The CRISPR-Cas system – from bacterial immunity to genome engineering

COMMENTARY ON THE LAW

The CRISPR-Cas system – from bacterial immunity to genome engineering

Maria Czarnek 1 , Joanna Bereta 2

1. Zakład Biochemii Komórki, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński w Krakowie*
2. Zakład Biochemii Komórki, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński w Krakowie

Published: 2016-09-01
DOI: 10.5604/17322693.1216379
GICID: 01.3001.0009.6869
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 901-916

 

Abstract

Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called “programmable” nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease – Cas9 – to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.

References

  • 1. Anton T., Bultmann S., Leonhardt H., Markaki Y.: Visualization ofspecific DNA sequences in living mouse embryonic stem cells witha programmable fluorescent CRISPR/Cas system. Nucleus, 2014; 5:163-172
    Google Scholar
  • 2. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P.,Moineau S., Romero D.A., Horvath P.: CRISPR provides acquired resistanceagainst viruses in prokaryotes. Science, 2007; 315: 1709-1712
    Google Scholar
  • 3. Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., MarraffiniL.A.: Programmable repression and activation of bacterial geneexpression using an engineered CRISPR-Cas system. Nucleic AcidsRes., 2013; 41: 7429-7437
    Google Scholar
  • 4. Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I.: FokI dimerizationis required for DNA cleavage. Proc. Natl. Acad. Sci. USA,1998; 95: 10570-10575
    Google Scholar
  • 5. Blasco R.B., Karaca E., Ambrogio C., Cheong T.C., Karayol E., MineroV.G., Voena C., Chiarle R.: Simple and rapid in vivo generationof chromosomal rearrangements using CRISPR/Cas9 technology.Cell Rep., 2014; 9: 1219-1227
    Google Scholar
  • 6. Bogdanove A.J., Voytas D.F.: TAL effectors: customizable proteinsfor DNA targeting. Science, 2011; 333: 1843-1846
    Google Scholar
  • 7. Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D.: Clustered regularlyinterspaced short palindrome repeats (CRISPRs) have spacersof extrachromosomal origin. Microbiology, 2005; 151: 2551-2561
    Google Scholar
  • 8. Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J.,Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V., van der OostJ.: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science,2008; 321: 960-964
    Google Scholar
  • 9. Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D., SuttonG.G., Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D., KerlavageA.R., Dougherty B.A., Tomb J.F., Adams M.D., Reich C.I. i wsp.: Completegenome sequence of the methanogenic archaeon, Methanococcusjannaschii. Science, 1996; 273: 1058-1073
    Google Scholar
  • 10. Capecchi M.R.: Altering the genome by homologous recombination.Science, 1989; 244: 1288-1292
    Google Scholar
  • 11. Carte J., Wang R., Li H., Terns R.M., Terns M.P.: Cas6 is an endoribonucleasethat generates guide RNAs for invader defense inprokaryotes. Genes Dev., 2008; 22: 3489-3496
    Google Scholar
  • 12. Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., LiG.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S., Huang B.: Dynamicimaging of genomic loci in living human cells by an optimizedCRISPR/Cas system. Cell, 2013; 155: 1479-1491
