The formation, metabolism and the evolution of blood platelets
Joanna Saluk 1 , Michał Bijak 2 , Michał B. Ponczek 2 , Barbara Wachowicz 2Abstract
Platelets are the smallest, depleted of nucleus blood cells which contain a typical cellular organelles including the mitochondria, so that have active metabolism. Platelets possess the highly organized cytoskeleton, specific secretory granules and unique membrane receptors system responsible for their high reactivity. The key role of blood platelets is to maintain normal hemostasis, but they also play important roles in inflammation, immune processes and the cancer progression. The anucleated, small platelets occur in representatives of all clusters of mammals, so it seems to be an adaptation feature. In other vertebrates similar hemostatic functions are played by large nucleated platelets, which are much more weakly reactive. Small, reactive platelets, appearing in the evolution of mammals, allowed the formation of clots faster and slower blood loss in case of injury, but also increased the risk of thromboembolic and cardiovascular diseases. Daily the human body forms about 1×1011 platelets, which are produced by a process of differentiation, maturation and fragmentation of the cytoplasm of mature megakaryocytes. The emergence of platelets is the final stage of megakaryocyte differentiation and is followed by formation of the direct precursors called proplatelets. The anucleated platelets are regarded as terminally differentiated cells, which are not capable of further cell division. However, despite the absence of a nucleus, in blood platelets the synthesis and transcription of mitochondrial DNA and protein synthesis occurring on the basis of mRNA from megakaryocytes has been confirmed. However, recent studies published in 2012 show that the platelets are capable not only of the process of protein synthesis, but also of generation of new cells, which are functionally and structurally similar to the parent platelets.
References
- 1. Agam G., Bessler H., Djaldetti M.: In vitro DNA and RNA synthesisby human platelets. Biochim. Biophys. Acta, 1976; 425: 41-48
Google Scholar - 2. Barbour R.A.: The leukocytes and platelets of a marsupial, Trichosurusvulpecula. A comparative morphological, metrical andcytochemical study. Arch. Histol. Jpn., 1972; 34: 311-360
Google Scholar - 3. Beaulieu L.M.,Freedman J.E.: The role of inflammation in regulatingplatelet production and function: Toll-like receptors in plateletsand megakaryocytes. Thromb. Res., 2010; 125: 205-209
Google Scholar - 4. Behnke O.: An electron microscope study of the megacaryocyteof the rat bone marrow. I. The development of the demarcationmembrane system and the platelet surface coat. J. Ultrastruct. Res.,1968; 24: 412-443
Google Scholar - 5. Behnke O., Forer A.: From megakaryocytes to platelets: plateletmorphogenesis takes place in the bloodstream. Eur. J. Haematol.,1998; 61: 3-23
Google Scholar - 6. Bluteau D., Lordier L., Di Stefano A., Chang Y., Raslova H., DebiliN., Vainchenker W.: Regulation of megakaryocyte maturation andplatelet formation. J. Thromb. Haemost., 2009; 7: 227-234
Google Scholar - 7. Booth N.A., Simpson A.J., Croll A., Bennett B., MacGregor I.R.:Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br.J. Haematol., 1988; 70: 327-333
Google Scholar - 8. Cantor A.B., Katz S.G., Orkin S.H.: Distinct domains of the GATA-1cofactor FOG-1 differentially influence erythroid versus megakaryocyticmaturation. Mol. Cell Biol, 2002; 22: 4268-4279
Google Scholar - 9. Cantor A.B., Orkin S.H.: Transcriptional regulation of erythropoiesis:an affair involving multiple partners. Oncogene, 2002; 21:3368-3376
Google Scholar - 10. Denis M.M., Tolley N.D., Bunting M., Schwertz H., Jiang H., LindemannS., Yost C.C., Rubner F.J., Albertine K.H., Swoboda K.J., FrattoC.M., Tolley E., Kraiss L.W., McIntyre T.M., Zimmerman G.A., WeyrichA.S.: Escaping the nuclear confines: signal-dependent pre-mRNAsplicing in anucleate platelets. Cell, 2005; 122: 379-391
