The application of nanotechnology in cancer immunotherapy
Wojciech Szymanowski 1 , Agnieszka Gornowicz 1 , Anna Bielawska 1 , Krzysztof Bielawski 2Abstract
Targeted therapy is associated with the use of drugs designed against specific molecular targets. Their mechanism of action is based on the inhibition of specific signaling pathways in processes related to the development of cancer (proliferation, invasion, angiogenesis or metastasis). One of the most important methods of treatment is immunotherapy, which uses monoclonal antibodies. Their mechanism of action is based on inducing programmed cell death by inhibiting specific signal transduction processes. However, immunotherapy has a number of limitations, including side effects that may endanger the patient’s life. To overcome those obstacles immunoconjugates were developed, which combine a monoclonal antibody, or its fragment, with a drug using a stable linker. Their mechanism of action is based on the monoclonal antibody binding to a cell membrane receptor, their internalization, the degradation of the linker, and the release of the drug attached to the antibody, which then activates specific genes or proteins or induces apoptosis. Immunoconjugates represent a promising alternative for anticancer treatment used today, but their use is associated with some obstacles. Nanotechnology helps to solve these problems with a chemotherapeutics delivery system called immunonanoparticles. It uses chemotherapeutics encapsulated in nanoparticles in combination with monoclonal antibodies displaying the ability of selective recognition and binding with molecular targets on the surface of selected cancer cells. This review focuses on presenting the most important solutions used in targeted therapy, which combine traditional immunotherapy with modern nanotechnology.
References
- 1. Acharya S., Dilnawaz F., Sahoo S.K.: Targeted epidermal growthfactor receptor nanoparticle bioconjugates for breast cancer therapy.Biomaterials, 2009; 30: 5737–5750
Google Scholar - 2. Andreopoulou E., Gaiotti D., Kim E., Downey A., MirchandaniD., Hamilton A., Jacobs A., Curtin J., Muggia F.: Pegylated liposomaldoxorubicin HCL (PLD; Caelyx/Doxil): Experience with long-termmaintenance in responding patients with recurrent epithelial ovariancancer. Ann. Oncol., 2007; 18: 716–721
Google Scholar - 3. Apelgren L.D., Zimmerman D.L., Briggs S.L., Bumol T.F.: Antitumoractivity of the monoclonal antibody-Vinca alkaloid immunoconjugateLY203725 (KS1/4-4-desacetylvinblastine-3-carboxhydrazide) ina nude mouse model of human ovarian cancer. Cancer Res., 1990;50: 3540–3544
Google Scholar - 4. Ashton S., Song Y.H., Nolan J., Cadogan E., Murray J., Odedra R.,Foster J., Hall P.A., Low S., Taylor P., Ellston R., Polanska U.M., WilsonJ., Howes C., Smith A., et al.: Aurora kinase inhibitor nanoparticlestarget tumors with favorable therapeutic index in vivo. Sci. Transl.Med., 2016; 8: 325ra17
Google Scholar - 5. Blanc V., Bousseau A., Caron A., Carrez C., Lutz R.J., LambertJ.M.: SAR3419: An anti-CD19-maytansinoid immunoconjugate forthe treatment of B-cell malignancies. Clin. Cancer Res., 2011; 17:6448–6458
Google Scholar - 6. Boige V., Malka D., Bourredjem A., Dromain C., Baey C., JacquesN., Pignon J.P., Vimond N., Bouvet-Forteau N., De Baere T., DucreuxM., Farace F.: Efficacy, safety, and biomarkers of single-agent bevacizumabtherapy in patients with advanced hepatocellular carcinoma.Oncologist, 2012; 17: 1063–1072
Google Scholar - 7. Chari R.V.: Targeted cancer therapy: Conferring specificity tocytotoxic drugs. Acc. Chem. Res., 2008; 41: 98–107
Google Scholar - 8. Chari R.V.: Targeted delivery of chemotherapeutics: Tumor-activatedprodrug therapy. Adv. Drug Delivery Rev., 1998; 31: 89–104
