The cellular receptors of exogenous RNA

COMMENTARY ON THE LAW

The cellular receptors of exogenous RNA

Patryk Reniewicz 1 , Joanna Zyzak 1 , Jakub Siednienko 2

1. Laboratorium Białek Sygnałowych, Instytut Immunologii i Terapii Doświadczalnej PAN im. L. Hirszfelda we Wrocławiu
2. Laboratorium Białek Sygnałowych, Instytut Immunologii i Terapii Doświadczalnej PAN im. L. Hirszfelda we Wrocławiu; Wrocławskie Centrum Badań EIT+

Published: 2016-04-21
DOI: 10.5604/17322693.1199987
GICID: 01.3001.0009.6815
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 337-348

 

Abstract

One of the key determinants of survival for organisms is proper recognition of exogenous and endogenous nucleic acids. Therefore, high eukaryotes developed a number of receptors that allow for discrimination between friend or foe DNA and RNA. Appearance of exogenous RNA in cytoplasm provides a signal of danger and triggers cellular responses that facilitate eradication of a pathogen. Recognition of exogenous RNA is additionally complicated by fact that large amount of endogenous RNA is present in cytoplasm Thus, number of different receptors, found in eukaryotic cells, is able to recognize that nucleic acid. First group of those receptors consist endosomal Toll like receptors, namely TLR3, TLR7, TLR8 and TLR13. Those receptors recognize RNA released from pathogens that enter the cell by endocytosis. The second group includes cytoplasmic sensors like PKR and the family of RLRs comprised of RIG-I, MDA5 and LGP2. Cytoplasmic receptors recognize RNA from pathogens invading the cell by non-endocytic pathway. In both cases binding of RNA by its receptors results in activation of the signalling cascades that lead to the production of interferon and other cytokines.