Google Scholar - 11. Drachman J.G., Rojnuckarin P., Kaushansky K.: Thrombopoietinsignal transduction: studies from cell lines and primary cells. Methods,1999; 17: 238-249
Google Scholar - 12. Fink L., Holschermann H., Kwapiszewska G., Muyal J.P., LengemannB., Bohle R.M., Santoso S.: Characterization of platelet-specificmRNA by real-time PCR after laser-assisted microdissection.Thromb. Haemost., 2003; 90: 749-756
Google Scholar - 13. Friedman A.D.: Transcriptional regulation of granulocyte andmonocyte development. Oncogene, 2002; 21: 3377-3390
Google Scholar - 14. Geddis A.E.: Megakaryopoiesis. Semin. Hematol., 2010; 47: 212-219
Google Scholar - 15. Geddis A.E., Kaushansky K.: Endomitotic megakaryocytes forma midzone in anaphase but have a deficiency in cleavage furrowformation. Cell Cycle, 2006; 5: 538-545
Google Scholar - 16. Geddis A.E., Linden H.M., Kaushansky K.: Thrombopoietin: a pan–hematopoietic cytokine. Cytokine Growth Factor Rev., 2002; 13:61-73
Google Scholar - 17. Geraghty D.P., Griffiths J., Stewart N., Robertson I.K., Gust N.:Hematologic, plasma biochemical, and other indicators of the healthof Tasmanian platypuses (Ornithorhynchus anatinus): predictors ofmucormycosis. J. Wildl. Dis., 2011; 47: 483-493
Google Scholar - 18. Glenister K.M., Payne K.A., Sparrow R.L.: Proteomic analysis ofsupernatant from pooled buffy-coat platelet concentrates throughout7-day storage. Transfusion, 2008; 48: 99-107
Google Scholar - 19. Handagama P.J., Feldman B.F., Jain N.C., Farver T.B., Kono C.S.:Circulating proplatelets: isolation and quantitation in healthy ratsand in rats with induced acute blood loss. Am. J. Vet. Res., 1987;48: 962-965
Google Scholar - 20. Harker L.A., Finch C.A.: Thrombokinetics in man. J. Clin. Invest.,1969; 48: 963-974
Google Scholar - 21. Hartwig J.H., Italiano J.E. Jr.: Cytoskeletal mechanisms for plateletproduction. Blood Cells Mol. Dis., 2006; 36: 99-103
Google Scholar - 22. Howell W.H., Donahue D.D.: The production of blood plateletsin the lungs. J. Exp. Med., 1937; 65: 177-203
Google Scholar - 23. Hu C.J., Baglia F.A., Mills D.C., Konkle B.A., Walsh P.N.: Tissue–specific expression of functional platelet factor XI is independentof plasma factor XI expression. Blood, 1998; 91: 3800-3807
Google Scholar - 24. Ichikawa M., Asai T., Saito T., Seo S., Yamazaki I., Yamagata T.,Mitani K., Chiba S., Ogawa S., Kurokawa M., Hirai H.: AML-1 is requiredfor megakaryocytic maturation and lymphocytic differentiation,but not for maintenance of hematopoietic stem cells in adulthematopoiesis. Nat. Med., 2004; 10: 299-304
Google Scholar - 25. Italiano J.E.Jr., Lecine P., Shivdasani R.A., Hartwig J.H.: Bloodplatelets are assembled principally at the ends of proplatelet processesproduced by differentiated megakaryocytes. J. Cell Biol., 1999;147: 1299-1312
Google Scholar - 26. Italiano J.E.Jr., Richardson J.L., Patel-Hett S., Battinelli E., ZaslavskyA., Short S., Ryeom S., Folkman J., Klement G.L.: Angiogenesis isregulated by a novel mechanism: pro- and antiangiogenic proteinsare organized into separate platelet alpha granules and differentiallyreleased. Blood, 2008; 111: 1227-1233
Google Scholar - 27. Junt T., Schulze H., Chen Z., Massberg S., Goerge T., Krueger A.,Wagner D.D., Graf T., Italiano J.E.Jr., Shivdasani R.A., von AndrianU.H.: Dynamic visualization of thrombopoiesis within bone marrow.Science, 2007; 317: 1767-1770
Google Scholar - 28. Kaushansky K.: Historical review: megakaryopoiesis and thrombopoiesis.Blood, 2008; 111: 981-986
Google Scholar - 29. Kieffer N., Guichard J., Farcet J.P., Vainchenker W., Breton-GoriusJ.: Biosynthesis of major platelet proteins in human blood platelets.Eur. J. Biochem., 1987; 164: 189-195
Google Scholar - 30. Klement G.L., Yip T.T., Cassiola F., Kikuchi L., Cervi D., PodustV., Italiano J.E., Wheatley E., Abou-Slaybi A., Bender E., Almog N.,Kieran M.W., Folkman J.: Platelets actively sequester angiogenesisregulators. Blood, 2009; 113: 2835-2842
Google Scholar - 31. Lewis J.H., Phillips L.L., Hann C.: Coagulation and hematologicalstudies in primitive Australian mammals. Comp. Biochem. Physiol.,1968; 25: 1129-1135
