The development of methods for obtaining monoclonal antibody-producing cells

COMMENTARY ON THE LAW

The development of methods for obtaining monoclonal antibody-producing cells

Michał Skowicki 1 , Tomasz Lipiński 1

1. Instytut Immunologii i Terapii Doświadczalnej PAN im. L. Hirszfelda we Wrocławiu; Wrocławskie Centrum Badań EIT+

Published: 2016-04-27
DOI: 10.5604/17322693.1200552
GICID: 01.3001.0009.6818
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 367-379

 

Abstract

Monoclonal antibodies (mAbs) are biomolecules of great scientific and practical significance. In contrast to polyclonal antibodies from immune sera, they are homogeneous and monospecific, since they are produced by hybridoma cells representing a clone arising from a single cell. The successful technology was described for the first time in 1975; the inventors were later awarded the Nobel Prize. Currently, mAbs are broadly used as a research tool, in diagnostics and medicine in particular for the treatment of cancer or in transplantology. About 47 therapeutics based on monoclonal antibodies are now available in the US and Europe, and the number is still growing. Production of monoclonal antibodies is a multistage, time-consuming and costly process. Growing demand for these molecules creates space for research focused on improvements in hybridoma technology. Lower costs, human labor, and time are important goals of these attempts. In this article, a brief review of current methods and their advances is given.

