The biological role of sulfatides

COMMENTARY ON THE LAW

The biological role of sulfatides

Jarosław Suchański 1 , Maciej Ugorski 2

1. Zakład Biochemii, Katedra Biochemii, Farmakologii i Toksykologii, Uniwersytet Przyrodniczy we Wrocławiu
2. Zakład Biochemii, Katedra Biochemii, Farmakologii i Toksykologii, Uniwersytet Przyrodniczy we Wrocławiu; Laboratorium Glikobiologii i Oddziaływań Międzykomórkowych, Instytut Immunologii i Terapii Doświadczalnej PAN im. L. Hirszfelda we Wrocławiu

Published: 2016-05-09
DOI: 10.5604/17322693.1201720
GICID: 01.3001.0009.6829
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 489-504

 

Abstract

Sulfatides (3-O-sulfogalactosylceramides, sulfated galactocerebrosides, SM4) are esters of sulfuric acid with galactosylceramides. These acidic glycosphingolipids, present at the external leaflet of the plasma membrane, are synthesized by a variety of mammalian cells. They are especially abundant in the myelin sheath of oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Studies using cerebroside galactosyltransferase-deficient mice revealed that sulfatides are responsible for proper structure and functioning of myelin. Large amounts of sulfatides are also found in the kidney, gastrointestinal tract, islets of Langerhans, and membranes of erythrocytes, thrombocytes and granulocytes. They are ligands for numerous proteins, but in most cases the biological role of such interactions is poorly understood. A notable exception is their binding by P- and L-selectins. Platelet sulfatides are major ligands for P-selectin, and this interaction is critical for the formation of stable platelet aggregates. Sulfatides also bind to chemokines, and seem to play a role in regulation of cytokine expression in human lymphocytes and monocytes. Aberrant metabolism of sulfatides, could cause several important human diseases. In this article, we describe the changes in sulfatide expression associated with such nervous disorders as metachromatic leukodystrophy (MLD), Parkinson’s disease and Alzheimer’s disease, and several types of cancer, e.g. colon cancer, kidney cancer, and ovarian cancer. We also discuss the involvement of sulfatides in cancer progression, diabetes and autoimmune and immune disorders such as multiple sclerosis. This acidic glycosphingolipids seem to play an important role in pathogenesis of infectious diseases, serving as receptors for binding various bacteria and viruses.

References

  • 1. Alderson N.L., Rembiesa B.M., Walla M.D., Bielawska A, BielawskiJ, Hama H.: The human FA2H gene encodes a fatty acid 2-hydroxylase.J. Biol. Chem., 2004; 279: 48562-48568
    Google Scholar
  • 2. Alon R., Feizi T., Yuen C.T., Fuhlbrigge R.C., Springer T.A.: Glycolipidligands for selectins support leukocyte tethering and rollingunder physiologic flow conditions. J. Immunol., 1995; 154: 5356-5366
    Google Scholar
  • 3. Arrenberg P., Maricic I., Kumar V.: Sulfatide-mediated activationof type II natural killer T cells prevents hepatic ischemic reperfusioninjury in mice. Gastroenterology, 2011; 140: 646-655
    Google Scholar
  • 4. Aruffo A., Kolanus W., Walz G., Fredman P., Seed B.: CD62/P-selectinrecognition of myeloid and tumor cell sulfatides. Cell, 1991;67: 35-44
    Google Scholar
  • 5. Avila J.L., Rojas M., Carrasco H.: Elevated levels of antibodiesagainst sulphatide are present in all chronic chagasic and dilatedcardiomyopathy sera. Clin. Exp. Immunol., 1993; 92: 460-465
    Google Scholar
  • 6. Balbaa M., Honke K., Makita A.: Regulation of glycolipid sulfotransferaseby tyrosine kinases in human renal cancer cells. Biochim.Biophys. Acta, 1996; 1299: 141-145
    Google Scholar
  • 7. Bansal R., Winkler S., Bheddah S.: Negative regulation of oligodendrocytedifferentiation by galactosphingolipids. J. Neurosci.,1999; 19: 7913-7924
    Google Scholar
  • 8. Blomqvist M., Osterbye T., Mansson J.E., Horn T., Buschard K.,Fredman P.: Selective lack of the C16:0 fatty acid isoform of sulfatidein pancreas of type II diabetic animal models. APMIS, 2003;111: 867-877
    Google Scholar
  • 9. Blomqvist M., Rhost S., Teneberg S., Lӧfbom L., Osterbye T., BriglM., Mansson J.E., Cardell S.L.: Multiple tissue-specific isoforms ofsulfatide activate CD1d-restricted type II NKT cells. Eur. J. Immunol.,2009; 39: 1726-1735
    Google Scholar
  • 10. Borthakur G., Cruz M.A., Dong J.F., McIntire L., Li F., Lopez J.A.,Thiagarajan P.: Sulfatides inhibit platelet adhesion to von Willebrandfactor in flowing blood. J. Thromb. Haemost., 2003; 1: 1288-1295
    Google Scholar
  • 11. Bovin L.F., Fredman P., Mansson J.E., Buschard K., Bendtzen K.:In vitro production of cytokines is influenced by sulfatide and itsprecursor galactosylceramide. FEBS Lett., 1999; 455: 339-343