References

  • 1. Akira S., Hemmi H.: Recognition of pathogen-associated molecularpatterns by TLR family. Immunol. Lett., 2003; 85: 85-95
    Google Scholar
  • 2. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A.: Recognition ofdouble-stranded RNA and activation of NF-κB by Toll-like receptor 3.Nature, 2001; 413: 732-738
    Google Scholar
  • 3. Baccarella A., Fontana M.F., Chen E.C., Kim C.C.: Toll-like receptor 7mediates early innate immune responses to malaria. Infect. Immun.,2013; 81: 4431-4442
    Google Scholar
  • 4. Bao M., Liu Y.J.: Regulation of TLR7/9 signaling in plasmacytoid dendriticcells. Protein Cell, 2013; 4: 40-52
    Google Scholar
  • 5. Barral P.M., Sarkar D., Su Z.Z., Barber G.N., DeSalle R., RacanielloV.R., Fisher P.B.: Functions of the cytoplasmic RNA sensors RIG-I andMDA-5: key regulators of innate immunity. Pharmacol. Toxicol., 2009;124: 219-234
    Google Scholar
  • 6. Bauer S., Pigisch S., Hangel D., Kaufmann A., Hamm S.: Recognitionof nucleic acid and nucleic acid analogs by Toll-like receptors 7, 8 and 9 Immunobiol., 2008; 213: 315-328
    Google Scholar
  • 7. Baum A., Sachidanandam R., Garcia-Sastre A.: Preference of RIG-I forshort viral RNA molecules in infected cells revealed by next-generationsequencing. Proc. Natl. Acad. Sci. USA, 2010; 107: 16303-16308
    Google Scholar
  • 8. Beignon A.S., McKenna K., Skoberne M., Manches O., DaSilva I., KavanaghD.G., Larsson M., Gorelick R.J., Lifson J.D., Bhardwaj N.: Endocytosisof HIV-1 activates plasmacytoid dendritic cells via Toll-like receptorviralRNA interactions. J. Clin. Invest., 2005; 115: 3265-3275
    Google Scholar
  • 9. Berg R.K., Melchjorsen J., Rintahaka J., Diget E., Soby S., Horan K.A.,Gorelick R.J., Matikainen S., Larsen C.S., Ostergaard L., Paludan S.R.,Mogensen T.H.: Genomic HIV RNA induces innate immune responsesthrough RIG-I-dependent sensing of secondary-structured RNA. PloSOne, 2012; 7: e29291
    Google Scholar
  • 10. Berke I.C., Li Y., Modis Y.: Structural basis of innate immune recognitionof viral RNA. Cell. Microbiol., 2013; 15: 386-394
    Google Scholar
  • 11. Bianchi M.E.: DAMPs, PAMPs and alarmins: all we need to knowabout danger. J. Leukoc. Biol., 2007; 81: 1-5
    Google Scholar
  • 12. Cardenas W.B., Loo Y.M., Gale M. Jr., Hartman A.L., Kimberlin C.R.,Martinez-Sobrido L., Saphire E.O, Basler C.F.: Ebola virus VP35 proteinbinds double-stranded RNA and inhibits a/b interferon production inducedby RIG-I signaling. J. Virol., 2006; 80: 5168-5178
    Google Scholar
  • 13. Cervantes J.L., Weinerman B., Basole C., Salazar J.C.: TLR8: the forgottenrelative revindicated. Cell. Mol. Immunol., 2012; 9: 434-438
    Google Scholar
  • 14. Childs K.S., Randall R.E., Goodbourn S.: LGP2 plays a critical rolein sensitizing mda-5 to activation by double-stranded RNA. PloS One,2013; 8: e64202
    Google Scholar
  • 15. Choe J., Kelker M.S., Wilson I.A.: Crystal structure of human Toll-likereceptor 3 (TLR3) ectodomain. Science, 2005; 309: 581-585
    Google Scholar
  • 16. Cole J.L.: Activation of PKR: an open and shut case? Trends Biochem.Sci., 2007; 32: 57-62
    Google Scholar
  • 17. Creagh E.M., O’Neill L.A.J.: TLRs, NLRs and RLRs: a trinity of pathogensensors that co-operate in innate immunity. Trends Immunol.,2006; 27: 352-357
    Google Scholar
  • 18. Deddouche S., Goubau D., Rehwinkel J., Chakravarty P., Begum S.,Maillard P.V., Borg A., Matthews N., Feng Q., van Kuppeveld F.J., Reis eSousa C.: Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. Elife, 2014; 3: e01535
    Google Scholar
  • 19. Diebold S.S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C.R: Innateantiviral responses by means of TLR7-mediated recognition of singlestrandedRNA. Science, 2004; 303: 1529-1531
    Google Scholar
  • 20. Dixit E., Boulant S., Zhang Y., Lee A.S., Odendall C., Shum B., HacohenN., Chen Z.J., Whelan S.P., Fransen M., Nibert M.L., Superti-FurgaG., Kagan J.C.: Peroxisomes are signaling platforms for antiviral innateimmunity. Cell, 2010; 141: 668-681
    Google Scholar
