The cell on the edge of life and death: Crosstalk between autophagy and apoptosis

REVIEW ARTICLE

The cell on the edge of life and death: Crosstalk between autophagy and apoptosis

Daniela Kasprowska-Liśkiewicz 1

1. Laboratorium Badań Molekularnych, Akademia Wychowania Fizycznego im. Jerzego Kukuczki w Katowicach,

Published: 2017-09-21
DOI: 10.5604/01.3001.0010.4672
GICID: 01.3001.0010.4672
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 825-841

 

Abstract

Recently, the crosstalk between autophagy and apoptosis has attracted broader attention. Basal autophagy serves to maintain cell homeostasis, while the upregulation of this process is an element of stress response that enables the cell to survive under adverse conditions. Autophagy may also determine the fate of the cell through its interactions with cell death pathways. The protein networks that control the initiation and the execution phase of these two processes are highly interconnected. Several scenarios for the crosstalk between autophagy and apoptosis exist. In most cases, the activation of autophagy represents an attempt of the cell to cope with stress, and protects the cell from apoptosis or delays its initiation. Generally, the simultaneous activation of pro-survival and pro-death pathways is prevented by the mutual inhibitory crosstalk between autophagy and apoptosis. But in some circumstances, autophagy or the proteins of the core autophagic machinery may promote cellular demise through excessive self-digestion (so-called “autophagic cell death”) or by stimulating the activation of other cell death pathways. It is controversial whether cells actually die via autophagy, which is why the term “autophagic cell death” has been under intense debate lately. This review summarizes the recent findings on the multilevel crosstalk between autophagy and apoptosis in aspects of common regulators, mutual inhibition of these processes, the stimulation of apoptosis by autophagy or autophagic proteins and finally the role of autophagy as a death-execution mechanism.

