The biological significance of oxidative modifications of cysteine residues in proteins illustrated with the example of glyceraldehyde-3-phosphate dehydrogenase

COMMENTARY ON THE LAW

The biological significance of oxidative modifications of cysteine residues in proteins illustrated with the example of glyceraldehyde-3-phosphate dehydrogenase

Aleksandra Rodacka 1 , Joanna Gerszon 1 , Mieczysław Puchała 1

1. Zakład Radiobiologii, Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2014-03-12
DOI: 10.5604/17322693.1093929
GICID: 01.3001.0003.1203
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 280-290

 

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key redox-sensitive protein, the activity of which is largely affected by oxidative modifications at its highly reactive cysteine residue in the active site of the enzyme (Cys-152). These modifications occur as a result of S-thiolation, S-nitrosylation or disulfide bonds that lead to aggregate formation. The oxidative changes not only affect the glycolytic function but also stimulate the participation of GAPDH in numerous cellular processes. In this review we describe how thiol modification of Cys-152 in GAPDH re-routes metabolic pathways in the cell and converts a metabolic enzyme into a pro-apoptotic factor. Especially interesting issue is the participation of GAPDH in the regulation of expression of endothelin 1 and nitrosylation of nuclear proteins. In the last section we describe involvement of GAPDH in the processes associated with neurodegenerative diseases.