References

  • 1. Ahkong Q.F., Fisher D., Tampion W., Lucy J.A.: Mechanisms of cellfusion. Nature, 1975, 253: 194-195
    Google Scholar
  • 2. Akselband Y., Moen P.T.Jr., McGrath P.: Isolation of rare isotypeswitch variants in hybridoma cell lines using an agarose gel microdrop-based protein secretion assay. Assay Drug Dev. Technol.,2003, 1: 619-626
    Google Scholar
  • 3. Alberts B., Johnson A., Lewis J.: Molecular Biology of the Cell. 4thedition. Garland Science, New York 2002
    Google Scholar
  • 4. Apiratmateekul N., Phunpae P., Kasinrerk W.: A modified hybridomatechnique for production of monoclonal antibodies havingdesired isotypes. Cytotechnology, 2009, 60: 45-51
    Google Scholar
  • 5. Atochina O., Mylvaganam R., Akselband Y., McGrath P.: Comparisonof results using the gel microdrop cytokine secretion assaywith ELISPOT and intracellular cytokine staining assay. Cytokine,2004, 27: 120-128
    Google Scholar
  • 6. Barnes L.M., Bentley C.M., Dickson A.J.: Characterization of thestability of recombinant protein production in the GS-NS0 expressionsystem. Biotechnol. Bioeng., 2001; 73: 261-270
    Google Scholar
  • 7. Böhm W., Kuhröber A., Paier T., Mertens T., Reimann J., SchirmbeckR.: DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in miceafter intramuscular injection. J. Immunol. Methods, 1996, 193: 29-40
    Google Scholar
  • 8. Borth N., Zeyda M., Kunert R., Katinger H.: Efficient selection ofhigh-producing subclones during gene amplification of recombinantChinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol.Bioeng., 2000-2001; 71: 266-273
    Google Scholar
  • 9. Boulard C., Lecroisey A.: Specific antisera produced by directimmunization with slices of polyacrylamide gel containing smallamounts of protein. J. Immunol. Methods, 1982, 50: 221-226
    Google Scholar
  • 10. Brouns G.S., de Vries E., Borst J.: Assembly and intracellulartransport of the human B cell antigen receptor complex. Int. Immunol.,1995, 7: 359-368
    Google Scholar
  • 11. Browne S.M., Al-Rubeai M.: Selection methods for high-producingmammalian cell lines. Trends Biotechnol., 2007, 25: 425-432
    Google Scholar
  • 12. Chang D.C.: Cell poration and cell fusion using an oscillatingelectric field. Biophys. J., 1989, 56: 641-652
    Google Scholar
  • 13. Chang T.H., Steplewski Z., Koprowski H.: Production of monoclonalantibodies in serum free medium. J. Immunol. Methods,1980, 39: 369-375
    Google Scholar
  • 14. Chen Y.S., Hung Y.C., Lin W.H., Huang G.S.: Assessment of goldnanoparticles as a size-dependent vaccine carrier for enhancing theantibody response against synthetic foot-and-mouth disease viruspeptide. Nanotechnology, 2010, 21: 195101
    Google Scholar
  • 15. Chiarella P., Fazio V.M.: Mouse monoclonal antibodies in biologicalresearch: strategies for high-throughput production. Biotechnol.Lett., 2008, 30: 1303-1310
    Google Scholar
  • 16. Coco Martin J.M., Beuvery E.C.: Stability of monoclonal antibodyproduction in hybridoma cell culture. W: Al-Rubeai M., EmeryN.A.: Flow cytometry applications in cell culture. New York: MarcelDekker, 1996, 85-100
    Google Scholar
  • 17. Coller H.A., Coller B.S.: Poisson statistical analysis of repetitivesubcloning by the limiting dilution technique as a way ofassessing hybridoma monoclonality. Methods Enzymol., 1986,121: 412-417
    Google Scholar
  • 18. Dale C.J., Thomson S., De Rose R., Ranasinghe C., MedveczkyC.J., Pamungkas J., Boyle D.B., Ramshaw I.A., Kent S.J.: Prime-booststrategies in DNA vaccines. Methods Mol. Med., 2006, 127: 171-197
    Google Scholar
  • 19. Davis H.L.: Plasmid DNA expression systems for the purpose ofimmunization. Curr. Opin. Biotechnol., 1997, 8: 635-646
    Google Scholar
  • 20. De Masi F., Chiarella P., Wilhelm H., Massimi M., Bullard B.,Ansorge W., Sawyer A.: High throughput production of mouse monoclonalantibodies using antigen microarrays. Proteomics, 2005,5: 4070-4081
    Google Scholar
  • 21. Dharshanan S., Chong H., Hung C.S., Zamrod Z., Kamal N.: Rapidautomated selection of mammalian cell line secreting high level ofhumanized monoclonal antibody using Clone Pix FL system andthe correlation between exterior median intensity and antibodyproductivity. Electron. J. Biotechnol., 2011, 14: 7