    Google Scholar
  • 12. Brennan M.J., Hannah J.H., Leininger E.: Adhesion of Bordatellapertussis to sulfatides and to the GalNAcβ4Gal sequence found inglycosphingolipids. J. Biol. Chem., 1991; 266: 18827-18831
    Google Scholar
  • 13. Buschard K., Blomqvist M., Mansson J.E., Fredman P., Juhl K.,Gromada J.: C16:0 sulfatide inhibits insulin secretion in rat β-cellsby reducing the sensitivity of KATP channels to ATP inhibition. Diabetes,2006; 55: 2826-2834
    Google Scholar
  • 14. Buschard K., Fredman P., Bog-Hansen E., Blomqvist M., HednerJ., Rastam L., Lindblad U.: Low serum concentration of sulfatide andpresence of sulfated lactosylceramid are associated with type 2 diabetes.Diabetes Med., 2005; 22: 1190-1198
    Google Scholar
  • 15. Buschard K., Hoy M., Bokvist K., Olsen H.L., Madsbad S., FredmanP., Gromada J.: Sulfatide controls insulin secretion by modulation ofATP-sensitive K+-channel activity and Ca2+-dependent exocytosis inrat pancreatic β-cells. Diabetes, 2002; 51: 2514-2521
    Google Scholar
  • 16. Buschard K., Josefsen K., Hansen S.V., Horn T., Marshall M.O.,Persson H., Mansson J.-E., Fredman P.: Sulfatide in islets of Langerhansand in organs affected in diabetic late complications: a studyin human and animal tissue. Diabetologia, 1994; 37: 1000-1006
    Google Scholar
  • 17. Buschard K., Josefsen K., Horn T., Fredman P.: Sulphatide andsulphate antibodies in insulin-dependent diabetes mellitus. Lancet,1993; 342: 840
    Google Scholar
  • 18. Cheng H., Jiang X., Han X.: Alterations in lipid homeostasis ofmouse dorsal root ganglia induced by apolipoprotein E deficiency:a shotgun lipidomics study. J. Neurochem., 2007; 101: 57-76
    Google Scholar
  • 19. Coetzee T., Suzuki K., Popko B.: New perspectives on the functionof myelin galactolipids. Trends Neurosci., 1998; 21: 126-130
    Google Scholar
  • 20. Constantin G., Laudanna C., Baron P., Berton G.: Sulfatides triggercytokine gene expression and secretion in human monocytes.FEBS Lett., 1994; 350: 66-70
    Google Scholar
  • 21. de Gasperi R., Angel M., Sosa G., Patarca R., Battistini S., LamoreuxM.R., Raghavan S., Kowall N.W., Smith K.H., Fletcher M.A., KolodnyE.H.: Intrathecal synthesis of anti-sulfatide IgG is associatedwith peripheral nerve disease in acquired immunodeficiency syndrome.AIDS Res. Hum. Retroviruses, 1996; 12: 205-211
    Google Scholar
  • 22. Ding Z., Issekutz T.B., Downey G.P., Waddell T.K.: L-selectin stimulationenhances functional expression of surface CXCR4 in lymphocytes:implications for cellular activation during adhesion andmigration. Blood, 2003; 101: 4245-4252
    Google Scholar
  • 23. Ding Z., Kawashima H., Miyasaka M.: Sulfatide binding and activationof leukocytes through an L-selectin-independent pathway.J. Leukoc. Biol., 2000; 68: 65-72
    Google Scholar
  • 24. Ding Z., Kawashima H., Suzuki Y., Suzuku T., Ward P.A., MiyasakaM.: A sulfatide receptor distinct from L-selectin is involved in lymphocyteactivation. FEBS Lett., 1997; 418: 310-314
    Google Scholar
  • 25. Drahos K.E., Welsh J.D., Finkielstein C.V., Capelluto D.G.: Sulfatidespartition disabled-2 in response to platelet activation. PLoSOne, 2009; 4:e8007
    Google Scholar
  • 26. Duchesneau P., Gallagher E., Walcheck B., Waddell T.K.: Up–regulation of leukocyte CXCR4 expression by sulfatide: an L-selectin-dependentpathway on CD4+ T cells. Eur. J. Immunol., 2007;37: 2949-2960
    Google Scholar
  • 27. Eckhardt M.: The role and metabolism of sulfatide in the nervoussystem. Mol. Neurobiol., 2008; 37: 93-103
    Google Scholar
  • 28. Fabelo N., Martín V., Santpere G., Marín R., Torrent L., FerrerI., Díaz M.: Severe alterations in lipid composition of frontal cortexlipid rafts from Parkinson‘s disease and incidental Parkinson‘s disease.Mol. Med., 2011; 17: 1107-18
    Google Scholar
  • 29. Fantini J., Hammache D., Delezay O., Pieroni G., Tamalet C., YahiN.: Sulfatide inhibits HIV-1 entry into CD4-/CXCR4+ cells. Virology,1998; 246: 211-220
    Google Scholar
  • 30. Farrer R.G., Warden M.P., Quarles R.H.: Effects of Brefeldin A ongalactosphingolipid synthesis in an immortalized Schwann cell line:evidence for different intracellular locations of galactosylceramidesulfotransferase and ceramide galactosyltransferase activities. J.Neurochem., 1995; 65: 1865-1873
    Google Scholar
  • 31. Frank M., van der Haar M.E., Schaeren-Wiemers N., Schwab M.E.:rMAL is a glycosphingolipid-accociated protein of myelin and apicalmembranes of epithelial cells in kidney and stomach. J. Neurosci.,1998; 18: 4901-4913
    Google Scholar