    Google Scholar
  • 13. Chen F., Pruett-Miller S.M., Huang Y., Gjoka M., Duda K., Taunton J., Collingwood T.N., Frodin M., Davis G.D.: High-frequency genomeediting using ssDNA oligonucleotides with zinc-finger nucleases.Nat. Methods, 2011; 8: 753-755
    Google Scholar
  • 14. Cho S.W., Kim S., Kim J.M., Kim J.S.: Targeted genome engineeringin human cells with the Cas9 RNA-guided endonuclease. Nat.Biotechnol., 2013; 31: 230-232
    Google Scholar
  • 15. Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.S.:Analysis of off-target effects of CRISPR/Cas-derived RNA-guidedendonucleases and nickases. Genome Res., 2014; 24: 132-141
    Google Scholar
  • 16. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., WuX., Jiang W., Marraffini L.A., Zhang F.: Multiplex genome engineeringusing CRISPR/Cas systems. Science, 2013; 339: 819-823
    Google Scholar
  • 17. Cornu T.I., Thibodeau-Beganny S., Guhl E., Alwin S., EichtingerM., Joung J.K., Cathomen T.: DNA-binding specificity is a major determinantof the activity and toxicity of zinc-finger nucleases. Mol.Ther., 2008; 16: 352-358
    Google Scholar
  • 18. Cradick T.J., Fine E.J., Antico C.J., Bao G.: CRISPR/Cas9 systemstargeting β-globin and CCR5 genes have substantial off-target activity.Nucleic Acids Res., 2013; 41: 9584-9592
    Google Scholar
  • 19. Datsenko K.A., Pougach K., Tikhonov A., Wanner B.L., SeverinovK., Semenova E.: Molecular memory of prior infections activatesthe CRISPR/Cas adaptive bacterial immunity system. Nat. Commun.,2012; 3: 945
    Google Scholar
  • 20. Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y.,Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E.: CRISPR RNA maturationby trans-encoded small RNA and host factor RNase III. Nature,2011; 471: 602-607
    Google Scholar
  • 21. Deveau H., Barrangou R., Garneau J.E., Labonté J., Fremaux C.,Boyaval P., Romero D.A., Horvath P., Moineau S.: Phage response toCRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol.,2008; 190: 1390-1400
    Google Scholar
  • 22. Essletzbichler P., Konopka T., Santoro F., Chen D., Gapp B.V., KralovicsR., Brummelkamp T.R., Nijman S.M., Bürckstümmer T.: Megabase-scaledeletion using CRISPR/Cas9 to generate a fully haploidhuman cell line. Genome Res., 2014; 24: 2059-2065
    Google Scholar
  • 23. Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K.,Sander J.D.: High-frequency off-target mutagenesis induced by CRISPR-Casnucleases in human cells. Nat. Biotechnol., 2013; 31: 822-826
    Google Scholar
  • 24. Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K.: ImprovingCRISPR-Cas nuclease specificity using truncated guide RNAs. Nat.Biotechnol., 2014; 32: 279-284
    Google Scholar
  • 25. Garneau J.E., Dupuis M.E., Villion M., Romero D.A., BarrangouR., Boyaval P., Fremaux C., Horvath P., Magadán A.H., Moineau S.:The CRISPR/Cas bacterial immune system cleaves bacteriophageand plasmid DNA. Nature, 2010; 468: 67-71
    Google Scholar
  • 26. Gilbert L.A., Larson M.H., Morsut L., Liu Z., Brar G.A., Torres S.E.,Stern-Ginossar N., Brandman O., Whitehead E.H., Doudna J.A., LimW.A., Weissman J.S., Qi L.S.: CRISPR-mediated modular RNA-guidedregulation of transcription in eukaryotes. Cell, 2013; 154: 442-451
    Google Scholar