    Google Scholar
  • 22. Ecker D.M., Jones S.D., Levine H.L.: The therapeutic monoclonalantibody market. MAbs, 2015, 7: 9-14
    Google Scholar
  • 23. El Bissati K., Zhou Y., Dasgupta D., Cobb D., Dubey J.P., BurkhardP., Lanar D.E., McLeod R.: Effectiveness of a novel immunogenic nanoparticleplatform for Toxoplasma peptide vaccine in HLA transgenicmice. Vaccine, 2014, 32: 3243-3248
    Google Scholar
  • 24. Goding J.W.: Antibody production by hybridomas. J. Immunol.Methods, 1980, 39: 285-308
    Google Scholar
  • 25. Hansel T.T., Kropshofer H., Singer T., Mitchell J.A., George A.J.:The safety and side effects of monoclonal antibodies. Nat. Rev. Drug.Discov., 2010, 9: 325-338
    Google Scholar
  • 26. Hayter P.M., Kirkby N.F., Spier R.E.: Relationship between hybridomagrowth and monoclonal antibody production. Enzyme Microb.Technol., 1992, 14: 454-461
    Google Scholar
  • 27. Hoogenraad N., Helman T., Hoogenraad J.: The effect of pre–injection of mice with pristane on ascites tumour formation andmonoclonal antibody production. J. Immunol. Methods, 1983, 61:317-320
    Google Scholar
  • 28. Hoogenraad N.J., Wraight C.J.: The effect of pristane on ascitestumor formation and monoclonal antibody production. MethodsEnzymol., 1986, 121: 375-381
    Google Scholar
  • 29. Isaacs J.D.: Antibody engineering to develop new antirheumatictherapies. Arthritis Res. Ther., 2009, 11: 225
    Google Scholar
  • 30. Iwazaki A., Yoshioka M.: 2’-Deoxycytidine decreases the anti-tumoreffects of 5-fluorouracil on mouse myeloma cells. Biol. Pharm.Bull., 2010, 33: 1024-1027
    Google Scholar
  • 31. Jiménez-Periáñez A., Abos Gracia B., López Relaño J., Diez-RiveroC.M., Reche P.A., Martínez-Naves E., Matveyeva E., Gómez delMoral M.: Mesoporous silicon microparticles enhance MHC classI cross-antigen presentation by human dendritic cells. Clin. Dev.Immunol., 2013; 2013: 362163
    Google Scholar
  • 32. Kalantarov G.F., Rudchenko S.A., Lobel L., Trakht I.: Developmentof a fusion partner cell line for efficient production of humanmonoclonal antibodies from peripheral blood lymphocytes. Hum.Antibodies, 2002, 11: 85-96
    Google Scholar
  • 33. Kasinrerk W., Moonsom S., Chawansuntati K.: Production of antibodiesby single DNA immunization: comparison of various immunizationroutes. Hybrid Hybridomics, 2002, 21: 287-293
    Google Scholar
  • 34. Keen M.J.: The culture of rat myeloma and rat hybridoma cellsin a protein-free medium. Cytotechnology, 1995, 17: 193-202
    Google Scholar
  • 35. Köhler G., Milstein C.: Continuous cultures of fused cells secretingantibody of predefined specificity. Nature, 1975, 256: 495-497
    Google Scholar
  • 36. Kranz D.M., Billing P.A., Herron J.N., Voss E.W.Jr.: Modified hybridomamethodology; antigen-directed chemically mediated cellfusion. Immunol. Commun., 1980, 9: 639-651
    Google Scholar
  • 37. Krpetić Z., Porta F., Caneva E., Dal Santo V., Scarì G.: Phagocytosisof biocompatible gold nanoparticles. Langmuir, 2010, 26:14799-14805
    Google Scholar
  • 38. Lanzavecchia A., Sallusto F.: Human B cell memory. Curr. Opin.Immunol., 2009, 21: 298-304
    Google Scholar
  • 39. Lentz B.R.: Polymer-induced membrane fusion: potential mechanismand relation to cell fusion events. Chem. Phys. Lipids, 1994,73: 91-106
    Google Scholar
  • 40. Lin A.Y., Lunsford J., Bear A.S., Young J.K., Eckels P., Luo L., FosterA.E., Drezek R.A.: High-density sub-100-nm peptide-gold nanoparticlecomplexes improve vaccine presentation by dendritic cells invitro. Nanoscale Res. Lett., 2013, 8: 72
    Google Scholar
  • 41. Manz R., Assenmacher M., Pflüger E., Miltenyi S., Radbruch A.:Analysis and sorting of live cells according to secreted molecules,relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA,1995, 92: 1921-1925
    Google Scholar
  • 42. Marder P., Maciak R.S., Fouts R.L., Baker R.S., Starling J.J.: Selectivecloning of hybridoma cells for enhanced immunoglobulinproduction using flow cytometric cell sorting and automated lasernephelometry. Cytometry, 1990, 11: 498-505
    Google Scholar