  • 21. Gack M.U., Albrecht R.A., Urano T., Inn K-S., Huang I.C., Carnero E.,Farzan M., Inoue S., Jung J.U., García-Sastre A.: Influenza A virus NS1targets the ubiquitin ligase TRIM25 to evade recognition by the hostviral RNA sensor RIG-I. Cell Host Microbe, 2009; 5: 439-449
    Google Scholar
  • 22. Gack M.U., Shin Y.C., Joo C.H., Urano T., Liang C., Sun L., TakeuchiO., Akira S., Chen Z., Inoue S., Jung J.U.: TRIM25 RING-finger E3 ubiquitinligase is essential for RIG-I-mediated antiviral activity. Nature,2007; 446: 916-920
    Google Scholar
  • 23. Gantier M.P., Tong S., Behlke M.A., Xu D., Phipps S., Foster P.S.,Williams B.R.: TLR7 is involved in sequence-specific sensing of singlestrandedRNAs in human macrophages. J. Immunol., 2008; 180: 2117-2124
    Google Scholar
  • 24. Gitlin L., Barchet W., Gilfillan S., Cella M., Beutler B., Flavell R.A., DiamondM.S., Colonna M.: Essential role of mda-5 in type I IFN responsesto polyriboinosinic: polyribocytidylic acid and encephalomyocarditispicornavirus. Proc. Natl. Acad. Sci. USA, 2006; 103: 8459-8464
    Google Scholar
  • 25. Gorden K.B., Gorski K.S., Gibson S.J., Kedl R.M., Kieper W.C., QiuX.H., Tomai M.A., Alkan S.S., Vasilakos J.P.: Synthetic TLR agonists revealfunctional differences between human TLR7 and TLR8. J. Immunol.,2005; 174: 1259-1268
    Google Scholar
  • 26. Goubau D., Deddouche S., Reis e Sousa C.: Cytosolic sensing of viruses.Immunity, 2013; 38: 855-869
    Google Scholar
  • 27. Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T.,Goldeck M., Schuberth C., Van der Veen A.G., Fujimura T., RehwinkelJ., Iskarpatyoti J.A., Barchet W., Ludwig J., Dermody T.S., Hartmann G.,Reis e Sousa C.: Antiviral immunity via RIG-I-mediated recognition ofRNA bearing 5 ‚-diphosphates. Nature, 2014; 514: 372-375
    Google Scholar
  • 28. Guillot L., Le Goffic R., Bloch S., Escriou N., Akira S., Chignard M., Si-Tahar M.: Involvement of toll-like receptor 3 in the immune responseof lung epithelial cells to double-stranded RNA and influenza A virus.J. Biol. Chem., 2005; 280: 5571-5580
    Google Scholar
  • 29. Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., HorvathG., Caffrey D.R., Latz E., Fitzgerald K.A.: AIM2 recognizes cytosolicdsDNA and forms a caspase-1-activating inflammasome with ASC. Nature,2009; 458: 514-518
    Google Scholar
  • 30. Hornung V., Rothenfusser S., Britsch S., Krug A., Jahrsdorfer B.,Giese T., Endres S., Hartmann G.: Quantitative expression of Toll-likereceptor 1-10 mRNA in cellular subsets of human peripheral bloodmononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.,2002; 168: 4531-4537
    Google Scholar
  • 31. Jin M.S., Lee J.O.: Structures of the toll-like receptor family and itsligand complexes. Immunity., 2008; 29: 182-191
    Google Scholar
  • 32. Jurk M., Heil F., Vollmer J., Schetter C., Krieg A.M., Wagner H., LipfordG., Bauer S.: Human TLR7 or TLR8 independently confer responsivenessto the antiviral compound R-848. Nat. Immunol., 2002; 3: 499
    Google Scholar
  • 33. Jurk M., Kritzler A., Schulte B., Tluk S., Schetter C., Krieg AM.,Vollmer J.: Modulating responsiveness of human TLR7 and 8 to smallmolecule ligands with T-rich phosphorothiate oligodeoxynucleotides.Eur. J. Immunol., 2006; 36: 1815-1826
    Google Scholar
  • 34. Kang D.C., Gopalkrishnan R.V., Lin L., Randolph A., Valerie K., PestkaS., Fisher P.B.: Expression analysis and genomic characterization of humanmelanoma differentiation associated gene-5, mda-5: a novel typeI interferon-responsive apoptosis-inducing gene. Oncogene, 2004; 23:1789-1800
    Google Scholar
  • 35. Kang J.I., Kwon S.N., Park S.H., Kim Y.K., Choi S.Y., Kim J.P., Ahn B.Y.:PKR protein kinase is activated by hepatitis C virus and inhibits viralreplication through translational control. Virus Res., 2009; 142: 51-56
    Google Scholar
  • 36. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., MatsushitaK., Hiiragi A., Dermody T.S., Fujita T., Akira S.: Length-dependent recognitionof double-stranded ribonucleic acids by retinoic acid-induciblegene-I and melanoma differentiation-associated gene 5. J. Exp. Med.,2008; 205: 1601-1610
    Google Scholar