  • 32. Fredman P., Mansson J.E., Rynmark B.M., Josefsen K., EkblondA., Halldner L., Osterbye T., Horn T., Buschard K.: The glycosphingolipidsulfatide in the islets of Langerhans in rat pancreas is processedthrough recycling: possible involvement in insulin trafficking.Glycobiology, 2000; 10: 39-50
    Google Scholar
  • 33. Garcia J., Callewaert N., Borsig L.: P-selectin mediates metastaticprogression through binding to sulafatides on tumor cells. Glycobiology,2007; 17: 185-196
    Google Scholar
  • 34. Gasa S., Casl M.T., Jin T., Kamio K., Uehara Y., Miyazaki T., MakitaA.: Elevated serum level of glycolipid sulfotransferase in patientswith hepatocellular carcinoma. Cancer Lett., 1991; 59: 19-24
    Google Scholar
  • 35. Gasa S., Casl M.T., Makita A., Sakakibara N., Koyanagi T., AtsutaT.: Presence and characterization of glycolipid sulfotransferase inhuman cancer serum. Eur. J. Biochem., 1990; 189: 301-306
    Google Scholar
  • 36. Gasa S., Makita A., Hirama M., Kawabata M.: Cerebroside sulfotransferaseactivity in human lung tissues. An elevated level in lungadenocarcinoma. J. Biochem., 1979; 86: 265-267
    Google Scholar
  • 37. Gisslen M., Fredman P., Norkrans G., Hagberg L.: Elevated cerebrospinalfluid sulfatide concentrations as a sign of increased metabolicturnover of myelin in HIV type 1 infection. AIDS Res. Hum.Retroviruses, 1996; 12: 149-155
    Google Scholar
  • 38. Gisslen M., Lekman A., Fredman P.: High levels in serum, but nosigns of intrathecal synthesis of anti-sulfatide antibodies in HIV-1infected individuals with or without central nervous system complications.J. Neuroimmunol., 1999; 94: 153-156
    Google Scholar
  • 39. Guchhait P., Shrimpton C.N., Honke K., Rumbaut R.E., LopezJ.A., Thiagarajan P.: Effect of an anti-sulfatide single-chain antibodyprobe on platelet function. Thromb. Haemost., 2008; 99: 552-557
    Google Scholar
  • 40. Halban P.A., Wollheim C.B.: Intracellular degradation of insulinstores by rat pancreatic islets in vitro. An alternative pathwayfor homeostasis of pancreatic insulin content. J. Biol. Chem., 1980;255: 6003-6006
    Google Scholar
  • 41. Halder R.C., Aguilera C., Maricic I., Kumar V.: Type II NKT cell–mediated anergy induction in type I NKT cells prevents inflammatoryliver disease. J. Clin. Invest., 2007; 117: 2302-2312
    Google Scholar
  • 42. Halder R.C., Jahng A., Maricic I., Kumar V.: Mini review: immuneresponse to myelin-derived sulfatide and CNS-demyelination. Neurochem.Res., 2007; 32: 257-262
    Google Scholar
  • 43. Han X.: Potential mechanisms contributing to sulfatide depletionat the earliest clinically recognizable stage of Alzheimer’s disease:a tale of shotgun lipidomics. J. Neurochem., 2007; 103, Suppl.1: 171-179
    Google Scholar
  • 44. Han X., Cheng H., Fryer J.D., Fagan A.M., Holtzman D.M.: Novelrole for apolipoprotein E in the central nervous system. Modulationof sulfatide content. J. Biol. Chem., 2003; 278: 8043-8051
    Google Scholar
  • 45. Hartmann E., Lingwood C.A., Reidl J.: Heat-inducible surfacestress protein (Hsp70) mediates sulfatide recognition of the respiratorypathogen Haemophilus influenzae. Infect. Immun., 2001; 69:3438-3441
    Google Scholar
  • 46. Hattori H., Uemura K., Taketomi T.: Glycolipids of gastric cancer.The presence of blood group A-active glycolipids in cancer tissuesfrom blood group 0 patients. Biochim. Biophys. Acta, 1981;666: 361-369
    Google Scholar
  • 47. Herz J.: The LDL receptor gene family: (un)expected signal transducersin the brain. Neuron, 2001; 29: 571-581
    Google Scholar
  • 48. Higashi H., Suzuki Y., Mukaida N., Takahashi N., Miyamoto D.,Matsushima K.: Intervention in endotoxin shock by sulfatide (I3SO3–GalCer) with a concomitant reduction in tumor necrosis factor αproduction. Infect. Immun., 1997; 65: 1223-1227
    Google Scholar
  • 49. Hiraiwa N., Fukuda Y., Imura H., Tadano-Aritomi K., Nagai K.,Ishizuka I., Kannagi R.: Accumulation of highly acidic sulfated glycosphingolipidsin human hepatocellular carcinoma defined by a seriesof monoclonal antibodies. Cancer Res., 1990; 50: 2917-2928
    Google Scholar
  • 50. Holt G.D., Krivan H.C., Gasic G.J., Ginsburg V.: Antistasin, an inhibitorof coagulation and metastasis, binds to sulfatide (Gal(3-SO4)β1-1Cer) and has a sequence homology with other proteins thatbind sulfated glycoconjugates. J. Biol. Chem., 1989; 264: 12138-12140
    Google Scholar
  • 51. Holt G.D., Pangburn M.K., Ginsburg V.: Properdin binds to sulfatide[Gal(3-SO4)β-1Cer] and has a sequence homology with otherproteins that bind sulfated glycoconjugates. J. Biol. Chem., 1990;265: 2852-2855
    Google Scholar