References

  • 1. Anand P., Stamler J.S.: Enzymatic mechanisms regulating proteinS-nitrosylation: implications in health and disease. J. Mol. Med.,2012; 90: 233-244
    Google Scholar
  • 2. Arutyunov D.Y., Muronetz V.I.: The activation of glycolysis performedby the non-phosphorylating glyceraldehyde-3-phosphatedehydrogenase in the model system. Biochem. Biophys. Res. Commun.,2003; 300: 149-154
    Google Scholar
  • 3. Azam S., Jouvet N., Jilani A., Vongsamphanh R., Yang X., Yang S.,Ramotar D.: Human glyceraldehyde-3-phosphate dehydrogenaseplays a direct role in reactivating oxidized forms of the DNA repairenzyme APE1. J. Biol. Chem., 2008; 283: 30632-30641
    Google Scholar
  • 4. Bilska A., Kryczyk A., Włodek L.: Różne oblicza biologicznej roliglutationu. Postępy Hig. Med. Dośw., 2007; 61: 438-453
    Google Scholar
  • 5. Biswas S., Chida A.S., Rahman I.: Redox modifications of protein-thiols:emerging roles in cell signaling. Biochem. Pharmacol.,2006; 71: 551-564
    Google Scholar
  • 6. Brandes N., Schmitt S., Jakob U.: Thiol-based redox switches ineukaryotic proteins. Antioxid. Redox Signal., 2009; 11: 997-1014
    Google Scholar
  • 7. Broillet M.C.: S-nitrosylation of proteins. Cell. Mol. Life Sci., 1999;55: 1036-1042
    Google Scholar
  • 8. Bryksin A.V., Laktionov P.P.: Role of glyceraldehyde-3-phosphatedehydrogenase in vesicular transport from golgi apparatus to endoplasmicreticulum. Biochemistry, 2008; 73: 619-625
    Google Scholar
  • 9. Butterfield D.A., Hardas S.S., Lange M.L.: Oxidatively modifiedglyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’sdisease: many pathways to neurodegeneration. J. AlzheimersDis., 2010; 20: 369-393
    Google Scholar
  • 10. Carlile G.W., Chalmers-Redman R.M., Tatton N.A., Pong A., BordenK.E., Tatton W.G.: Reduced apoptosis after nerve growth factorand serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol. Pharmacol., 2000; 57: 2-12
    Google Scholar
  • 11. Chai Y.C., Ashraf S.S., Rokutan K., Johnston R.B.Jr., ThomasJ.A.: S-thiolation of individual human neutrophil proteins includingactin by stimulation of the respiratory burst: evidence againsta role for glutathione disulfide. Arch. Biochem. Biophys., 1994;310: 273-281
    Google Scholar
  • 12. Chen Y.Y., Chu H.M., Pan K.T., Teng C.H., Wang D.L., Wang A.H.,Khoo K.H., Meng T.C.: Cysteine S-nitrosylation protects protein-tyrosinephosphatase 1B against oxidation-induced permanent inactivation.J. Biol. Chem., 2008; 283: 35265-35272
    Google Scholar
  • 13. Chepchumba E., Yego K., Mohr S.: Siah-1 protein is necessaryfor high glucose-induced glyceraldehyde-3-posphate dehydrogenasenuclear accumulation and cell death in Muller cells. J. Biol. Chem.,2010; 285: 3181-3190
    Google Scholar
  • 14. Chuang D.M., Hough C., Senatorov V.V.: Glyceraldehyde-3-phosphatedehydrogenase, apoptosis, and neurodegenerative diseases.Annu. Rev. Pharmacol. Toxicol., 2005; 45: 269-290
    Google Scholar
  • 15. Cumming R.C., Schubert D.: Amyloid-β induces disulfide bondingand aggregation of GAPDH in Alzheimer’s disease. FASEB J., 2005;19: 2060-2062
    Google Scholar
  • 16. Cyrne L., Antunes F., Sousa-Lopes A., Diaz-Bérrio J., Marinho H.S.:Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsiveto low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae.BMC Biochem., 2010 11: 49
    Google Scholar
  • 17. Dalle-Donne I., Milzani A., Gagliano N., Colombo R. Giustarini D.,Rossi R.: Molecular mechanisms and potential clinical significanceof S-glutathionylation. Antioxid Redox Signal. 2008; 10: 445-473
    Google Scholar
  • 18. Dalle-Donne I., Rossi R., Colombo G., Giustarini D., Milzani A.:Protein S-glutathionylation: a regulatory device from bacteria tohumans. Trends Biochem. Sci., 2009; 34: 85-96
    Google Scholar
  • 19. Demarse N.A., Ponnusamy S., Spicer E.K., Apohan E., Baatz J.E.,Ogretmen B., Davies C.: Direct binding of glyceraldehyde-3-phosphatedehydrogenase to telomeric DNA protects telomeres against chemotherapy-inducedrapid degradation, J. Mol. Biol., 2009; 394: 789-803
    Google Scholar
  • 20. Di Simplicio P., Franconi F., Frosali S., Giuseppe D.: Thiolationand nitrosation of cysteines in biological fluids and cells. AminoAcids. 2003; 25: 323-339
    Google Scholar