  • 27. Gratz S.J., Ukken F.P., Rubinstein C.D., Thiede G., Donohue L.K.,Cummings A.M., O›Connor-Giles K.M.: Highly specific and efficientCRISPR/Cas9-catalyzed homology-directed repair in Drosophila.Genetics, 2014; 196: 961-971
    Google Scholar
  • 28. Grissa I., Vergnaud G., Pourcel C.: The CRISPRdb database andtools to display CRISPRs and to generate dictionaries of spacers andrepeats. BMC Bioinformatics, 2007; 8: 172
    Google Scholar
  • 29. Guilinger J.P., Thompson D.B., Liu D.R.: Fusion of catalyticallyinactive Cas9 to FokI nuclease improves the specificity of genomemodification. Nat. Biotechnol., 2014; 32: 577-582
    Google Scholar
  • 30. Hale C.R., Zhao P., Olson S., Duff M.O., Graveley B.R., Wells L.,Terns R.M., Terns M.P.: RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell, 2009; 139: 945-956
    Google Scholar
  • 31. Hatoum-Aslan A., Samai P., Maniv I., Jiang W., Marraffini L.A.:A ruler protein in a complex for antiviral defense determines thelength of small interfering CRISPR RNAs. J. Biol. Chem., 2013; 288:27888-27897
    Google Scholar
  • 32. Hou Z., Zhang Y., Propson N.E., Howden S.E., Chu L.F., SontheimerE.J., Thomson J.A.: Efficient genome engineering in humanpluripotent stem cells using Cas9 from Neisseria meningitidis. Proc.Natl. Acad. Sci. USA, 2013; 110: 15644-15649
    Google Scholar
  • 33. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S.,Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., MarraffiniL.A., Bao G., Zhang F.: DNA targeting specificity of RNA-guided Cas9nucleases. Nat. Biotechnol., 2013; 31: 827-832
    Google Scholar
  • 34. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., CharpentierE.: A programmable dual-RNA-guided DNA endonuclease inadaptive bacterial immunity. Science, 2012; 337: 816-821
    Google Scholar
  • 35. Jurica M.S., Stoddard B.L.: Homing endonucleases: structure,function and evolution. Cell. Mol. Life Sci., 1999; 55: 1304-1326
    Google Scholar
  • 36. Karvelis T., Gasiunas G., Miksys A., Barrangou R., Horvath P.,Siksnys V.: crRNA and tracrRNA guide Cas9-mediated DNA interferencein Streptococcus thermophilus. RNA Biol., 2013; 10: 841-851
    Google Scholar
  • 37. Kearns N.A., Genga R.M., Enuameh M.S., Garber M., Wolfe S.A.,Maehr R.: Cas9 effector-mediated regulation of transcription anddifferentiation in human pluripotent stem cells. Development, 2014;141: 219-223
    Google Scholar
  • 38. Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T.,Zheng Z., Gonzales A.P., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., JoungJ.K.: Engineered CRISPR-Cas9 nucleases with altered PAM specificities.Nature, 2015; 523: 481-485
    Google Scholar
  • 39. Kuscu C., Arslan S., Singh R., Thorpe J., Adli M.: Genome-wideanalysis reveals characteristics of off-target sites bound by the Cas9endonuclease. Nat. Biotechnol., 2014; 32: 677-683
    Google Scholar
  • 40. Lagutina I.V., Valentine V., Picchione F., Harwood F., ValentineM.B., Villarejo-Balcells B., Carvajal J.J., Grosveld G.C.: Modeling ofthe human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosometranslocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoSGenet., 2015; 11: e1004951
    Google Scholar
  • 41. Lemak S., Nocek B., Beloglazova N., Skarina T., Flick R., BrownG., Joachimiak A., Savchenko A., Yakunin A.F.: The CRISPR-associatedCas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe–2S] cluster: crystal structure and nuclease activity. Nucleic AcidsRes., 2014; 42: 11144-11155