  • 52. Honke K., Hirahara Y., Dupree J., Suzuki K., Popko B., FukushimaK., Fukushima J., Nagasawa T., Yoshida N., Wada Y., Taniguchi N.: Paranodal junction formation and spermatogenesis require sulfoglycolipids.Proc. Natl. Acad. Sci. USA, 2002; 99: 4227-4232
    Google Scholar
  • 53. Honke K., Tsuda M., Hirahara Y., Ishii A., Makita A., Wada Y.:Molecular cloning and expression of cDNA encoding human 3’-phosphoadenylylsulfate:galactosylceramide 3’-sulfotransferase. J. Biol.Chem., 1997; 272: 4864-4868
    Google Scholar
  • 54. Honke K., Tsuda M., Hirahara Y., Miyao N., Tsukamoto T., SatohM., Wada Y.: Cancer-associated expression of glycolipid sulfotransferasegene in human renal cell carcinoma cells. Cancer Res., 1998;58: 3800-3805
    Google Scholar
  • 55. Honn K.V., Tang D.G., Crissman J.D.: Platelets and cancer metastasis:a causal relationship? Cancer Metastasis Rev., 1992; 11: 325-351
    Google Scholar
  • 56. Hoshi T., Suzuki A., Hayashi S., Tohyama K., Hayashi A., YamaguchiY., Takeuchi K., Baba H.: Nodal protrusions, increased Schmidt–Lanterman incisures, and paranodal disorganization are characteristicfeatures of sulfatide-deficient peripheral nerves. Glia, 2007;55: 584-594
    Google Scholar
  • 57. Huang C.L., Cheng J.C., Liao C.H., Stern A., Hsieh J.T., Wang C.H.,Hsu H.L., Tseng C.P.: Disabled-2 is a negative regulator of integrinαIIbβ3-mediated fibrinogen adhesion and cell signaling. J. Biol. Chem.,2004; 279: 42279-42289
    Google Scholar
  • 58. Huang C.L., Cheng J.C., Stern A., Hsieh J.T., Liao C.H., Tseng C.P.:Disabled-2 is a novel αIIb-integrin-binding protein that negativelyregulates platelet-fibrinogen interactions and platelet aggregation.J. Cell Sci., 2006; 119: 4420-4430
    Google Scholar
  • 59. Ideo H., Seko A., Yamashita K.: Galectin-4 binds to sulfated glycosphingolipidsand carcinoembryonic antigen in patches on thecell surface of human colon adenocarcinoma cells. J. Biol. Chem.,2005; 280: 4730-4737
    Google Scholar
  • 60. Ilyas A.A., Chen Z.W., Cook S.D.: Antibodies to sulfatide in cerebrospinalfluid of patients with multiple sclerosis. J. Neuroimmunol.,2003; 139: 76-80
    Google Scholar
  • 61. Imai Y., True D.D., Singer M.S., Rosen S.D.: Direct demonstrationof the lectin activity of gp90MEL, a lymphocyte homing rceptor. J. CellBiol., 1990; 111: 1125-1232
    Google Scholar
  • 62. Isaac G., Pernber Z., Gieselmann V., Hansson E., Bergquist J.,Månsson J.E.: Sulfatide with short fatty acid dominates in astrocytesand neurons. FEBS J., 2006; 273: 1782-1790
    Google Scholar
  • 63. Ishibashi T., Dupree J.L., Ikenaka K., Hirahara Y., Honke K., PelesE., Popko B., Suzuki K., Nishino H., Baba H.: A myelin galactolipid,sulfatide, is essential for maintenance of ion channels on myelinatedaxon but not essential for initial cluster formation. J. Neurosci.,2002; 22: 6507-6514
    Google Scholar
  • 64. Ishizuka I.: Chemistry and functional distribution of sulfoglycolipids.Prog. Lipid Res., 1997; 36: 245-319
    Google Scholar
  • 65. Jahng A., Maricic I., Aguilera C., Cardell S., Halder R.C., KumarV.: Prevention of autoimmunity by targeting a distinct, noninvariantCD1d-reactive T cell population reactive to sulfatide. J. Exp.Med., 2004; 199: 947-957
    Google Scholar
  • 66. Jansson L., Tobias J., Jarefjall C., Lebens M., Svennerholm A.M.,Teneberg S.: Sulfatide recognition by colonization factor antigenCS6 from enterotoxigenic Escherichia coli. PLoS One, 2009; 4: e4487
    Google Scholar
  • 67. Jeon S.B., Yoon H.J., Park S.H., Kim I.H., Park E.J.: Sulfatide, a majorlipid component of myelin sheath, activates inflammatory responsesas an endogenous stimulator in brain-resident immunecells. J. Immunol., 2008; 181: 8077-8087
    Google Scholar
  • 68. Kajihara J., Guoji Y., Kato K., Suzuki Y.: Sulfatide, a specific sugarligand for L-selectin, blocks CCl4-induced liver inflammation in rats.Biosci. Biotechnol. Biochem., 1995; 59: 155-157
    Google Scholar
  • 69. Kamio K., Jin T., Gasa S., Ohhira M., Honke K., Kasai N., MakitaA.: Inconsistent expression of glycolipid sulfotransferase activitybetween hepatoma and serum. Tohoku J. Exp. Med., 1992; 168: 29-35
    Google Scholar
  • 70. Kamisago S., Iwamori M., Tai T., Mitamura K., Yazaki Y., SuganoK.: Role of sulfatides in adhesion of Helicobacter pylori to gastriccancer cells. Infect. Immun., 1996; 64:624-628
    Google Scholar
  • 71. Kanter J.L., Narayana S., Ho P.P., Catz I., Warren K.G., Sobel R.A.,Steinman L., Robinson W.H.: Lipid microarrays identify key mediatorsof autoimmune brain inflammation. Nat. Med., 2006; 12: 138-143
    Google Scholar
  • 72. Kiebish M.A., Young D.M., Lehman J.J., Han X.: Chronic caloricrestriction attenuates a loss of sulfatide content in PGC-1α mousecortex: a potential lipidomic role of PGC-1α in neurodegeneration.J. Lipid Res., 2012; 53: 273-281