References

  • 1. Ameres S.L., Zamore P.D.: Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol., 2013; 14: 475-488
    Google Scholar
  • 2. Amir M., Zhao E., Fontana L., Rosenberg H., Tanaka K., Gao G., Czaja M.J.: Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ, 2013; 20: 878-887
    Google Scholar
  • 3. Betin V.M., Lane J.D.: Atg4D at the interface between autophagy and apoptosis. Autophagy, 2009; 5: 1057-1059
    Google Scholar
  • 4. Booth L.A., Tavallai S., Hamed H.A., Cruickshanks N., Dent P.: The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal., 2014; 26: 549-555
    Google Scholar
  • 5. Bovellan M., Fritzsche M., Stevens C., Charras G.: Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J., 2010; 277: 58-65
    Google Scholar
  • 6. Boya P., Kroemer G.: Beclin 1: a BH3-only protein that fails to induce apoptosis. Oncogene, 2009; 28: 2125-2127
    Google Scholar
  • 7. Chen Y., Klionsky D.J.: The regulation of autophagy – unanswered questions. J. Cell Sci., 2011; 124: 161-170
    Google Scholar
  • 8. Ciechomska I.A., Goemans G.C., Skepper J.N., Tolkovsky A.M.: Bcl- 2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene, 2009; 28: 2128-2141
    Google Scholar
  • 9. Corradetti M.N., Guan K.L.: Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene, 2006; 25: 6347-6360
    Google Scholar
  • 10. Crighton D., O’Prey J., Bell H.S., Ryan K.M.: p73 regulates DRAM- -independent autophagy that does not contribute to programmed cell death. Cell Death Differ, 2007; 14: 1071-1979
    Google Scholar
  • 11. Crighton D., Wilkinson S., O’Prey J., Syed N., Smith P., Harrison P.R., Gasco M., Garrone O., Crook T., Ryan K.M.: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006; 126: 121-134
    Google Scholar
  • 12. Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gélinas C., Fan Y., Nelson D.A., Jin S., White E.: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006; 10: 51-64
    Google Scholar
  • 13. Di Bartolomeo S., Corazzari M., Nazio F., Oliverio S., Lisi G., Antonioli M., Pagliarini V., Matteoni S., Fuoco C., Giunta L., D’Amelio M., Nardacci R., Romagnoli A., Piacentini M., Cecconi F., Fimia G.M.: The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol., 2010; 191: 155-168
    Google Scholar
  • 14. Ding W.X., Yin X.M.: Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem., 2012; 393: 547-564
    Google Scholar
  • 15. Duprez L., Wirawan E., Vanden Berghe T., Vandenabeele P.: Major cell death pathways at a glance. Microbes Infect., 2009; 11: 1050-1062
    Google Scholar
  • 16. Eisenberg-Lerner A., Bialik S., Simon H.U., Kimchi A.: Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ., 2009; 16: 966-975
    Google Scholar
  • 17. Eisenberg-Lerner A., Kimchi A.: PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ, 2012; 19: 788-797
    Google Scholar
  • 18. Elmore S.: Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007; 35: 495-516
    Google Scholar
  • 19. Fan Y.J., Zong W.X.: The cellular decision between apoptosis and autophagy. Chin. J. Cancer, 2013; 32: 121-129
    Google Scholar
  • 20. Frankel L.B., Lund A.H.: MicroRNA regulation of autophagy. Carcinogenesis, 2012; 33: 2018-2025
    Google Scholar
  • 21. Frankel L.B., Wen J., Lees M., Høyer-Hansen M., Farkas T., Krogh A., Jäättelä M., Lund A.H.: microRNA-101 is a potent inhibitor of autophagy. EMBO J., 2011; 30: 4628-4641
    Google Scholar
  • 22. Galluzzi L., Vitale I., Abrams J.M. Alnemri E.S., Baehrecke E.H., Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S., Gottlieb E., Green D.R., Hengartner M.O., Kepp O., Knight R.A. i wsp.: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ, 2012; 19: 107-120
    Google Scholar
  • 23. Ghavami S., Shojaei S., Yeganeh B., Ande S.R., Jangamreddy J.R., Mehrpour M., Christoffersson J., Chaabane W., Moghadam A.R., Kashani H.H., Hashemi M., Owji A.A., Łos M.J.: Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014; 112: 24-49
    Google Scholar
  • 24. Gordy C., He Y.W.: The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell, 2012; 3: 17-27
    Google Scholar
  • 25. Hata A.N., Engelman J.A., Faber A.C: The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov., 2015, 5: 475-487
    Google Scholar
  • 26. He C., Klionsky D.J.: Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009; 43: 67-93
    Google Scholar