Google Scholar - 9. Chari R.V., Jackel K.A., Bourret L.A., Derr S.M., Tadayoni B.M.,Mattocks K.M., Shah S.A., Liu C., Blättler W.A., Goldmacher V.S.: Enhancementof the selectivity and antitumor efficacy of a CC-1065analog through immunoconjugate formation. Cancer Res., 1995;55: 4079–4084
Google Scholar - 10. Chen J., Wu H., Han D., Xie C.: Using anti-VEGF McAb and magneticnanoparticles as double-targeting vector for the radioimmunotherapyof liver cancer. Cancer Lett., 2006; 231: 169–175
Google Scholar - 11. Cirstoiu-Hapca A., Buchegger F., Lange N., Bossy L., Gurny R.,Delie F.: Benefit of anti-HER2-coated paclitaxel-loaded immunonanoparticlesin the treatment of disseminated ovarian cancer:Therapeutic efficacy and biodistribution in mice. J. Control. Release,2010; 144: 324–331
Google Scholar - 12. Conti P.S., White C., Pieslor P., Molina A., Aussie J., Foster P.: Therole of imaging with 111In-ibritumomab tiuxetan in the ibritumomabtiuxetan (Zevalin) regimen: results from a Zevalin Imaging Registry.J. Nucl. Med., 2005; 46: 1812–1818
Google Scholar - 13. Duchnowska R.: Leczenie celowane – nowe nadzieje w leczeniuraka piersi. Onkol. Prakt. Klin., 2007; 3: 128–134
Google Scholar - 14. Ducry L., Stump B.: Antibody-drug conjugates: Linking cytotoxicpayloads to monoclonal antibodies. Bioconjugate Chem., 2010;21: 5–13
Google Scholar - 15. Elbayoumi T.A., Pabba S., Roby A., Torchilin V.P.: Antinucleosomeantibody-modified liposomes and lipid-core micelles for tumortargeteddelivery of therapeutic and diagnostic agents. J. LiposomeRes., 2007; 17: 1–14
Google Scholar - 16. Endo N., Takeda Y., Kishida K., Kato Y., Saito M., Umemoto N.,Hara T.: Target-selective cytotoxicity of methotrexate conjugatedwith monoclonal anti-MM46 antibody. Cancer Immunol. Immunother.,1987; 25: 1–6
Google Scholar - 17. Erickson H.K., Park P.U., Widdison W.C., Kovtun Y.V., Garrett L.M.,Hoffman K., Lutz R.J., Goldmacher V.S., Blättler W.A.: Antibody–maytansinoidconjugates are activated in targeted cancer cells by lysosomaldegradation and linker-dependent intracellular processing.Cancer Res., 2006; 66: 4426–4433
Google Scholar - 18. Fay F., Scott C.J.: Antibody-targeted nanoparticles for cancertherapy. Immunotherapy, 2011; 3: 381–394
Google Scholar - 19. Gadomska A.A., Warych I., Ruśkowski P., Synoradzki L.: Otrzymywanienanosfer polilaktydowych. Przem. Chem., 2014; 93: 1311–1314
Google Scholar - 20. Gao X., Cui Y., Levenson R.M., Chung L.W., Nie S.: In vivo cancertargeting and imaging with semiconductor quantum dots. Nat.Biotechnol., 2004; 22: 969–976
Google Scholar - 21. Gerber D.E.: Targeted therapies: a new generation of cancertreatments. Am. Fam. Physician, 2008; 77: 311–319
Google Scholar - 22. Geso M.: Gold nanoparticles: a new X-ray contrast agent. Br. J.Radiol., 2007; 80: 64–65
Google Scholar - 23. Gornowicz A., Bielawska A., Popławska B., Bielawski K.: Mucyna- 1 (MUC1) jako obiecujący cel molekularny w terapii przeciwnowotworowej.Postępy Hig. Med. Dośw., 2018; 72: 53–64
Google Scholar - 24. Gornowicz A., Bielawska A., Szymanowski W., Gabryel-PorowskaH., Czarnomysy R., Bielawski K.: Mechanism of anticancer action ofnovel berenil complex of platinum(II) combined with anti-MUC1 inMCF-7 breast cancer cells. Oncol. Lett., 2018; 15: 2340–2348
Google Scholar - 25. Gornowicz A., Szymanowski W., Bielawska A., SzymanowskaA., Czarnomysy R., Kałuża Z., Bielawski K.: Monoclonal anti-MUC1antibody with novel octahydropyrazino[2,1-a:5,4-a′]diisoquinolinederivative as a potential multi-targeted strategy in MCF-7 breastcancer cells. Oncol. Rep., 2019; 42: 1391–1403