    Google Scholar
  • 73. Kiguchi K., Takamatsu K., Tanaka J., Nozawa S., Iwamori M., NagaiY.: Glycosphingolipids of various human ovarian tumors: a significantlyhigh expression of I3SO3GalCer and Lewis antigen in mucinouscystadenocarcinoma. Cancer Res., 1992; 52: 416-421
    Google Scholar
  • 74. Kobayashi T., Honke K., Gasa S., Imai S., Tanaka J., Miyazaki T.,Makita A.: Regulation of activity levels of glycolipid sulfotransferasesby transforming growth factor α in renal cell carcinoma cells.Cancer Res., 1993; 53: 5638-5642
    Google Scholar
  • 75. Kobayashi T., Honke K., Gasa S., Kato N., Miyazaki T., Makita A.:Epidermal growth factor elevates the activity levels of glycolipidsulfotransferases in renal-cell-carcinoma cells. Int. J. Cancer, 1993;55: 448-452
    Google Scholar
  • 76. Kobayashi T., Honke K., Gasa S., Miyazaki T., Tajima H., MatsumotoK., Nakamura T., Makita A.: Hepatocyte growth factor elevatesthe activity levels of glycolipid sulfotransferases in renal cell carcinomacells. Eur. J. Biochem., 1994; 219: 407-413
    Google Scholar
  • 77. Kobayashi T., Honke K., Gasa S., Sugiura M., Miyazaki T., IshizukaI., Makita A.: Involvement of protein kinase C in the regulationof glycolipid sulfotransferase activity levels in renal cell carcinomacells. Cancer Res., 1993; 53: 2484-2489
    Google Scholar
  • 78. Kobayashi T., Honke K., Kamio K., Sakakibara N., Gasa S., MiyaoN., Tsukamoto T., Ishizuka I., Miyazaki T., Makita A.: Sulfolipids andglycolipid sulfotransferase activities in human renal cell carcinomacells. Br. J. Cancer, 1993; 67: 76-80
    Google Scholar
  • 79. Kobayashi T., Honke K., Kuramitsu Y., Hosokawa M., Miyazaki T.,Murata J., Saiki I., Ishizuka I., Makita A.: Cell-surface sulfoglycolipidsare involved in the attachment of renal-cancer cells to laminin. Int.J. Cancer, 1994; 56: 281-285
    Google Scholar
  • 80. Kobayashi T., Honke K., Miyazaki T., Matsumoto K., NakamuraT., Ishizuka I., Makita A.: Hepatocyte growth factor specifically bindsto sulfoglycolipids. J. Biol. Chem., 1994; 269: 9817-9821
    Google Scholar
  • 81. Kobayashi T., Honke K., Tsunematsu I., Kagaya H., NishikawaS., Hokari K., Kato M., Takeda H., Sugiyama T., Higuchi A., Asaka M.:Detection of cerebroside sulfotransferase mRNA in human gastricmucosa and adenocarcinoma. Cancer Lett., 1999; 138: 45-51
    Google Scholar
  • 82. Koch M., Stronge V.S., Shepherd D., Gadola S.D., Mathew B.,Ritter G., Fersht A.R., Besra G.S., Schmidt R.R., Jones E.Y., CerundoloV.: The crystal structure of human CD1d with and withoutα-galactosylceramide. Nat. Immunol., 2005; 6: 819-826
    Google Scholar
  • 83. Kolter T., Sandhoff K.: Principles of lysosomal membrane digestion:stimulation of sphingolipids degradation by sphingolipidactivator proteins and anionic lysosomal lipids. Ann. Rev. Cell. Dev.Biol., 2005; 21: 81-103
    Google Scholar
  • 84. Konno A., Nunogami K., Wada T., Yachie A., Suzuki Y., TakahashiN., Suzuki T., Miyamoto D., Kiso M., Hasegawa A., Miyawaki T.: Inhibitoryaction of sulfatide, a putative ligand for L-selectin, on B cellproliferation and Ig production. Int. Immunol., 1996; 8: 1905-1913
    Google Scholar
  • 85. Krivan H.C., Olson L.D., Barile M.F., Ginsburg V., Roberts D.D.:Adhesion of Mycoplasma pneumoniae to sulfated glycolipids and inhibitionby dextran sulfate. J. Biol. Chem., 1989; 264: 9283-9288
    Google Scholar
  • 86. Kurosawa N., Kadomatsu K., Ikematsu S.,Sakuma S., KimuraT.,Muramatsu T.: Midkine binds specically to sulfatide. The role ofsulfatide in cell attachment to midkine-coated surfaces. Eur. J. Biochem., 2000; 267: 344-351
    Google Scholar
  • 87. LaFerla F.M., Troncoso J.C., Strickland D.K., Kawas C.H., Jay G.:Neuronal cell death in Alzheimer’s disease correlates with apoEuptake and intracellular Aβ stabilization. J. Clin. Invest., 1997; 100:310-320
    Google Scholar
  • 88. Laudanna C., Constantin G., Baron P., Scarpini E., Scarlato G., CabriniG., Dechecchi C., Rossi F., Cassatella M.A., Berton G.: Sulfatidestrigger increase of cytosolic free calcium and enhanced expressionof tumor necrosis factor-α and interleukin-8 mRNA in human neutrophils.Evidence for a role of L-selectin as a signaling molecule. J.Biol. Chem., 1994; 269: 4021-4026
    Google Scholar
  • 89. Li S., Liquari P., McKee K.K., Harrison D., Patel R., Lee S., YurchencoP.D.: Laminin-sulfatide binding initiates basement membraneassembly and enables receptor signaling in Schwann cells andfibroblasts. J. Cell Biol., 2005; 169: 179-189
    Google Scholar