    Google Scholar
  • 42. Li H.L., Fujimoto N., Sasakawa N., Shirai S., Ohkame T., SakumaT., Tanaka M., Amano N., Watanabe A., Sakurai H., Yamamoto T.,Yamanaka S., Hotta A.: Precise correction of the dystrophin gene inDuchenne muscular dystrophy patient induced pluripotent stemcells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015; 4: 143-154
    Google Scholar
  • 43. Lin Y., Cradick T.J., Brown M.T., Deshmukh H., Ranjan P., SarodeN., Wile B.M., Vertino P.M., Stewart F.J., Bao G.: CRISPR/Cas9 systemshave off-target activity with insertions or deletions betweentarget DNA and guide RNA sequences. Nucleic Acids Res., 2014; 42:7473-7485
    Google Scholar
  • 44. Liu Y., Ma S., Wang X., Chang J., Gao J., Shi R., Zhang J., Lu W., LiuY., Zhao P., Xia Q.: Highly efficient multiplex targeted mutagenesisand genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect. Biochem. Mol. Biol., 2014; 49: 35-42
    Google Scholar
  • 45. Long C., Amoasii L., Mireault A.A., McAnally J.R., Li H., Sanchez–Ortiz E., Bhattacharyya S., Shelton J.M., Bassel-Duby R., Olson E.N.:Postnatal genome editing partially restores dystrophin expressionin a mouse model of muscular dystrophy. Science, 2016; 351: 400-403
    Google Scholar
  • 46. Long C., McAnally J.R., Shelton J.M., Mireault A.A., Bassel-DubyR., Olson E.N.: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediatedediting of germline DNA. Science, 2014; 345:1184-1188
    Google Scholar
  • 47. Ma H., Naseri A., Reyes-Gutierrez P., Wolfe S.A., Zhang S., PedersonT.: Multicolor CRISPR labeling of chromosomal loci in humancells. Proc. Natl. Acad. Sci. USA, 2015; 112: 3002-3007
    Google Scholar
  • 48. Ma S., Chang J., Wang X., Liu Y., Zhang J., Lu W., Gao J., Shi R.,Zhao P., Xia Q.: CRISPR/Cas9 mediated multiplex genome editingand heritable mutagenesis of BmKu70 in Bombyx mori. Sci. Rep.,2014; 4: 4489
    Google Scholar
  • 49. Ma Y., Zhang X., Shen B., Lu Y., Chen W., Ma J., Bai L., Huang X.,Zhang L.: Generating rats with conditional alleles using CRISPR/Cas9. Cell Res., 2014; 24: 122-125
    Google Scholar
  • 50. Maddalo D., Manchado E., Concepcion C.P., Bonetti C., VidigalJ.A., Han Y.C., Ogrodowski P., Crippa A., Rekhtman N., de StanchinaE., Lowe S.W., Ventura A.: In vivo engineering of oncogenic chromosomalrearrangements with the CRISPR/Cas9 system. Nature,2014; 516: 423-427
    Google Scholar
  • 51. Maeder M.L., Linder S.J., Cascio V.M., Fu Y., Ho Q.H., Joung J.K.:CRISPR RNA-guided activation of endogenous human genes. Nat.Methods, 2013; 10: 977-979
    Google Scholar
  • 52. Makarova K.S., Haft D.H., Barrangou R., Brouns S.J., CharpentierE., Horvath P., Moineau S., Mojica F.J., Wolf Y.I., Yakunin A.F., van derOost J., Koonin E.V.: Evolution and classification of the CRISPR-Cassystems. Nat. Rev. Microbiol., 2011; 9: 467-477
    Google Scholar
  • 53. Mali P., Aach J., Stranges P.B., Esvelt K.M., Moosburner M., KosuriS., Yang L., Church G.M.: CAS9 transcriptional activators for targetspecificity screening and paired nickases for cooperative genomeengineering. Nat. Biotechnol., 2013; 31: 833-838
    Google Scholar
  • 54. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., NorvilleJ.E., Church G.M.: RNA-guided human genome engineering viaCas9. Science, 2013; 339: 823-826