  • 21. Dominici S., Valentini M., Maellaro E., Del Bello B., Paolicchi A.,Lorenzini E., Tongiani R., Comporti M., Pompella A.: Redox modulationof cell surface protein thiols in U937 lymphoma cells: therole of γ-glutamyl transpeptidase-dependent H2O2 production andS thiolation. Free Radic. Biol. Med., 1999; 27: 623-635
    Google Scholar
  • 22. Ercolani L., Florence B., Denaro M., Alexander M.: Isolation andcomplete sequence of a functional human glyceraldehyde-3-phosphatedehydrogenase gene. J. Biol. Chem., 1988; 263: 15335-15341
    Google Scholar
  • 23. Giles G.I., Tasker K.M., Jacob C.: Hypothesis: the role of reactivesulfur species in oxidative stress. Free Radic. Biol. Med., 2001;31: 1279-1283
    Google Scholar
  • 24. Grant C.M.: Metabolic reconfiguration is a regulated responseto oxidative stress. J. Biol., 2008; 7: 1
    Google Scholar
  • 25. Grant C.M., Quinn K.A., Dawes I.W.: Differential protein S-thiolationof glyceraldehyde-3-phosphate dehydrogenase isoenzymes influencessensitivity to oxidative stress. Mol. Cell. Biol., 1999; 19: 2650-2656
    Google Scholar
  • 26. Hara M.R., Agrawal N., Kim S.F., Cascio M.B., Fujimuro M., OzekiY., Takahashi M., Cheah J.H., Tankou S.K., Hester L.D., Ferris C.D.,Hayward S.D., Snyder S.H., Sawa A.: S-nitrosylated GAPDH initiatesapoptotic cell death by nuclear translocation following Siah1 binding.Nat. Cell Biol., 2005; 7: 665-674
    Google Scholar
  • 27. Huang J., Hao L., Xiong N., Cao X., Liang Z., Sun S., Wang T.:Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-inducedcell apoptosis: relevance to protein misfolding andaggregation. Brain Res., 2009; 1279: 1-8
    Google Scholar
  • 28. Huang J., Xiong N., Chen C., Xiong J., Jia M., Zhang Z., Cao X.,Liang Z., Sun S., Lin Z., Wang T.: Glyceraldehyde-3-phosphate dehydrogenase:activity inhibition and protein overexpression in rotenonemodels for Parkinson’s disease. Neuroscience. 2011; 192: 598-608
    Google Scholar
  • 29. Hwang N.R., Yim S.H., Kim Y.M., Jeong J., Song E.J., Lee Y., LeeJ.H., Choi S., Lee K.J.: Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellularfunctions. Biochem. J., 2009; 423: 253-264
    Google Scholar
  • 30. Ishii T., Sunami O., Nakajima H., Nishio H., Takeuchi T, Hata F.:Critical role of sulfenic acid formation of thiols in the inactivationof glyceraldehyde-3-phosphate dehydrogenase by nitric oxide. Biochem.Pharmacol., 1999; 58: 133-143
    Google Scholar
  • 31. Ismail S.A., Park H.W.: Structural analysis of human liver glyceraldehyde-3-phosphatedehydrogenase. Acta Crystallogr. D Biol.Crystallogr., 2005; 61: 1508-1513
    Google Scholar
  • 32. Jenkins J.L., Tanner J.J.: High-resolution structure of humanD-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr. DBiol. Crystallogr., 2006; 62: 290-301
    Google Scholar
  • 33. Kornberg M.D., Sen N., Hara M.R., Juluri K.R., Nguyen J.V., SnowmanA.M., Law L., Hester L.D., Snyder S.H.: GAPDH mediates nitrosylationof nuclear proteins. Nat. Cell Biol. 2010; 12: 1094-1100
    Google Scholar
  • 34. Kowalczyk A., Serafin E., Puchała M.: Inactivation of chosendehydrogenases by the products of water radiolysis and secondaryalbumin and haemoglobin radicals. Int. J. Radiat. Biol; 2008; 84: 15-22
    Google Scholar
  • 35. Lee S.B., Kim C.K., Lee K.H., Ahn J.Y.: S-nitrosylation of B23/nucleophosminby GAPDH protects cells from the SIAH1-GAPDH deathcascade. J. Cell Biol., 2012; 199: 65-76
    Google Scholar
  • 36. López Vinals A.E., Farías R.N., Morero R.D.: Characterizationof the fusogenic properties of glyceraldehyde-3-phosphate dehydrogenase:fusion of phospholipid vesicles. Biochem. Biophys. Res.Commun., 1987; 143: 403-409
    Google Scholar
  • 37. Morgan P.E., Dean R.T., Davies M.J.: Inactivation of cellular enzymesby carbonyls and protein-bound glycation/glycoxidationproducts. Arch. Biochem. Biophys., 2002; 403: 259-269
    Google Scholar
  • 38. Murphy E., Kohr M., Sun J., Nguyen T., Steenbergen C.: S-Nitrosylation:a radical way to protect the heart. J. Mol. Cell. Cardiol.,2012; 52: 568-577
    Google Scholar
  • 39. Nagradova N.K.: Study of the properties of phosphorylatingD-glyceraldehyde-3-phosphate dehydrogenase. Biochemistry, 2001;66: 1067-1076
    Google Scholar
  • 40. Nakagawa T., Hirano Y., Inomata A., Yokota S., Miyachi K., KanedaM., Umeda M., Furukawa K., Omata S., Horigome T.: Participation ofa fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, innuclear membrane assembly. J. Biol. Chem., 2003; 278: 20395-20404
    Google Scholar