Google Scholar - 26. Hamann P.R., Hinman L.M., Hollander I., Beyer C.F., Lindh D.,Holcomb R., Hallett W., Tsou H.R., Upeslacis J., Shochat D., MountainA., Flowers D.A., Bernstein I.: Gemtuzumab ozogamicin, a potent andselective anti-CD33 antibody-calicheamicin conjugate for treatmentof acute myeloid leukemia. Bioconjugate Chem., 2002; 13: 47–58
Google Scholar - 27. Hendrix M.J., Seftor E.A., Kirschmann D.A., Quaranta V., SeftorR.E.: Remodeling of the microenvironment by aggressive melanomatumor cells. Ann. N. Y. Acad. Sci., 2003; 995: 151–161
Google Scholar - 28. Huang N., Wang H., Zhao J., Lui H., Korbelik M., Zeng H.: Singlewallcarbon nanotubes assisted photothermal cancer therapy: Animalstudy with a murine model of squamous cell carcinoma. LasersSurg. Med., 2010; 42: 638–648
Google Scholar - 29. Issell B.F., Crooke S.T.: Maytansine. Cancer Treat. Rev., 1978;5: 199–207
Google Scholar - 30. Jaracz S., Chen J., Kuznetsova L.V., Ojima I.: Recent advances intumor-targeting anticancer drug conjugates. Bioorg. Med. Chem.,2005; 13: 5043–5054
Google Scholar - 31. Jensen M., Berthold F.: Targeting the neural cell adhesion moleculein cancer. Cancer Lett., 2007; 258: 9–21
Google Scholar - 32. Johnston M.C., Scott C.J.: Antibody conjugated nanoparticles asa novel form of antibody drug conjugate chemotherapy. Drug Discov.Today Technol., 2018; 30: 63–69
Google Scholar - 33. Kaul S., Igwemezie L.N., Stewart D.J., Fields S.Z., Kosty M., LevithanN., Bukowski R., Gandara D., Goss G., O’Dwyer P.: Pharmacokineticsand bioequivalence of etoposide following intravenous administrationof etoposide phosphate and etoposide in patients withsolid tumors. J. Clin. Oncol., 1995; 13: 2835–2841
Google Scholar - 34. Kawano K., Watanabe M., Yamamoto T., Yokoyama M., OpanasopitP., Okano T., Maitani Y.: Enhanced antitumor effect of camptothecinloaded in long-circulating polymeric micelles. J. Control.Release, 2006; 112: 329–332
Google Scholar - 35. Kocbek P., Obermajer N., Cegnar M., Kos J., Kristl J.: Targetingcancer cells using PLGA nanoparticles surface modified with monoclonalantibody. J. Control. Release, 2007; 120: 18–26
Google Scholar - 36. Köhler G., Milstein C.: Continuous cultures of fused cells secretingantibody of predefined specificity. Nature, 1975; 256: 495–497
Google Scholar - 37. Kontermann R.E.: Immunoliposomes for cancer therapy. Curr.Opin. Mol. Ther., 2006; 8: 39–45
Google Scholar - 38. Kovtun Y.V., Audette C.A., Ye Y., Xie H., Ruberti M.F., Phinney S.J.,Leece B.A., Chittenden T., Blättler W.A., Goldmacher V.S.: Antibodydrugconjugates designed to eradicate tumors with homogeneousand heterogeneous expression of the target antigen. Cancer Res.,2006; 66: 3214–3221
Google Scholar - 39. Krop I.E., Beeram M., Modi S., Jones S.F., Holden S.N., Yu W.,Girish S., Tibbitts J., Yi J.H., Sliwkowski M.X., Jacobson F., LutzkerS.G., Burris H.A.: Phase I study of trasuzumab-DM1, an HER2antibody-drug conjugate, given every 3 weeks to patients withHER2-positive metastatic breast cancer. J. Clin. Oncol., 2010; 28:2698–2704
Google Scholar - 40. Kubczak M., Rogalińska M.: Ewolucja przeciwciał monoklonalnychw leczeniu chorób nowotworowych. Post. Biochem., 2016; 62:518–525
Google Scholar - 41. Kumar Mehata A., Bharti S., Singh P., Viswanadh M.K., KumariL., Agrawal P., Singh S., Koch B., Muthu M.S.: Trastuzumab decoratedTPGS-g-chitosan nanoparticles for targeted breast cancer therapy.Colloids Surf. B Biointerfaces, 2019; 173: 366–377
Google Scholar - 42. Lambert J.M.: Drug-conjugated antibodies for the treatment ofcancer. Br. J. Clin. Pharmacol., 2013; 76: 248–262
Google Scholar - 43. Lanier L.L., Chang C., Azuma M., Ruitenberg J.J., Hemperly J.J.,Phillips J.H.: Molecular and functional analysis of human naturalkiller cell-associated neural cell adhesion molecule (N-CAM/CD56).J. Immunol., 1991; 146: 4421–4426