    Google Scholar
  • 55. Marraffini L.A., Sontheimer E.J.: CRISPR interference limits horizontalgene transfer in staphylococci by targeting DNA. Science,2008; 322: 1843-1845
    Google Scholar
  • 56. Marraffini L.A., Sontheimer E.J.: Self versus non-self discriminationduring CRISPR RNA-directed immunity. Nature, 2010; 463:568-571
    Google Scholar
  • 57. Mojica F.J., Diez-Villasenor C., Garcia-Martinez J., AlmendrosC.: Short motif sequences determine the targets of the prokaryoticCRISPR defence system. Microbiology, 2009; 155: 733-740
    Google Scholar
  • 58. Mojica F.J., Diez-Villasenor C., Garcia-Martinez J., Soria E.: Interveningsequences of regularly spaced prokaryotic repeats derivefrom foreign genetic elements. J. Mol. Evol., 2005; 60: 174-182
    Google Scholar
  • 59. Mojica F.J., Diez-Villasenor C., Soria E., Juez G.: Biological significanceof a family of regularly spaced repeats in the genomes of Archaea,Bacteria and mitochondria. Mol. Microbiol., 2000; 36: 244-246
    Google Scholar
  • 60. Mussolino C., Morbitzer R., Lütge F., Dannemann N., Lahaye T.,Cathomen T.: A novel TALE nuclease scaffold enables high genomeediting activity in combination with low toxicity. Nucleic Acids Res.,2011; 39: 9283-9293
    Google Scholar
  • 61. Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., MorebE.A., Rivera R.M., Madhavan S., Pan X., Ran F.A., Yan W.X., Asokan A.,Zhang F., Duan D., Gersbach C.A.: In vivo genome editing improvesmuscle function in a mouse model of Duchenne muscular dystrophy.Science, 2016; 351: 403-407
    Google Scholar
  • 62. Niu Y., Shen B., Cui Y., Chen Y., Wang J., Wang L., Kang Y., Zhao X.,Si W., Li W., Xiang A.P., Zhou J., Guo X., Bi Y., Si C. i wsp: Generationof gene-modified cynomolgus monkey via Cas9/RNA-mediated genetargeting in one-cell embryos. Cell, 2014; 156: 836-843
    Google Scholar
  • 63. Pattanayak V., Lin S., Guilinger J.P., Ma E., Doudna J.A., Liu D.R.:High-throughput profiling of off-target DNA cleavage reveals RNA–programmed Cas9 nuclease specificity. Nat. Biotechnol., 2013; 31:839-843
    Google Scholar
  • 64. Pennisi E.: The CRISPR craze. Science, 2013; 341: 833-836
    Google Scholar
  • 65. Perez E.E., Wang J., Miller J.C., Jouvenot Y., Kim K.A., Liu O.,Wang N., Lee G., Bartsevich V.V., Lee Y.L., Guschin D.Y., RupniewskiI., Waite A.J., Carpenito C., Carroll R.G. i wsp: Establishment of HIV-1resistance in CD4+ T cells by genome editing using zinc-finger nucleases.Nat. Biotechnol., 2008; 26: 808-816
    Google Scholar
  • 66. Perez-Pinera P., Kocak D.D., Vockley C.M., Adler A.F., KabadiA.M., Polstein L.R., Thakore P.I., Glass K.A., Ousterout D.G., LeongK.W., Guilak F., Crawford G.E., Reddy T.E., Gersbach C.A.: RNA-guidedgene activation by CRISPR-Cas9-based transcription factors.Nat. Methods, 2013; 10: 973-976
    Google Scholar
  • 67. Price C.M.: Fluorescence in situ hybridization. Blood Rev., 1993;7: 127-134
    Google Scholar
  • 68. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S.,Arkin A.P., Lim W.A.: Repurposing CRISPR as an RNA-guided platformfor sequence-specific control of gene expression. Cell, 2013;152: 1173-1183
    Google Scholar
  • 69. Ran F.A., Cong L., Yan W.X., Scott D.A., Gootenberg J.S., Kriz A.J.,Zetsche B., Shalem O., Wu X., Makarova K.S., Koonin E.V., Sharp P.A.,Zhang F.: In vivo genome editing using Staphylococcus aureus Cas9.Nature, 2015; 520: 186-191