  • 37. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., MatsuiK., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., TsujimuraT., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S.: Differential roles of MDA5 and RIG-I helicases in the recognition of RNAviruses. Nature, 2006; 441: 101-105
    Google Scholar
  • 38. Kawai T., Akira S.: The roles of TLRs, RLRs and NLRs in pathogenrecognition. Int. Immunol., 2009; 21: 317-337
    Google Scholar
  • 39. Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., GrigorovB., Gerlier D., Cusack S.: Structural basis for the activation of innateimmune pattern-recognition receptor RIG-I by viral RNA. Cell,2011; 147: 423-435
    Google Scholar
  • 40. Koyama S., Ishii K.J., Kumar H., Tanimoto T., Coban C., Uematsu S.,Kawai T., Akira S.: Differential role of TLR – and RLR-signaling in theimmune responses to influenza a virus infection and vaccination. J.Immunol., 2007; 179: 4711-4720
    Google Scholar
  • 41. Lafon M., Megret F., Lafage M., Prehaud C.: The innate immune facetof brain – human neurons express TLR-3 and sense viral dsRNA. J. Mol.Neurosci., 2006; 29: 185-194
    Google Scholar
  • 42. Ling Z., Tran K.C., Teng M.N.: Human respiratory syncytial virusnonstructural protein NS2 antagonizes the activation of beta interferontranscription by interacting with RIG-I. J. Virol., 2009; 83: 3734-3742
    Google Scholar
  • 43. Liu L., Botos I., Wang Y., Leonard J.N., Shiloach J., Segal D.M., DaviesD.R.: Structural basis of toll-like receptor 3 signaling with doublestrandedRNA. Science, 2008; 320: 379-381
    Google Scholar
  • 44. Liu X., Bennett R.L., Cheng X., Byrne M., Reinhard M.K., May W.S.Jr.:PKR regulates proliferation, differentiation, and survival of murine hematopoieticstem/progenitor cells. Blood, 2013; 121: 3364-3374
    Google Scholar
  • 45. Loo Y.M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M.A., García-Sastre A., Katze M.G., Gale M. Jr.:Distinct RIG-I and MDA5 signaling regulation by RNA viruses in innateimmunity. J. Virol., 2008; 82: 335-345
    Google Scholar
  • 46. Loo Y.M., Gale M. Jr.: Immune signaling by RIG-I-like receptors. Immunity,2011; 34: 680-692
    Google Scholar
  • 47. Luo D., Ding S.C., Vela A., Kohlway A., Lindenbach B.D., Pyle A.M.:Structural insights into RNA recognition by RIG-I. Cell, 2011; 147: 409-422
    Google Scholar
  • 48. Maharaj N.P., Wies E., Stoll A., Gack M.U.: Conventional protein kinaseC-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signaltransduction. J. Virol., 2012; 86: 1358-1371
    Google Scholar
  • 49. Marcotrigiano J., Gingras A.C., Sonenberg N., Burley S.K.: Cocrystalstructure of the messenger RNA 5› cap-binding protein (eIF4E) boundto 7-methyl-GDP. Cell, 1997; 89: 951-961
    Google Scholar
  • 50. Marsh M., Helenius A.: Virus entry: open sesame. Cell, 2006; 124:729-740
    Google Scholar
  • 51. Matsumoto M., Kikkawa S., Kohase M., Miyake K., Seya T.: Establishmentof a monoclonal antibody against human Toll-like receptor 3 thatblocks double-stranded RNA-mediated signaling. Biochem. Biophys.Res. Commun., 2002; 293: 1364-1369
    Google Scholar
  • 52. Matsumoto M., Seya T.: TLR3: Interferon induction by doublestrandedRNA including poly(I:C). Adv. Drug Deliv. Rev., 2008; 60: 805-812
    Google Scholar
  • 53. Meurs E., Chong K., Galabru J., Thomas N.S., Kerr I.M., Williams B.R.,Hovanessian A.G.: Molecular cloning and characterization of the humandouble-stranded RNA-activated protein kinase induced by interferon.Cell, 1990; 62: 379-390
    Google Scholar
  • 54. Meylan E., Curran J., Hofmann K., Moradpour D., Binder M.,Bartenschlager R., Tschoop J.: Cardif is an adaptor protein in the RIGIantiviral pathway and is targeted by hepatitis C virus. Nature, 2005;437: 1167-1172
    Google Scholar
  • 55. Myong S., Cui S., Cornish P.V., Kirchhofer A., Gack M.U., Jung J.U.,Hopfner K.P., Ha T.: Cytosolic viral sensor RIG-I is a 5’-triphosphatedependenttranslocase on double-stranded RNA. Science, 2009; 323:1070-1074
    Google Scholar