  • 27. Holczer M., Márton M., Kurucz A., Bánhegyi G., Kapuy O.: A comprehensive systems biological study of autophagy-apoptosis crosstalk during endoplasmic reticulum stress. Biomed. Res. Int., 2015; 2015: 319589
    Google Scholar
  • 28. Hou W., Han J., Lu C., Goldstein L.A., Rabinowich H.: Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy, 2010; 6: 891-900
    Google Scholar
  • 29. Hoyer-Hansen M., Jäättelä M.: AMP-activated protein kinase: a universal regulator of autophagy? Autophagy, 2007; 3: 381-383
    Google Scholar
  • 30. Iaquinta P.J., Lees J.A.: Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol., 2007; 19: 649-657
    Google Scholar
  • 31. Inbal B., Bialik S., Sabanay I., Shani G., Kimchi A.: DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol., 2002; 157: 455-468
    Google Scholar
  • 32. Jiang Q., Li F., Shi K., Wu P., An J., Yang Y., Xu C.: Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/ eIF2α/ATF4 axis in selenite-treated NB4 cells. Cell Death Dis., 2014; 5: e1270
    Google Scholar
  • 33. Jovanovic M., Hengartner M.O.: miRNAs and apoptosis: RNAs to die for. Oncogene, 2006; 25: 6176-6187
    Google Scholar
  • 34. Kenzelmann Broz D., Spano Mello S., Bieging K.T., Jiang D., Dusek R.L., Brady C.A., Sidow A., Attardi L.D.: Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev., 2013; 27: 1016-1031
    Google Scholar
  • 35. Kessel D.H., Price M., Reiners J.J. Jr.: ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy, 2012; 8: 1333-1341
    Google Scholar
  • 36. Kim I., Rodriguez-Enriquez S., Lemasters J.J.: Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 2007; 462: 245-253
    Google Scholar
  • 37. Kim J., Kundu M., Viollet B., Guan K.L.: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011; 13: 132-141
    Google Scholar
  • 38. Kouroku Y., Fujita E., Tanida I., Ueno T., Isoai A., Kumagai H., Ogawa S., Kaufman R.J., Kominami E., Momoi T.: ER stress (PERK/ eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ., 2007; 14: 230-239
    Google Scholar
  • 39. Kroemer G., Levine B.: Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol., 2008; 9: 1004-1010
    Google Scholar
  • 40. Kruse J.P., Gu W.: Modes of p53 regulation. Cell, 2009; 137: 609-622
    Google Scholar
  • 41. Kunchithapautham K., Rohrer B.: Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy, 2007; 3: 433-441
    Google Scholar
  • 42. Kuwano Y., Nishida K., Kajita K., Satake Y., Akaike Y., Fujita K., Kano S., Masuda K., Rokutan K.: Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3’ UTR of BCL2 mRNA. Cell Death Differ., 2015; 22: 815-825
    Google Scholar
  • 43. Lamy L., Ngo V.N., Emre N.C., Shaffer A.L. 3rd., Yang Y., Tian E., Nair V., Kruhlak M.J., Zingone A., Landgren O., Staudt L.M.: Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell, 2013; 23: 435-449
    Google Scholar
  • 44. Levin-Salomon V., Bialik S., Kimchi A.: DAP-kinase and autophagy. Apoptosis, 2014; 19: 346-356
    Google Scholar
  • 45. Levine B., Abrams J.: p53: the Janus of autophagy? Nat. Cell Biol., 2008; 10: 637-639
    Google Scholar
  • 46. Levine B., Sinha S., Kroemer G.: Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy, 2008; 4: 600-606
    Google Scholar
  • 47. Liang J., Shao S.H., Xu Z.X., Hennessy B., Ding Z., Larrea M., Kondo S., Dumont D.J., Gutterman J.U., Walker C.L., Slingerland J.M., Mills G.B.: The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol., 2007; 9: 218-224
    Google Scholar
  • 48. Lindqvist L.M., Heinlein M., Huang D.C., Vaux D.L.. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. USA, 2014; 111:8512-8517
    Google Scholar
  • 49. Liu L., Cash T.P., Jones R.G., Keith B., Thompson C.B., Simon M.C.: Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell, 2006; 21: 521-531
    Google Scholar
  • 50. Liu Y., Levine B.: Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ., 2015; 22: 367-376
    Google Scholar
  • 51. Liu Y., Shoji-Kawata S., Sumpter R.M. Jr, Wei Y., Ginet V., Zhang L., Posner B., Tran K.A., Green D.R., Xavier R.J., Shaw S.Y., Clarke P.G., Puyal J., Levine B.: Autosis is a Na+ ,K+ -ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl. Acad. Sci. USA, 2013; 110: 20364-20371
    Google Scholar
  • 52. Luo S., Garcia-Arencibia M., Zhao R., Puri C., Toh P.P., Sadiq O., Rubinsztein D.C.: Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell., 2012; 47: 359-370
    Google Scholar
  • 53. Luo S., Rubinsztein D.C.: Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ., 2010; 17: 268-277
    Google Scholar