  • 43. Marx U., Embleton M.J., Fischer R., Gruber F.P., Hansson U.,Heuer J., De Leeuw W.A., Logtenberg T., Merz W., Portetelle D., RometteJ.L., Straughan D.W.: Monoclonal antibody production. ATLA,1997, 25: 121-137
    Google Scholar
  • 44. Matsuuchi L., Gold M.R., Travis A., Grosschedl R., DeFranco A.L.,Kelly R.B.: The membrane IgM-associated proteins MB-1 and Ig-βare sufficient to promote surface expression of a partially functionalB-cell antigen receptor in a nonlymphoid cell line. Proc. Natl. Acad.Sci. USA, 1992, 89: 3404-3408
    Google Scholar
  • 45. Nagata S., Yamamoto K., Ueno Y., Kurata T., Chiba J.: Preferentialgeneration of monoclonal IgG-producing hybridomas by use of vesicular stomatitis virus-mediated cell fusion. Hybridoma, 1991,10: 369-378
    Google Scholar
  • 46. Ogle B.M., Platt J.L.: The biology of cell fusion: cells of differenttypes and from different species can fuse, potentially transferringdisease, repairing tissues and taking part in development. Am. Scientist,2004, 92: 420-427
    Google Scholar
  • 47. Pasqualini R., Arap W.: Hybridoma-free generation of monoclonalantibodies. Proc. Natl. Acad. Sci. USA, 2004, 101: 257-259
    Google Scholar
  • 48. Pearson T.W., Pinder M., Roelants G.E., Kar S.K., Lundin L.B.,Mayor-Withey K.S., Hwett R.S.: Methods for derivation and detectionof anti-parasite monoclonal antibodies. J. Immunol. Methods,1980, 34: 141-154
    Google Scholar
  • 49. Price P.W., McKinney E.C., Wang Y., Sasser L.E., Kandasamy M.K.,Matsuuchi L., Milcarek C., Deal R.B., Culver D.G., Meagher R.B.: Engineeredcell surface expression of membrane immunoglobulin asa means to identify monoclonal antibody-secreting hybridomas. J.Immunol. Methods, 2009, 343: 28-41
    Google Scholar
  • 50. Rawling J., Cano O., Garcin D., Kolakofsky D., Melero J.A.: RecombinantSendai viruses expressing fusion proteins with two furin cleavagesites mimic the syncytial and receptor-independent infectionproperties of respiratory syncytial virus. J. Virol., 2011, 85: 2771-2780
    Google Scholar
  • 51. Seegmiller A.C., Xu Y., McKenna R.W., Karandikar N.J.: Immunophenotypicdifferentiation between neoplastic plasma cells inmature B-cell lymphoma vs plasma cell myeloma. Am. J. Clin. Pathol.,2007, 127: 176-181
    Google Scholar
  • 52. Sen S., Hu W.S., Srienc F.: Flow cytometric study of hybridomacell culture: correlation between cell surface fluorescence and IgGproduction rate. Enzyme Microb. Technol., 1990, 12: 571-576
    Google Scholar
  • 53. Smith S.L.: Ten years of Orthoclone OKT3 (muromonab-CD3):a review. J. Transpl. Coord., 1996, 6: 109-119
    Google Scholar
  • 54. Spieker-Polet H., Sethupathi P., Yam P.C., Knight K.L.: Rabbit monoclonalantibodies: generating a fusion partner to produce rabbit–rabbit hybridomas. Proc. Natl. Acad. Sci. USA, 1995, 92: 9348-9352
    Google Scholar
  • 55. Tomita M., Sugi H., Ozawa K., Tsong T.Y., Yoshimura T.: Targetingantigen-specific receptors on B lymphocytes to generate highyields of specific monoclonal antibodies directed against biologicallyactive lower antigenic peptides within presenilin 1. J. Immunol.Methods, 2001, 251: 31-43
    Google Scholar
  • 56. Underwood P.A., Bean P.A.: Hazards of the limiting-dilutionmethods of cloning hybridomas. J. Immunol. Methods, 1988, 107:119-128
    Google Scholar
  • 57. Vienken J., Zimmermann U.: Electric field-induced fusion electro-hydraulic procedure for production of heterocaryon cells ina high yield. FEBS Lett., 1982, 137: 11-13
    Google Scholar
  • 58. Velikovsky C.A., Cassataro J., Sanchez M., Fossati C.A., FainboimL., Spitz M.: Single-shot plasmid DNA intrasplenic immunization forthe production of monoclonal antibodies. Persistent expression ofDNA. J. Immunol. Methods, 2000, 244: 1-7
    Google Scholar
  • 59. Williams G.B., Weaver J.C., Demain A.L.: Rapid microbial detectionand enumeration using gel microdroplets and colorimetricor fluorescence indicator systems. J. Clin. Microbiol., 1990, 28:1002-1008
    Google Scholar
  • 60. Yokoyama W.M., Christensen M., Dos Santos G., Miller D., HoJ., Wu T., Dziegelewski M., Neethling F.A.: Production of monoclonalantibodies. Curr. Protoc. Immunol., 2013, 102: II:2.5: 2.5.1-2.5.29
    Google Scholar

Full text

Skip to content