  • 56. Norden R., Nystrom K., Olofsson S.: Activation of host antiviralRNA-sensing factors necessary for herpes simplex virus type 1-activated transcription of host cell fucosyltransferase genes FUT3, FUT5,and FUT6 and subsequent expression of sLe(x) in virus-infected cells.Glycobiology, 2009; 19: 776-788
    Google Scholar
  • 57. Oldenburg M., Kruger A., Ferstl R., Kaufmann A., Nees G., SigmundA., Bathke B., Lauterbach H., Suter M., Dreher S., Koedel U., Akira S.,Kawai T., Buer J., Wagner H., Bauer S., Hochrein H., Kirschning C.J.:TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistanceformingmodification. Science, 2012; 337: 1111-1115
    Google Scholar
  • 58. Opitz C.A., Litzenburger U.M., Lutz C., Lanz T.V., Tritschler I., KoppelA., Tolosa E., Hoberg M., Anderl J., Aicher W.K., Weller M., Wick W.,Platten M.: Toll-like receptor engagement enhances the immunosuppressiveproperties of human bone marrow-derived mesenchymal stemcells by inducing indoleamine-2,3-dioxygenase-1 via interferon-b andprotein kinase R. Stem Cells, 2009; 27: 909-919
    Google Scholar
  • 59. Paz S., Sun Q., Nakhaei P., Romieu-Mourez R., Goubau D., JulkunenI., Lin R., Hiscott J.: Induction of IRF-3 and IRF-7 phosphorylation followingactivation of the RIG-I pathway. Cell Mol. Biol., 2006; 52: 17-28
    Google Scholar
  • 60. Pfaller C.K., Radeke M.J., Cattaneo R., Samuel C.E.: Measles virusC protein impairs production of defective copyback double-strandedviral RNA and activation of protein kinase R. J. Virol., 2014; 88: 456-468
    Google Scholar
  • 61. Plumet S., Duprex W.P., Gerlier D.: Dynamics of viral RNA synthesisduring measles virus infection. J. Virol., 2005; 79: 6900-6908
    Google Scholar
  • 62. Powers C., DeFilippis V., Malouli D., Frueh K.: Cytomegalovirus immuneevasion. Curr. Top. Microbiol. Immunol., 2008; 325: 333-359
    Google Scholar
  • 63. Rehwinkel J., Tan C.P., Goubau D., Schulz O., Pichlmair A., Bier K.,Robb N., Vreede F., Barclay W., Fodor E., Reis e Sousa C.: RIG-I detectsviral genomic RNA during negative-strand RNA virus infection. Cell,2010; 140: 397-408
    Google Scholar
  • 64. Rua R., Lepelley A., Gessain A., Schwartz O.: Innate sensing of foamyviruses by human hematopoietic cells. J. Virol., 2012; 86: 909-918
    Google Scholar
  • 65. Runge S., Sparrer K.M., Laessig C., Hembach K., Baum A., Garcia-Sastre A., Söding J., Conzelmann K.K., Hopfner K.P.: In vivo ligands ofMDA5 and RIG-I in measles virus-infected cells. PLoS Pathog., 2014;10: e1004081
    Google Scholar
  • 66. Rutz M., Metzger J., Gellert T., Luppa P., Lipford G.B., Wagner H., BauerS.: Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence– and pH-dependent manner. Eur. J. Immunol., 2004; 34: 2541-2550
    Google Scholar
  • 67. Sadler A.J., Williams B.R.: Structure and function of the protein kinaseR. Curr. Top. Microbiol. Immunol., 2007; 316: 253-292
    Google Scholar
  • 68. Saito T., Hirai R., Loo Y.M., Owen D., Johnson C.L., Sinha S.C., AkiraS., Fujita T., Gale M. Jr: Regulation of innate antiviral defenses througha shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA,2007; 104: 582-587
    Google Scholar
  • 69. Sarvestani S.T., Stunden H.J., Behlke M.A., Forster S.C., McCoy C.E.,Tate M.D., Ferrand J., Lennox K.A., Latz E., Williams B.R., Gantier M.P.:Sequence-dependent off-target inhibition of TLR7/8 sensing by syntheticmicroRNA inhibitors. Nucleic Acids Res., 2015; 43: 1177-1188
    Google Scholar
  • 70. Satoh T., Kato H., Kumagai Y., Yoneyama M., Sato S., Matsushita K.,Tsujimura T., Fujita T., Akira S., Takeuchi O.: LGP2 is a positive regulatorof RIG-I – and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci.USA, 2010; 107: 1512-1517
    Google Scholar
  • 71. Schulz O., Pichlmair A., Rehwinkel J., Rogers N.C., Scheuner D., KatoH., Takeuchi O., Akira S., Kaufman R.J., Reis e Sousa C.: Protein kinase Rcontributes to immunity against specific viruses by regulating interferonmRNA integrity. Cell Host Microbe, 2010; 7: 354-361
    Google Scholar
  • 72. Sen G.C., Sarkar S.N.: Transcriptional signaling by double-strandedRNA: role of TLR3. Cytokine Growth Factor Rev., 2005; 16: 1-14
    Google Scholar
  • 73. Shi Z., Cai Z., Sanchez A., Zhang T., Wen S., Wang J., Yang J., Fu S.,Zhang D.: A novel Toll-like receptor that recognizes vesicular stomatitisvirus. J. Biol. Chem., 2011; 286: 4517-4524