  • 90. Liu Y., Chen Y., Momin A., Shaner R., Wang E., Bowen N.J., MatyuninaL.V., Walker L.D., McDonald J.F., Sullards M.C, Merrill A.H.Jr.: Elevation of sulfatides in ovarian cancer: an integrated transcriptomicand lipidomic analysis including tissue-imaging massspectrtometry. Molec. Cancer, 2010; 9: 186
    Google Scholar
  • 91. Makhlouf A.M., Fathalla M.M., Zakhary M.A., Makarem M.H.:Sulfatides in ovarian tumors: clinicopathological correlates. Int. J.Gynecol. Cancer, 2004; 14: 89-93
    Google Scholar
  • 92. Marcus J., Honigbaum S., Shroff S., Honke K., Rosenbluth J., DupreeJ.L.: Sulfatide is essential for the maintenance of CNS myelinand axon structure. Glia, 2006; 53: 372-381
    Google Scholar
  • 93. Maricic I., Halder R., Bischof F., Kumar V.: Dendritic cells andanergic type I NKT cells play a crucial role in sulfatide-mediated immuneregulation in experimental autoimmune encephalomyelitis.J. Immunol., 2014; 193: 1035-1046
    Google Scholar
  • 94. Mattjus P.: Glycolipid transfer proteins and membrane interaction.Biochim. Biophys. Acta, 2009; 1788: 267-272
    Google Scholar
  • 95. Mehta P.: Potential role of platelets in the pathogenesis of tumormetastasis. Blood, 1984; 63: 55-63
    Google Scholar
  • 96. Merten M., Beythien C., Gutensohn K., Kuhnl P., Meinertz T.,Thiagarajan P.: Sulfatides activate platelets through P-selectin andenhance platelet and platelet-leukocyte aggregation. Arterioscler.Thromb. Vasc. Biol., 2005; 25: 258-263
    Google Scholar
  • 97. Merten M., Thiagarajan P.: Role of sulfatides in platelet aggregation.Circulation, 2001; 104: 2955-2960
    Google Scholar
  • 98. Morell P., Radin N.S.: Synthesis of cerebroside by brain fromuridine diphosphate galactose and ceramide containing hydroxyfatty acid. Biochemistry, 1969; 8: 506-512
    Google Scholar
  • 99. Morichika H., Hamanaka Y., Tai T., Ishizuka I.: Sulfatides as a predictivefactor of lymph node metastasis in patients with colorectaladenocarcinoma. Cancer, 1996; 78: 43-47
    Google Scholar
  • 100. Mulligan M.S., Miyasaka M., Suzuki Y., Kawashima H., IizukaM., Hasegawa A., Kiso M., Warner R.L., Ward P.A., Suzuki T. i wsp.:Anti-inflammatory effects of sulfatides in selectin-dependent acutelung injury. Int. Immunol., 1995; 7: 1107-1113
    Google Scholar
  • 101. Mulligan M.S., Warner R.L., Lowe J.B., Smith P.L., Suzuki Y., MiyasakaM., Yamaguchi S., Ohta Y., Tsukada Y., Kiso M., Hasegawa A.,Ward P.A.: In vitro and in vivo selectin-blocking activities of sulfatedlipids and sulfated sialyl compounds. Int. Immunol., 1998; 10: 569-575
    Google Scholar
  • 102. Natomi H., Saitoh T., Sugano K., Iwamori M., Fukayama M.,Nagai Y.: Systematic analysis of glycosphingolipids in the humangastrointestinal tract: enrichment of sulfatides with hydroxylatedlonger-chain fatty acids in the gastric and duodenal mucosa. Lipids,1993; 28: 737-742
    Google Scholar
  • 103. Ogawa D., Shikata K., Honke K., Sato S., Matsuda M., Nagase R.,Tone A., Okada S., Usui H., Wada J., Miyasaka M., Kawashima H., SuzukiY., Suzuki T., Taniguchi N., Hirahara Y., Tadano-Aritomi K., Ishizuka I., Tedder T.F., Makino H.: Cerebroside sulfotransferase deficiencyameliorates L-selectin-dependent monocyte infiltration in the kidneyafter ureteral obstruction. J. Biol. Chem., 2004; 279: 2085-2090
    Google Scholar
  • 104. Olson L.D., Gilbert A.A.: Characteristics of Mycoplasma hominisadhesion. J. Bacteriol., 1993; 175: 3224-3227
    Google Scholar
  • 105. Osawa H., Sugano K., Igari T., Tai T., Iwamori M., KawakamiM.: Immunohistochemical study of sulfatide expression in gastriccarcinoma: alteration of sulfatide expression. J. Clin. Gastroenterol.,1997; 25: S135-S140
    Google Scholar
  • 106. Osterbye T., Jorgensen K.H., Fredman P., Tranum-Jensen J., KaasA., Brange J., Whittingham J.L., Buschard K.: Sulfatide promotes thefolding of proinsulin, preserves insulin crystals, and mediates itsmonomerization. Glycobiology, 2001; 11: 473-479
    Google Scholar
  • 107. Ozawa H., Sonoda Y., Kato S., Suzuki E., Matsuoka R., KanayaT., Kiuchi F., Hada N., Kasahara T.: Sulfatides inhibit adhesion, migration,and invasion of murine melanoma B16F10 cell line in vitro.Biol. Pharm. Bull., 2012; 35: 2054-2058
    Google Scholar
  • 108. Pancake S.J., Holt G.D., Mellouk S., Hoffman S.L.: Malaria sporozoitesand circumsporozoite proteins bind specifically to sulfatedglycoconjugates. J. Cell Biol., 1992; 117: 1351-1357
    Google Scholar
  • 109. Pantzar M., Teneberg S., Lagergard T.: Binding of Haemophilusducreyi to carbohydrate receptors is mediated by the 58.5-kDa GroELheat shock protein. Microbes Infect., 2006; 8: 2452-2458
    Google Scholar
  • 110. Perino J., Foo C.H., Spehner D., Cohen G.H., Eisenberg R.J., CranceJ.M., Favier A.L.: Role of sulfatide in vaccinia virus infection. Biol.Cell, 2011; 103: 319-331