    Google Scholar
  • 70. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., TrevinoA.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F.: Doublenicking by RNA-guided CRISPR Cas9 for enhanced genome editingspecificity. Cell, 2013; 154: 1380-1389
    Google Scholar
  • 71. Rouet P., Smih F., Jasin M.: Expression of a site-specific endonucleasestimulates homologous recombination in mammalian cells.Proc. Natl. Acad. Sci. USA, 1994; 91: 6064-6068
    Google Scholar
  • 72. Rudin N., Sugarman E., Haber J.E.: Genetic and physical analysisof double-strand break repair and recombination in Saccharomycescerevisiae. Genetics, 1989; 122: 519-534
    Google Scholar
  • 73. Samai P., Pyenson N., Jiang W., Goldberg G.W., Hatoum-Aslan A.,Marraffini L.A.: Co-transcriptional DNA and RNA Cleavage duringType III CRISPR-Cas Immunity. Cell, 2015; 161: 1164-1174
    Google Scholar
  • 74. Sinkunas T., Gasiunas G., Fremaux C., Barrangou R., Horvath P.,Siksnys V.: Cas3 is a single-stranded DNA nuclease and ATP-dependenthelicase in the CRISPR/Cas immune system. EMBO J., 2011;30: 1335-1342
    Google Scholar
  • 75. Tabebordbar M., Zhu K., Cheng J.K., Chew W.L., Widrick J.J.,Yan W.X., Maesner C., Wu E.Y., Xiao R., Ran F.A., Cong L., Zhang F.,Vandenberghe L.H., Church G.M., Wagers A.J.: In vivo gene editingin dystrophic mouse muscle and muscle stem cells. Science, 2016;351: 407-411
    Google Scholar
  • 76. Tachibana M., Sparman M., Ramsey C., Ma H., Lee H.S., PenedoM.C., Mitalipov S.: Generation of chimeric rhesus monkeys. Cell,2012; 148: 285-295
    Google Scholar
  • 77. Tan W., Carlson D.F., Lancto C.A., Garbe J.R., Webster D.A., HackettP.B., Fahrenkrug S.C.: Efficient nonmeiotic allele introgressionin livestock using custom endonucleases. Proc. Natl. Acad. Sci. USA,2013; 110: 16526-16531
    Google Scholar
  • 78. Tebas P., Stein D., Tang W.W., Frank I., Wang S.Q., Lee G., SprattS.K., Surosky R.T., Giedlin M.A., Nichol G., Holmes M.C., GregoryP.D., Ando D.G., Kalos M., Collman R.G. i wsp: Gene editing of CCR5in autologous CD4 T cells of persons infected with HIV. N. Engl. J.Med., 2014; 370: 901-910
    Google Scholar
  • 79. Thompson A.J., Yuan X., Kudlicki W., Herrin D.L.: Cleavage andrecognition pattern of a double-strand-specific endonuclease (I–creI) encoded by the chloroplast 23SrRNA intron of Chlamydomonasreinhardtii. Gene, 1992; 119: 247-251
    Google Scholar
  • 80. Tsai S.Q., Wyvekens N., Khayter C., Foden J.A., Thapar V., ReyonD., Goodwin M.J., Aryee M.J., Joung J.K.: Dimeric CRISPR RNA-guidedFokI nucleases for highly specific genome editing. Nat. Biotechnol.,2014; 32: 569-576
    Google Scholar
  • 81. Vasquez K.M., Marburger K., Intody Z., Wilson J.H.: Manipulating the mammalian genome by homologous recombination. Proc. Natl.Acad. Sci. USA, 2001; 98: 8403-8410
    Google Scholar
  • 82. Wang W., Ye C., Liu J., Zhang D., Kimata J.T., Zhou P.: CCR5 genedisruption via lentiviral vectors expressing Cas9 and single guidedRNA renders cells resistant to HIV-1 infection. PLoS One, 2014; 9:e115987
    Google Scholar
  • 83. Wang X., Wang Y., Wu X., Wang J., Wang Y., Qiu Z., Chang T.,Huang H., Lin R.J., Yee J.K.: Unbiased detection of off-target cleavageby CRISPR-Cas9 and TALENs using integrase-defective lentiviralvectors. Nat. Biotechnol., 2015; 33: 175-178