  • 54. Maiuri M.C., Le Toumelin G., Criollo A., Rain J.C., Gautier F., Juin P., Tasdemir E., Pierron G., Troulinaki K., Tavernarakis N., Hickman J.A., Geneste O., Kroemer G.: Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J., 2007; 26: 2527-2539
    Google Scholar
  • 55. Maiuri M.C., Zalckvar E., Kimchi A., Kroemer G.: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007; 8: 741-752
    Google Scholar
  • 56. Mariño G., Niso-Santano M., Baehrecke E.H., Kroemer G.: Self- -consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014; 15: 81-94
    Google Scholar
  • 57. Marquez R.T., Xu L.: Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer
    Google Scholar
  • 58. Meijer A.J., Lorin S., Blommaart E.F., Codogno P.: Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids, 2015; 47: 2037-2063
    Google Scholar
  • 59. Mikhaylova O., Stratton Y., Hall D., Kellner E., Ehmer B., Drew A.F., Gallo C.A., Plas D.R., Biesiada J., Meller J., Czyzyk-Krzeska M.F.: VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell, 2012; 21: 532-546
    Google Scholar
  • 60. Mizushima N.: Autophagy: process and function. Genes Dev., 2007; 21: 2861-2873
    Google Scholar
  • 61. Mukhopadhyay S., Panda P.K., Sinha N., Das D.N., Bhutia S.K.: Autophagy and apoptosis: where do they meet? Apoptosis, 2014; 19: 555-566
    Google Scholar
  • 62. Nezis I.P., Shravage B.V., Sagona A.P., Lamark T., Bjørkøy G., Johansen T., Rusten T.E., Brech A., Baehrecke E.H., Stenmark H.: Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J. Cell Biol., 2010; 190: 523-531
    Google Scholar
  • 63. Nishida K., Yamaguchi O., Otsu K.: Crosstalk between autophagy and apoptosis in heart disease. Circ. Res., 2008; 103: 343-351
    Google Scholar
  • 64. Noble C.G., Dong J.M., Manser E., Song H.: Bcl-xL and UVRAG cause a monomer-dimer switch in Beclin1. J. Biol. Chem., 2008; 283: 26274-26282
    Google Scholar
  • 65. Norman J.M., Cohen G.M., Bampton E.T.: The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy, 2010; 6: 1042-1056
    Google Scholar
  • 66. Oral O., Oz-Arslan D., Itah Z., Naghavi A., Deveci R., Karacali S., Gozuacik D.: Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis, 2012; 17: 810-820
    Google Scholar
  • 67. Pagliarini V., Wirawan E., Romagnoli A., Ciccosanti F., Lisi G., Lippens S., Cecconi F., Fimia G.M., Vandenabeele P., Corazzari M., Piacentini M.: Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ., 2012; 19: 1495-1504
    Google Scholar
  • 68. Parzych K.R., Klionsky D.J.: An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014; 20: 460-473
    Google Scholar
  • 69. Pedro J.M., Wei Y., Sica V., Maiuri M.C., Zou Z., Kroemer G., Levine B.: BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy, 2015; 11: 452-459
    Google Scholar
  • 70. Pimkina J., Humbey O., Zilfou J.T., Jarnik M., Murphy M.E.: ARF induces autophagy by virtue of interaction with Bcl-xl. J. Biol. Chem., 2009; 284: 2803-2810
    Google Scholar
  • 71. Polager S., Ofir M., Ginsberg D.: E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene, 2008; 27: 4860-4864
    Google Scholar
  • 72. Polewska J.: Autophagy – molecular mechanism, apoptosis and cancer. Postępy Hig. Med. Dośw., 2012; 66: 921-936
    Google Scholar
  • 73. Purvis J.E., Karhohs K.W., Mock C., Batchelor E., Loewer A., Lahav G.: p53 dynamics control cell fate. Science, 2012; 336: 1440-1444
    Google Scholar
  • 74. Radi E., Formichi P., Battisti C., Federico A.: Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis., 2014; 42, Suppl. 3: S125-S152
    Google Scholar
  • 75. Rami A.: Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol. Appl. Neurobiol., 2009; 35: 449-461
    Google Scholar
  • 76. Reef S., Zalckvar E., Shifman O., Bialik S., Sabanay H., Oren M., Kimchi A.: A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol. Cell, 2006; 22: 463-475
    Google Scholar
  • 77. Riley T., Sontag E., Chen P., Levine A.: Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol., 2008; 9: 402-412
    Google Scholar
  • 78. Rubinstein A.D., Eisenstein M., Ber Y., Bialik S., Kimchi A.: The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol. Cell, 2011; 44: 698-709
    Google Scholar
  • 79. Rubinstein A.D., Kimchi A.: Life in the balance – a mechanistic view of the crosstalk between autophagy and apoptosis. J. Cell Sci., 2012; 125: 5259-5268
    Google Scholar