    Google Scholar
  • 111. Pesheva P., Gloor S., Schachner M., Probstmeier R.: Tenascin-Ris an intrinsic autocrine factor for oligodendrocyte differentiationand promotes cell adhesion by a sulfatide-mediated mechanism. J.Neurosci., 1997; 17: 4642-4651
    Google Scholar
  • 112. Popovic Z.V., Sandhoff R., Sijmonsma T.P., Kaden S., JennemannR., Kiss E., Tone E., Autschbach F., Platt N., Malle E., Grone H.J.: Sulfatedglycosphingolipid as mediator of phagocytosis: SM4s enhancesapoptotic cell clearance and modulates macrophage activity. J.Immunol., 2007; 179: 6770-6782
    Google Scholar
  • 113. Roberts D.D., Ginsburg V.: Sulfated glycolipids and cell adhesion.Arch. Biochem. Biophys., 1988; 267:405-415
    Google Scholar
  • 114. Roberts D.D., Haverstick D.M., Dixit V.M., Frazier W.A., SantoroS.A., Ginsburg V.: The platelet glycoprotein thrombospondinbinds specifically to sulfated glycolipids. J. Biol. Chem., 1985; 260:9405-9411
    Google Scholar
  • 115. Roberts D.D., Rao C.N. Magnani J.L., Spitalnik S.L., Liotta L.A.,Ginsburg V.: Laminin binds specifically to sulfated glycolipids. Proc.Natl. Acad. Sci. USA, 1985; 82: 1306-1310
    Google Scholar
  • 116. Roberts D.D., Wewer U.M., Liotta L.A., Ginsburg V.: Laminin–dependent and laminin-independent adhesion of human melanomacells to sulfatides. Cancer Res., 1988; 48: 3367-3373
    Google Scholar
  • 117. Roberts D.D., Williams S.B., Gralnick H.R., Ginsburg V.: vonWillebrand factor binds specifically to sulfated glycolipids. J. Biol.Chem., 1986; 261: 3306-3309
    Google Scholar
  • 118. Roeske-Nielsen A., Buschard K., Manson J.E., Rastam L., LindbladU.: A variation in the cerebroside sulfotransferase gene is linkedto exercise-modified insulin resistance and to type 2 diabetes. Exp.Diabetes Res., 2009; 2009: 429593
    Google Scholar
  • 119. Roeske-Nielsen A., Dalgaard L.T., Mansson J.E., Buschard K.:The glycolipid sulfatide protects insulin-producing cells againstcytokine-induced apoptosis, a possible role in diabetes. DiabetesMetab. Res. Rev., 2010; 26: 631-638
    Google Scholar
  • 120. Roeske-Nielsen A., Fredman P., Mansson J.E., Bendtzen K., BuschardK.: β-galactosylceramide increases and sulfatide decreasescytokine and chemokine production in whole blood cells. Immunol.Lett., 2004; 91: 205-211
    Google Scholar
  • 121. Rouhiainen A., Imai S., Rauvala H., Parkkinen J.: Occurrence ofamphoterin (HMG1) as an endogenous protein of human plateletsthat is exported to the cell surface upon platelet activation. Thromb.Haemost., 2000; 84: 1087-1094
    Google Scholar
  • 122. Rousset E., Harel J., Dubreuil J.D.: Sulfatide from the pig jejunumbrush border epithelial cell surface is involved in binding ofEscherichia coli enterotoxin b. Infect. Immun., 1998; 66: 5650-5658
    Google Scholar
  • 123. Sakakibara N., Gasa S., Kamio K., Makita A., Koyanagi T.: Associationof elevated sulfatides and sulfotransferase activities withhuman renal cell carcinoma. Cancer Res., 1989; 49: 335-339
    Google Scholar
  • 124. Salio M., Silk J.D., Jones E.Y., Cerundolo V.: Biology of CD1-and MR1-restricted T cells. Annu. Rev. Immunol., 2014; 32: 323-366
    Google Scholar
  • 125. Samuelsson B.E.: Regional distribution of glycosylceramide–sulfates in human kidney. Lipids, 1982; 17: 160-165
    Google Scholar
  • 126. Sandhoff R., Grieshaber H., Djafarzadeh R., Sijmonsma T.P.,Proudfoot A.E., Handel T.M., Wiegandt H., Nelson P.J., Grone H.J.:Chemokines bind to sulfatides as revealed by surface plasmon resonance.Biochim. Biophys. Acta, 2005; 1687: 52-63
    Google Scholar
  • 127. Shamshiev A., Donda A., Carena I., Mori L., Kappos L., De LiberoG.: Self glycolipids as T-cell autoantigens. Eur. J. Immunol.,1999; 29: 1667-1675
    Google Scholar
  • 128. Shamshiev A., Gober H.J., Donda A., Mazorra Z., Mori L., DeLibero G.: Presentation of the same glycolipid by different CD1 molecules.J. Exp. Med., 2002; 195: 1013-1021
    Google Scholar
  • 129. Shikata K., Suzuki Y., Wada J., Hirata K., Matsuda M., KawashimaH., Suzuki T., Iizuka M., Makino H., Miyasaka M.: L-selectin andits ligands mediate infiltration of mononuclear cells into kidneyinterstitium after ureteric obstruction. J. Pathol., 1999; 188: 93-99
    Google Scholar
  • 130. Shroff S.M., Pomicter A.D., Chow W.N., Fox M.A., Colello R.J., HendersonS.C., Dupree J.L.: Adult CST-null mice maintain an increasednumber of oligodendrocytes. J. Neurosci. Res., 2009; 87: 3403-3414
    Google Scholar
  • 131. Siddiqui B., Whitehead J.S., Kim Y.S.: Glycosphingolipids inhuman colonic adenocarcinoma. J. Biol. Chem., 1978; 253: 2168-2175
    Google Scholar