    Google Scholar
  • 84. Wang Y., Fan N., Song J., Zhong J., Guo X., Tian W., Zhang Q., CuiF., Li L., Newsome P.N., Frampton J., Esteban M.A., Lai L.: Generationof knockout rabbits using transcription activator-like effector nucleases.Cell Regen, 2014; 3: 3
    Google Scholar
  • 85. Westra E.R., Semenova E., Datsenko K.A., Jackson R.N., WiedenheftB., Severinov K., Brouns S.J.: Type I-E CRISPR-cas systemsdiscriminate target from non-target DNA through base pairing-independentPAM recognition. PLoS Genet, 2013; 9: e1003742
    Google Scholar
  • 86. Wiedenheft B., Sternberg S.H., Doudna J.A.: RNA-guided geneticsilencing systems in bacteria and archaea. Nature, 2012; 482: 331-338
    Google Scholar
  • 87. Wyvekens N., Topkar V.V., Khayter C., Joung J.K., Tsai S.Q.: DimericCRISPR RNA-guided FokI-dCas9 nucleases directed by truncatedgRNAs for highly specific genome editing. Hum. Gene Ther.,2015; 26: 425-431
    Google Scholar
  • 88. Xiao A., Wang Z., Hu Y., Wu Y., Luo Z., Yang Z., Zu Y., Li W., HuangP., Tong X., Zhu Z., Lin S., Zhang B.: Chromosomal deletions and inversionsmediated by TALENs and CRISPR/Cas in zebrafish. NucleicAcids Res., 2013; 41: e141
    Google Scholar
  • 89. Xie F., Ye L., Chang J.C., Beyer A.I., Wang J., Muench M.O., KanY.W.: Seamless gene correction of β-thalassemia mutations in patient-specificiPSCs using CRISPR/Cas9 and piggyBac. Genome Res.,2014; 24: 1526-1533
    Google Scholar
  • 90. Yan Q., Zhang Q., Yang H., Zou Q., Tang C., Fan N., Lai L.: Generationof multi-gene knockout rabbits using the Cas9/gRNA system.Cell Regen, 2014; 3: 12
    Google Scholar
  • 91. Yang H., Wang H., Shivalila C.S., Cheng A.W., Shi L., JaenischR.: One-step generation of mice carrying reporter and conditionalalleles by CRISPR/Cas-mediated genome engineering. Cell, 2013;154: 1370-1379
    Google Scholar
  • 92. Yin H., Xue W., Chen S., Bogorad R.L., Benedetti E., Grompe M.,Koteliansky V., Sharp P.A., Jacks T., Anderson D.G.: Genome editingwith Cas9 in adult mice corrects a disease mutation and phenotype.Nat. Biotechnol., 2014; 32: 551-553
    Google Scholar
  • 93. Yin L., Maddison L.A., Li M., Kara N., LaFave M.C., Varshney G.K.,Burgess S.M., Patton J.G., Chen W.: Multiplex conditional mutagenesisusing transgenic expression of Cas9 and sgRNAs. Genetics,2015; 200: 431-441
    Google Scholar
  • 94. Yosef I., Goren M.G., Qimron U.: Proteins and DNA elements essentialfor the CRISPR adaptation process in Escherichia coli. NucleicAcids Res., 2012; 40: 5569-5576
    Google Scholar
  • 95. Zhang J., Kasciukovic T., White M.F.: The CRISPR associated proteinCas4 Is a 5› to 3› DNA exonuclease with an iron-sulfur cluster.PLoS One, 2012; 7: e47232
    Google Scholar
  • 96. Zhang J., Rouillon C., Kerou M., Reeks J., Brugger K., GrahamS., Reimann J., Cannone G., Liu H., Albers S.V., NaismithJ.H., Spagnolo L., White M.F.: Structure and mechanism of theCMR complex for CRISPR-mediated antiviral immunity. Mol. Cell,2012; 45: 303-313
    Google Scholar
  • 97. Zhang Y., Ge X., Yang F., Zhang L., Zheng J., Tan X., Jin Z.B., Qu J.,Gu F.: Comparison of non-canonical PAMs for CRISPR/Cas9-mediatedDNA cleavage in human cells. Sci. Rep., 2014; 4: 5405
    Google Scholar

Full text

Skip to content