scholar - 92. Wong D.T.: Salivary diagnostics powered by nanotechnologies, proteomicsand genomics. J. Am. Dent. Assoc., 2006; 137: 313-321
Google Scholar - 93. Xiao H., Zhang L., Zhou H., Lee J.M., Garon E.B., Wong D.T.: Proteomicanalysis of human saliva from lung cancer patients using two-dimensionaldifference gel electrophoresis and mass spectrometry. Mol. Cell.Proteomics, 2012; 11: M111.012112
Google Scholar - 94. Xue H., Lü B., Zhang J., Wu M., Huang Q., Wu Q., Sheng H., Wu D.,Hu J. Lai M.: Identification of serum biomarkers for colorectal cancermetastasis using a differential secretome approach. J. Proteome Res.,2010; 9: 545-555
Google Scholar - 95. Yang X.J., Seto E.: Lysine acetylation: codified crosstalk with otherposttranslational modifications. Mol. Cell, 2008; 31: 449-461
Google Scholar - 96. Zhang A., Sun H., Wang P., Han Y., Wang X.: Recent and potentialdevelopments of biofluid analyses in metabolomics. J. Proteomics, 2012;75: 1079-1088
Google Scholar - 97. Zhang A., Sun H., Wang P, Wang X.: Salivary proteomics in biomedicalresearch. Clin. Chim. Acta, 2013; 415: 261-265
Google Scholar - 98. Zhang F., Chen J.Y.: Breast cancer subtyping from plasma proteins.BMC Med. Genomics, 2013; 6 (Suppl. 1): S6
Google Scholar - 99. Zhang Z., Chan D.W.: The road from discovery to clinical diagnostics:lessons learned from the first FDA-cleared in vitro diagnostic multivariateindex assay of proteomic biomarkers. Cancer Epidemiol. BiomarkersPrev., 2010; 19: 2995-2999
Google Scholar - 100. Zhang Z., Yamashita H., Toyama T., Sugiura H., Ando Y., Mita K.,Hamaguchi M., Hara Y., Kobayashi S., Iwase H.: Quantitation of HDAC1mRNA expression in invasive carcinoma of the breast. Breast CancerRes. Treat., 2005; 94: 11-16
Google Scholar - 101. Zhao T., Zeng X., Bateman N.W., Sun M., Teng P.N., Bigbee W.L., DhirR., Nelson J.B., Conrads T.P., Hood B.L.: Relative quantitation of proteinsin expressed prostatic secretion with a stable isotope labeled secretomestandard. J. Proteome Res., 2012; 11: 1089-1099
Google Scholar - 102. Zhou Q., Chaerkady R., Shaw P.G., Kensler T.W., Pandey A., DavidsonN.E.: Screening for therapeutic targets of vorinostat by SILACbasedproteomic analysis in human breast cancer cells. Proteomics,2010; 10: 1029-1039
Google Scholar - 103. Zimmermann B.G., Park N.J., Wong D.T.: Genomic targets in saliva.Ann. NY Acad. Sci., 2007; 1098: 184-191
Google Scholar