Google Scholar - 44. Lavasanifar A., Samuel J., Kwon G.S.: Poly(ethylene oxide)-blockpoly(L-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev.,2002; 54: 169–190
Google Scholar - 45. Lewinski N., Colvin V., Drezek R.: Cytotoxicity of nanoparticles.Small, 2008; 4: 26–49
Google Scholar - 46. Lewis Phillips G.D., Li G., Dugger D.L., Crocker L.M., Parsons K.L.,Mai E., Blättler W.A., Lambert J.M., Chari R.J., Lutz R.J., Wong W.L.T.,Jacobson F.S., Koeppen H., Schwall R.H., Kenkare-Mitra S.R., SpenserS.D., Sliwkowski M.X.: Targeting HER2-positive breast cancer withtrastuzumab-DM1, and antibody–cytotoxic drug conjugate. CancerRes., 2008; 68: 9280–9290
Google Scholar - 47. Li G.N., Wang S.P., Xue X., Qu X.J., Liu H.P.: Monoclonal antibodyrelateddrugs for cancer therapy. Drug Discov. Ther., 2013; 7: 178–184
Google Scholar - 48. Libutti S.K., Paciotti G.F., Byrnes A.A., Alexander H.R.Jr., GannonW.E., Walker M., Seidel G.D., Yuldasheva N., Tamarkin L.: Phase I andpharmacokinetic studies of CYT-6091, a novel PEGylated colloidalgold-rhTNF nanomedicine. Clin. Cancer Res., 2010; 16: 6139–6149
Google Scholar - 49. Lim J., Chouai A., Lo S.T., Liu W., Sun X., Simanek E.E.: Design,synthesis, characterization, and biological evaluation of triazinedendrimers bearing paclitaxel using ester and ester/disulfide linkages.Bioconjugate Chem., 2009; 20: 2154–2161
Google Scholar - 50. McDevitt M.R., Chattopadhyay D., Jaggi J.S., Finn R.D., ZanzonicoP.B., Villa C., Rey D., Mendenhall J., Batt C.A., Njardarson J.T.,Scheinberg D.A.: PET imaging of soluble yttrium-86-labeled carbonnanotubes in mice. PLoS One, 2007; 2: e907
Google Scholar - 51. Mukherjee P., Bhattacharya R., Bone N., Lee Y.K., Patra C.R., WangS., Lu L., Secreto C., Benerjee P.C., Yaszemski M.J., Kay N.E., MukhopadhyayD.: Potential therapeutic application of gold nanoparticlesin B-chronic lymphocytic leukemia (BCLL): Enhancing apoptosis. J.Nanobiotechnol., 2007; 5: 4
Google Scholar - 52. Patel J., Amrutiya J., Bhatt P., Javia A., Jain M., Misra A.: Targeteddelivery of monoclonal antibody conjugated docetaxel loaded PLGAnanoparticles into EGFR overexpressed lung tumour cells. J. Microencapsul.,2018; 35: 204–217
Google Scholar - 53. Powroźnik B., Kubowicz P., Pękala E.: Przeciwciała monoklonalnew terapii celowanej. Postępy Hig. Med. Dośw., 2012; 66: 663–673
Google Scholar - 54. Ranson M.R., Cheeseman S., White S., Margison J.: Caelyx (stealthliposomal doxorubicin) in the treatment of advanced breast cancer.Crit. Rev. Oncol. Hematol., 2001; 37: 115–120
Google Scholar - 55. Richards D.A., Maruani A., Chudasama V.: Antibody fragments asnanoparticle targeting ligands: a step in the right direction. Chem.Sci., 2017: 8: 63–77
Google Scholar - 56. Rose A.A., Grosset A.A., Dong Z., Russo C., MacDonald P.A., BertosN.R., St-Pierre Y., Simantov R., Hallett M., Park M., Gaboury L., SiegelP.M.: Glycoprotein nonmetastatic B is an independent prognosticindicator of recurrence and a novel therapeutic target in breastcancer. Clin. Cancer Res., 2010; 16: 2147–2156
Google Scholar - 57. Roy D.C., Ouellet S., Le Houillier C., Ariniello P.D., Perreault C.,Lambert J.M.: Elimination of neuroblastoma and small cell lung cancercells with an anti-neural cell adhesion molecule immunotoxin.J. Natl. Cancer Inst., 1996; 88: 1136–1145
Google Scholar - 58. Sapra P., Allen T.M.: Ligand-targeted liposomal anticancer drugs.Prog. Lipid Res., 2003; 42: 439–462
Google Scholar - 59. Schmid D., Jarvis G.E., Fay F., Small D.M., Greene M.K., Majkut J.,Spence S., McLaughlin K.M., McCloskey K.D., Johnston P.G., KissenpfennigA., Longley D.B., Scott C.J.: Nanoencapsulation of ABT-737and camptothecin enhances their clinical potential through synergisticantitumor effects and reduction of systemic toxicity. CellDeath Dis., 2014; 5: e1454