  • 132. Sprong H., Degroote S., Nilsson T., Kawakita M., Ishida N., vander Sluijs P., van Meer G.: Association of the Golgi UDP-galactosetransporter with UDP-galactose:ceramide galactosyltransferase allowsUDP-galactose import in the endoplasmic reticulum. Mol. Biol.Cell, 2003; 14: 3482-3493
    Google Scholar
  • 133. Suzuki T., Sometani A., Yamazaki Y., Horiike G., Mizutani Y.,Masuda H., Yamada M., Tahara H., Xu G., Miyamoto D., Oku N., OkadaS., Kiso M., Hasegawa A., Ito T., Kawaoka Y., Suzuki Y.: Sulphatidebinds to human and animal influenza A viruses, and inhibits theviral infection. Biochem J., 1996; 318: 389-393
    Google Scholar
  • 134. Suzuki Y., Toda Y., Tamatani T., Watanabe T., Suzuki T., NakaoT., Murase K., Kiso M., Hasegawa A., Tadano-Aritomi K., IshizukaI., Miyasaka M.: Sulfated glycolipids are ligands for a lymphocytehoming receptor, L-selectin (LECAM-1), binding epitope in sulfatedsugar chain. Biochem. Biophys. Res. Commun., 1993; 190: 426-434
    Google Scholar
  • 135. Takahashi T., Murakami K., Nagakura M., Kishita H., WatanabeS., Honke K., Ogura K., Tai T., Kawasaki K., Miyamoto D., Hidari K.I.,Guo C.T., Suzuki Y., Suzuki T.: Sulfatide is required for efficient replicationof influenza A virus. J. Virol., 2008; 82: 5940-5950
    Google Scholar
  • 136. Todderud G., Alford J., Millsap K.A., Aruffo A., Tramposch K.M.:PMN binding to P-selectin is inhibited by sulfatide. J. Leukoc. Biol.,1992; 52: 85-88
    Google Scholar
  • 137. Turutin D.V., Kubareva E.A., Pushkareva M.A., Ullrich V., Sud’inaG.F.: Activation of NF-kB transcription factor in human neutrophilsby sulphatides and L-selectin cross-linking. FEBS Lett., 2003;536: 241-245
    Google Scholar
  • 138. van den Berg L.H., Sadiq S.A., Lederman S., Latov N.: The gp120glycoprotein of HIV-1 binds to sulfatide and to the myelin associatedglycoprotein. J. Neurosci. Res., 1992; 33: 513-518
    Google Scholar
  • 139. van Zyl R., Gieselmann V., Eckhardt M.: Elevated sulfatide levelsin neurons cause lethal audiogenic seizures in mice. J. Neurochem.,2010; 112: 282-295
    Google Scholar
  • 140. Vestweber D., Blanks J.E.: Mechanisms that regulate the functionof the selectins and their ligands. Physiol. Rev., 1999; 79: 181-213
    Google Scholar
  • 141. Von Figura K., Gieselmann V., Jaeken J.: Metachromatic leukodystrophy.W: The metabolic and molecular bases of inherited disease(Scriver C.R., Beaudet A.L., Valle D., Sly W.S., et al., eds.), NewYork: McGraw-Hill., 2001; 3695-3724
    Google Scholar
  • 142. Welsh J.D., Charonko J.J., Salmanzadeh A., Drahos K.E., ShafieeH., Stremler M.A., Davalos R.V., Capelluto D.G., Vlachos P.P.,Finkielstein C.V.: Disabled-2 modulates homotypic and heterotypicplatelet interactions by binding to sulfatides. Br. J. Haematol.,2011; 154: 122-133
    Google Scholar
  • 143. Winzeler A.M., Mandemakers W.J., Sun M.Z., Stafford M.,Phillips C.T., Barres B.A.: The lipid sulfatide is a novel myelin–associated inhibitor of CNS axon outgrowth. J. Neurosci., 2011;31: 6481-6492
    Google Scholar
  • 144. Yabunaka N., Honke K., Ishii A., Ogiso Y., Kuzumaki N., AgishiY., Makita A.: Involvement of Ras in the expression of glycolipidsulfotransferase in human renal cancer cells. Int. J. Cancer, 1997;71: 620-623
    Google Scholar
  • 145. Yang S.H., Lee J.P., Jang H.R., Cha R.H., Han S.S., Jeon U.S., KimD.K., Song J., Lee D.S., Kim Y.S.: Sulfatide-reactive natural killer Tcells abrogate ischemia-reperfusion injury. J. Am. Soc. Nephrol.,2011; 22: 1305-1314
    Google Scholar
  • 146. Yoda Y., Gasa S., Makita A., Fujioka Y., Kikuchi Y., HashimotoM.: Glycolipids in human lung carcinoma of histologically differenttypes. J. Natl. Cancer Inst., 1979; 63: 1153-1160
    Google Scholar
  • 147. Zajonc D.M., Elsliger M.A., Teyton L., Wilson I.A.: Crystal structureof CD1a in complex with a sulfatide self antigen at a resolutionof 2.15 A. Nat. Immunol., 2003; 4: 808-815
    Google Scholar
  • 148. Zeng Y., Cheng H., Jiang X., Han X.: Endosomes and lysosomesplay distinct roles in sulfatide-induced neuroblastoma apoptosis: potentialmechanisms contributing to abnormal sulfatide metabolismin related neuronal diseases. Biochem. J., 2008; 410: 81-92
    Google Scholar
  • 149. Zeng Z.H., Castano A.R., Segelke B.W., Stura E.A., Petersom P.A.,Wilson I.A.: Crystal structure of mouse CD1: an MHC-like fold witha large hydrophobic binding groove. Science, 1997; 277: 339-345
    Google Scholar
  • 150. Zhu G., Chen H., Choi B.K., Del Piero F., Schifferli D.M.: HistoneH1 proteins act as receptors for the 987P fimbriae of enterotoxigenicEscherichia coli. J. Biol. Chem., 2005; 280: 23057-23065
    Google Scholar

Full text

Skip to content