  • 80. Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z.: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J., 2007; 26: 1749-1760
    Google Scholar
  • 81. Schwarten M., Mohrlüder J., Ma P., Stoldt M., Thielmann Y., Stangler T., Hersch N., Hoffmann B., Merkel R., Willbold D.: Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy, 2009; 5: 690-698
    Google Scholar
  • 82. Shibutani S.T., Yoshimori T.: A current perspective of autophagosome biogenesis. Cell Res., 2014, 24: 58-68
    Google Scholar
  • 83. Sinha S., Levine B.: The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene, 2008; 27: S137-S148
    Google Scholar
  • 84. Strappazzon F., Vietri-Rudan M., Campello S., Nazio F., Florenzano F., Fimia G.M., Piacentini M., Levine B., Cecconi F.: Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J., 2011; 30: 1195-1208
    Google Scholar
  • 85. Su M., Mei Y., Sinha S.: Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol., 2013; 2013: 102735
    Google Scholar
  • 86. Su Z., Yang Z., Xu Y., Chen Y., Yu Q.: MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget, 2015; 6: 8474-8490
    Google Scholar
  • 87. Sui X., Chen R., Wang Z., Huang Z., Kong N., Zhang M., Han W., Lou F., Yang J., Zhang Q., Wang X., He C., Pan H.: Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis., 2013; 4: e838
    Google Scholar
  • 88. Sui X., Kong N., Ye L., Han W., Zhou J., Zhang Q., He C., Pan H.: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett., 2014; 344: 174-179
    Google Scholar
  • 89. Sun X., Momen A., Wu J., Noyan H., Li R., von Harsdorf R., Husain M.: p27 protein protects metabolically stressed cardiomyocytes from apoptosis by promoting autophagy. J. Biol. Chem., 2014; 289: 16924-16935
    Google Scholar
  • 90. Tait S.W., Green D.R.: Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol., 2010; 11: 621-632
    Google Scholar
  • 91. Towler M.C., Hardie D.G.: AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res., 2007; 100: 328-341
    Google Scholar
  • 92. Wei Y., Pattingre S., Sinha S., Bassik M., Levine B.: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell., 2008; 30: 678-688
    Google Scholar
  • 93. Wirawan E., VandeWalle L., Kersse K., Cornelis S., Claerhout S., Vanoverberghe I., Roelandt R., De Rycke R., Verspurten J., Declercq W., Agostinis P., Vanden Berghe T., Lippens S., Vandenabeele P.: Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis., 2010; 1: e18
    Google Scholar
  • 94. Xu W., Roos A., Daha M.R., van Kooten C.: Dendritic cell and macrophage subsets in the handling of dying cells. Immunobiology, 2006; 211: 567-575
    Google Scholar
  • 95. Yang X., Liu S., Kharbanda S., Stone R.M.: AKT1 induces caspase- -mediated cleavage of the CDK inhibitor p27Kip1 during cell cycle progression in leukemia cells transformed by FLT3-ITD. Leuk. Res., 2012; 36: 205-211
    Google Scholar
  • 96. Yang Z., Klionsky D.J.: An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol., 2009; 335: 1-32
    Google Scholar
  • 97. Ylä-Anttila P., Vihinen H., Jokitalo E., Eskelinen E.L.: 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 2009; 5: 1180-1185
    Google Scholar
  • 98. Youle R.J., Strasser A.: The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008; 9: 47-59
    Google Scholar
  • 99. Yousefi S., Perozzo R., Schmid I., Ziemiecki A., Schaffner T., Scapozza L., Brunner T., Simon H.U.: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol., 2006; 8: 1124-1132
    Google Scholar
  • 100. Zalckvar E., Berissi H., Mizrachy L., Idelchuk Y., Koren I., Eisenstein M., Sabanay H., Pinkas-Kramarski R., Kimchi A.: DAP-kinase- -mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep., 2009; 10: 285-292
    Google Scholar
  • 101. Zhan Y., Gong K., Chen C., Wang H., Li W.: P38 MAP kinase functions as a switch in MS-275-induced reactive oxygen species- -dependent autophagy and apoptosis in human colon cancer cells. Free Radic Biol. Med., 2012; 53: 532-543
    Google Scholar
  • 102. Zhou C., Zhou J., Sheng F., Zhu H., Deng X., Xia B., Lin J.: The heme oxygenase-1 inhibitor ZnPPIX induces non-canonical, Beclin 1-independent, autophagy through p38 MAPK pathway. Acta Biochim. Biophys. Sin., 2012; 44: 815-822
    Google Scholar
  • 103. Zhu X., Messer J.S., Wang Y., Lin F., Cham C.M., Chang J., Billiar T.R., Lotze M.T., Boone D.L., Chang E.B.: Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J. Clin. Invest., 2015; 125: 1098-1110
    Google Scholar

Full text

Skip to content