Google Scholar - 60. Schuster C., Eikesdal H.P., Puntervoll H., Geisler J., Geisler S.,Heinrich D., Molven A., Lønning P.E., Akslen L.A., Straume O.: Clinicalefficacy and safety of bevacizumab monotherapy in patientswith metastatic melanoma: Predictive importance of induced earlyhypertension. PLoS One, 2012; 7: e38364
Google Scholar - 61. Senter P.D., Sievers E.L.: The discovery and developmentof brentuximab vedotin for use in relapsed Hodgkin lymphomaand systemic anaplastic large cell lymphoma. Nat. Biotechnol.,2012; 30: 631–637
Google Scholar - 62. Serpell C.J., Kostarelos K., Davis B.G.: Can carbon nanotubes deliveron their promise in biology? Harnessing unique properties forunparalleled applications. ACS Cent. Sci., 2016; 2: 190–200
Google Scholar - 63. Sharma A., Sharma U.S.: Liposomes in drug delivery: progressand limitations. Int. J. Pharm., 1997; 154: 123–140
Google Scholar - 64. Shukla R., Thomas T.P., Peters J.L., Desai A.M., Kukowska-LatalloJ., Patri A.K., Kotlyar A., Baker J.R.Jr.: HER2 specific tumor targetingwith dendrimer conjugated anti-HER2 mAb. Bioconjugate Chem.,2006; 17: 1109–1115
Google Scholar - 65. Sosińska-Mielcarek K., Jassem J.: Przeciwciała monoklonalnew leczeniu nowotworów litych. Onkol. Prakt. Klin., 2005; 1: 225–232
Google Scholar - 66. Spearman M.E., Goodwin R.M., Apelgren L.D., Bumol T.F.: Dispositionof the monoclonal antibody-vinca alkaloid conjugate KS1/4-DAVLB (LY256787) and free 4-desacetylvinblastine in tumor-bearingnude mice. J. Pharmacol. Exp. Ther., 1987; 241: 695–703
Google Scholar - 67. Stern M., Herrmann R.: Overview of monoclonal antibodies incancer therapy: Present and promise. Crit. Rev. Oncol. Hematol.,2005; 54: 11–29
Google Scholar - 68. Tassone P., Gozzini A., Goldmacher V., Shammas M.A., WhitemanK.R., Carrasco D.R., Li C., Allam C.K., Venuta S., Anderson K.C.,Munshi N.C.: In vitro and in vivo activity of the maytansinoid immunoconjugatehuN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res., 2004;64: 4629–4636
Google Scholar - 69. Tomalia D.A., Reyna L.A., Svenson S.: Dendrimers as multi-purposenanodevices for oncology drug delivery and diagnostic imaging.Biochem. Soc. Trans., 2007; 35: 61–67
Google Scholar - 70. Tse K.F., Jeffers M., Pollack V.A., McCabe D.A., Shadish M.L.,Khramtsov N.V., Hackett C.S., Shenoy S.G., Kuang B., Boldog F.L.,MacDougall J.R., Rastelli L., Herrmann J., Gallo M., Gazit-BornsteinG., Senter P.D., Meyer D.L., Lichenstein H.S., LaRochelle W.J.: CR011,a fully human monoclonal antibody-auristatin E conjugate, for thetreatment of melanoma. Clin. Cancer Res., 2006; 12: 1373–1382
Google Scholar - 71. Uboldi C., Bonacchi D., Lorenzi G., Hermanns M.I., Pohl C., BaldiG., Unger R.E., Kirkpatrick C.J.: Gold nanoparticles induce cytotoxicityin the alveolar type-II cell lines A549 and NCIH441. Part. FibreToxicol., 2009; 6: 18
Google Scholar - 72. Vasir J.K., Reddy M.K., Labhasetwar V.D.: Nanosystems in drugtargeting: Opportunities and challenges. Curr. Nanosci., 2005; 1:47–64
Google Scholar - 73. Xiong J., Han S., Ding S., He J., Zhang H.: Antibody-nanoparticleconjugate constructed with trastuzumab and nanoparticle albumin-bound paclitaxel for targeted therapy of human epidermalgrowth factor receptor 2-positive gastric cancer. Oncol Rep., 2018;39: 1396–1404
Google Scholar - 74. Yu C., Irudayaraj J.: Multiplex biosensor using gold nanorods.Anal. Chem., 2007; 79: 572–579
Google Scholar - 75. Zhang H.: Onivyde for the therapy of multiple solid tumors.Onco Targets Ther., 2016; 9: 3001-3007
Google Scholar