    Google Scholar
  • 74. Signorino G., Mohammadi N., Patane F., Buscetta M., Venza M.,Venza I., Mancuso G., Midiri A., Alexopoulou L., Teti G., Biondo C., Beninati C.: Role of Toll-like receptor 13 in innate immune recognition ofgroup B streptococci. Infect. Immun., 2014; 82: 5013-5022
    Google Scholar
  • 75. Silva A.M., Whitmore M., Xu Z., Jiang Z.F., Li X.X., Williams B.R.:Protein kinase R (PKR) interacts with and activates mitogen-activatedprotein kinase kinase 6 (MKK6) in response to double-stranded RNAstimulation. J. Biol. Chem., 2004; 279: 37670-37676
    Google Scholar
  • 76. Sun L., Wu J., Du F., Chen X., Chen Z.J.: Cyclic GMP-AMP synthaseis a cytosolic DNA sensor that activates the type I interferon pathway.Science, 2013; 339: 786-791
    Google Scholar
  • 77. Takada E., Okahira S., Sasai M., Funami K., Seya T., Matsumoto M.:C-terminal LRRs of human Toll-like receptor 3 control receptor dimerizationand signal transmission. Mol. Immunol., 2007; 44: 3633-3640
    Google Scholar
  • 78. Tolle L.B., Standiford T.J.: Danger-associated molecular patterns(DAMPs) in acute lung injury. J. Pathol., 2013; 229: 145-156
    Google Scholar
  • 79. Triantafilou K., Vakakis E., Orthopoulos G., Ahmed M.A., SchumannC., Lepper P.M., Triantafilou M.: TLR8 and TLR7 are involved in thehost’s immune response to human parechovirus 1. Eur. J. Immunol.,2005; 35: 2416-2423
    Google Scholar
  • 80. Vercammen E., Staal J., Beyaert R.: Sensing of viral infection andactivation of innate immunity by toll-like receptor 3. Clin. Microbiol.Rev., 2008; 21: 13-25
    Google Scholar
  • 81. Vijay-Kumar M., Gentsch J.R., Kaiser W.J., Borregaard N., OffermannM.K., Neish A.S., Gewirtz A.T.: Protein kinase R mediates intestinal epithelialgene remodeling in response to double-stranded RNA and liverotavirus. J. Immunol., 2005; 174: 6322-6331
    Google Scholar
  • 82. Wei T., Gong J., Jamitzky F., Heckl W.M., Stark R.W., Roessle S.C.:Homology modeling of human Toll-like receptors TLR7, 8, and 9 ligandbindingdomains. Protein Sci., 2009; 18: 1684-1691
    Google Scholar
  • 83. Wies E., Wang M.K., Maharaj N.P., Chen K., Zhou S., Finberg R.W.,Gack M.U.: Dephosphorylation of the RNA sensors RIG-I and MDA5 bythe phosphatase PP1 is essential for innate immune signaling. Immunity,2013; 38: 437-449
    Google Scholar
  • 84. Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T.,Hur S.: Structural basis for dsRNA recognition, filament formation, andantiviral signal activation by MDA5. Cell, 2013; 152: 276-289
    Google Scholar
  • 85. Xing J., Wang S., Lin R., Mossman K.L., Zheng C.: Herpes simplexvirus 1 tegument protein US11 downmodulates the RLR signaling pathwayvia direct interaction with RIG-I and MDA-5. J. Virol., 2012; 86:3528-3540
    Google Scholar
  • 86. Xu H., He X., Zheng H., Huang L.J., Hou F., Yu Z., de la Cruz M.J.,Borkowski B., Zhang X., Chen Z.J., Jiang Q.X.: Structural basis for theprion-like MAVS filaments in antiviral innate immunity. Elife, 2014;3: e01489
    Google Scholar
  • 87. Yoneyama M., Fujita T.: Structural mechanism of RNA recognitionby the RIG-l-like receptors. Immunity, 2008; 29: 178-181
    Google Scholar
  • 88. Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., MiyagishiM., Taira K., Foy E., Loo Y.M., Gale M. Jr., Akira S., Yonehara S., Kato A.,Fujita T.: Shared and unique functions of the DExD/H-box helicasesRIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol., 2005;175: 2851-2858
    Google Scholar
  • 89. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T.,Miyagishi M., Taira K., Akira S., Fujita T.: The RNA helicase RIG-I has anessential function in double-stranded RNA-induced innate antiviralresponses. Nat. Immunol., 2004; 5: 730-737
    Google Scholar
  • 90. Zucchini N., Bessou G., Traub S., Robbins S.H., Uematsu S., Akira S.,Alexopoulou L., Dalod M.: Cutting edge: Overlapping functions of TLR7and TLR9 for innate defense against a herpesvirus infection. J. Immunol.,2008; 180: 5799-5803
    Google Scholar

Full text

Skip to content