  • 41. Nakajima H., Amano W., Fukuhara A., Kubo T., Misaki S., AzumaY.T., Inui T., Takeuchi T.: An aggregate-prone mutant of humanglyceraldehyde-3-phosphate dehydrogenase augments oxidativestress-induced cell death in SH-SY5Y cells. Biochem. Biophys. Res.Commun., 2009; 390: 1066-1071
    Google Scholar
  • 42. Nakajima H., Amano W., Kubo T., Fukuhara A., Ihara H., AzumaY.T., Tajima H., Inui T., Sawa A., Takeuchi T.: Glyceraldehyde-3-phosphatedehydrogenase aggregate formation participates in oxidativestress-induced cell death. J. Biol. Chem., 2009; 284: 34331-34341
    Google Scholar
  • 43. Nakamura T., Lipton S.A.: According to GOSPEL: filling in theGAP(DH) of NO-mediated neurotoxicity. Neuron, 2009; 63: 3-6
    Google Scholar
  • 44. Ralser M., Wamelink M.M., Kowald A., Gerisch B., Heeren G.,Struys E.A., Klipp E., Jakobs C., Breitenbach M., Lehrach H., KrobitschS.: Dynamic rerouting of the carbohydrate flux is key to counteractingoxidative stress. J. Biol., 2007; 6: 10
    Google Scholar
  • 45. Ravichandran V., Seres T., Moriguchi T., Thomas J.A., JohnstonR.B.Jr.: S-thiolation of glyceraldehyde-3-phosphate dehydrogenaseinduced by the phagocytosis-associated respiratory burst in bloodmonocytes. J. Biol. Chem., 1994; 269: 25010-25015
    Google Scholar
  • 46. Rodacka A.: Właściwości i różnorodność funkcjonalna dehydrogenazyaldehydu 3-fosfoglicerynowego. Postępy Hig. Med. Dośw.,2013; 67: 775-789
    Google Scholar
  • 47. Rodacka A., Serafin E., Bubinski M., Krokosz A., Puchala M.: Theinfluence of oxygen on radiation-induced structural and functionalchanges in glyceraldehyde-3-phosphate dehydrogenase and lactatedehydrogenase. Rad. Phys. and Chem., 2012; 81: 807-815
    Google Scholar
  • 48. Rodacka A., Serafin E., Puchala M.: Efficiency of superoxideanions in the inactivation of selected dehydrogenases. Rad. Phys.Chem., 2010; 79: 960-965
    Google Scholar
  • 49. Rodacka A., Strumillo J., Serafin E., Puchala M.: Effect of resveratroland tiron on the inactivation of glyceraldehyde-3-phosphatedehydrogenase induced by superoxide anion radical. Curr. Med.Chem., 2014; 21: 1061-1069
    Google Scholar
  • 50. Rodríguez-Pascual F., Redondo-Horcajo M., Magán-MarchalN., Lagares D., Martínez-Ruiz A., Kleinert H., Lamas S.: Glyceraldehyde-3-phosphatedehydrogenase regulates endothelin-1 expressionby a novel, redox-sensitive mechanism involving mRNA stability.Mol. Cell Biol., 2008; 28: 7139-7155
    Google Scholar
  • 51. Schultz D.E., Hardin C.C., Lemon S.M.: Specific interaction ofglyceraldehyde 3-phosphate dehydrogenase with the 5’-nontranslatedRNA of hepatitis A virus. J. Biol. Chem., 1996; 271: 14134-14142
    Google Scholar
  • 52. Seidler N.C.: Basic biology of GAPDH. Adv. Exp. Med. Biol., 2013;985: 1-36
    Google Scholar
  • 53. Sen N., Hara M.R., Ahmad A.S., Cascio M.B., Kamiya A., EhmsenJ.T., Agrawal N., Hester L., Doré S., Snyder S.H., Sawa A.: GOSPEL:a neuroprotective protein that binds to GAPDH upon S-nitrosylation.Neuron, 2009; 63: 81-91
    Google Scholar
  • 54. Sen N., Hara M.R., Kornberg M.D., Cascio M.B., Bae B.I., ShahaniN., Thomas B., Dawson T.M., Dawson V.L., Snyder S.H., Sawa A.: Nitricoxide-induced nuclear GAPDH activates p300/CBP and mediatesapoptosis, Nat. Cell Biol., 2008; 10: 866-873
    Google Scholar
  • 55. Shahani N., Sawa A.: Protein S-nitrosylation: role for nitric oxidesignaling in neuronal death. Biochim. Biophys. Acta, 2012; 1820: 736-742
    Google Scholar
  • 56. Shenton D., Grant C.M.: Protein S-thiolation targets glycolysisand protein synthesis in response to oxidative stress in the yeastSaccharomyces cerevisiae. Biochem. J., 2003; 374; 513-519
    Google Scholar
  • 57. Sirover M.A.: On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatorycontrol. Biochim. Biophys. Acta, 2011; 1810: 741-751
    Google Scholar
  • 58. Tisdale E.J., Azizi F., Artalejo C.R.: Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase Cί to associate withmicrotubules and to recruit dynein. J. Biol. Chem., 2009; 284: 5876-5884
    Google Scholar
  • 59. Volker K.W., Reinitz C.A., Knull H.R.: Glycolytic enzymes andassembly of microtubule networks. Comp. Biochem. Physiol. B Biochem.Mol. Biol., 1995; 112: 503-514
    Google Scholar
  • 60. Winterbourn C.C., Hampton M.B.: Thiol chemistry and specificityin redox signaling. Free Radic. Biol. Med., 2008; 45: 549-561
    Google Scholar

Full text

Skip to content