Google Scholar - 32. Li H., Zhao H., Wang D., Yang R.: microRNA regulation in megakaryocytopoiesis.Br. J. Haematol., 2011; 155: 298-307
Google Scholar - 33. Lindemann S., Tolley N.D., Dixon D.A., McIntyre T.M., PrescottS.M., Zimmerman G.A., Weyrich A.S.: Activated platelets mediateinflammatory signaling by regulated interleukin 1beta synthesis. J.Cell Biol., 2001; 154: 485-490
Google Scholar - 34. Lordier L., Jalil A., Aurade F., Larbret F., Larghero J., Debili N.,Vainchenker W., Chang Y.: Megakaryocyte endomitosis is a failure oflate cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood, 2008; 112: 3164-3174
Google Scholar - 35. Louache F., Debili N., Cramer E., Breton-Gorius J., VainchenkerW.: Fibrinogen is not synthesized by human megakaryocytes. Blood,1991; 77: 311-316
Google Scholar - 36. Mahaut-Smith M.P., Thomas D., Higham A.B., Usher-Smith J.A.,Hussain J.F., Martinez-Pinna J., Skepper J.N., Mason M.J.: Propertiesof the demarcation membrane system in living rat megakaryocytes.Biophys. J., 2003; 84: 2646-2654
Google Scholar - 37. Martincic D., Kravtsov V., Gailani D.: Factor XI messenger RNAin human platelets. Blood, 1999; 94: 3397-3404
Google Scholar - 38. Mattia G., Vulcano F., Milazzo L., Barca A., Macioce G., GiampaoloA., Hassan H.J.: Different ploidy levels of megakaryocytes generatedfrom peripheral or cord blood CD34+ cells are correlated with differentlevels of platelet release. Blood, 2002; 99: 888-897
Google Scholar - 39. McRedmond J.P., Park S.D., Reilly D.F., Coppinger J.A., MaguireP.B., Shields D.C., Fitzgerald D.J.: Integration of proteomics and genomicsin platelets: a profile of platelet proteins and platelet-specificgenes. Mol. Cell. Proteomics, 2004; 3: 133-144
Google Scholar - 40. Nagata Y., Muro Y., Todokoro K.: Thrombopoietin-induced polyploidizationof bone marrow megakaryocytes is due to a uniqueregulatory mechanism in late mitosis. J. Cell Biol., 1997; 139: 449-457
Google Scholar - 41. Nakao K., Angrist A.A.: Membrane surface specialization of bloodplatelet and megakaryocyte. Nature, 1968; 217: 960-961
Google Scholar - 42. Patel S.R., Hartwig J.H., Italiano J.E.Jr.: The biogenesis of plateletsfrom megakaryocyte proplatelets. J. Clin. Invest., 2005; 115:3348-3354
Google Scholar - 43. Patel S.R., Richardson J.L., Schulze H., Kahle E., Galjart N., DrabekK., Shivdasani R.A., Hartwig J.H., Italiano J.E.Jr.: Differential roles ofmicrotubule assembly and sliding in proplatelet formation by megakaryocytes.Blood, 2005; 106: 4076-4085
Google Scholar - 44. Podmore A., Smith M., Savidge G., Alhaq A.: Real-time quantitativePCR analysis of factor XI mRNA variants in human platelets.J. Thromb. Haemost., 2004; 2: 1713-1719
Google Scholar - 45. Radley J.M., Haller C.J.: The demarcation membrane system ofthe megakaryocyte: a misnomer? Blood, 1982; 60: 213-219
Google Scholar - 46. Radley J.M., Rogerson J., Ellis S.L., Hasthorpe S.: Megakaryocytematuration in long-term marrow culture. Exp. Hematol., 1991;19: 1075-1078
Google Scholar - 47. Raslova H., Roy L., Vourc’h C., Le Couedic J.P., Brison O., MetivierD., Feunteun J., Kroemer G., Debili N., Vainchenker W.: Megakaryocytepolyploidization is associated with a functional gene amplification.Blood, 2003; 101: 541-544
Google Scholar - 48. Ravid K., Lu J., Zimmet J.M., Jones M.R.: Roads to polyploidy: themegakaryocyte example. J. Cell. Physiol., 2002; 190: 7-20
Google Scholar - 49. Richardson J.L., Shivdasani R.A., Boers C., Hartwig J.H., ItalianoJ.E.Jr.: Mechanisms of organelle transport and capture along proplateletsduring platelet production. Blood, 2005; 106: 4066-4075
Google Scholar - 50. Schubert P., Devine D.V.: De novo protein synthesis in matureplatelets: a consideration for transfusion medicine. Vox Sang.,2010; 99: 112-122
Google Scholar - 51. Schulze H., Korpal M., Hurov J., Kim S.W., Zhang J., Cantley L.C.,Graf T., Shivdasani R.A.: Characterization of the megakaryocyte demarcationmembrane system and its role in thrombopoiesis. Blood,2006; 107: 3868-3875
Google Scholar - 52. Schwertz H., Koster S., Kahr W.H., Michetti N., Kraemer B.F.,Weitz D.A., Blaylock R.C., Kraiss L.W., Greinacher A., ZimmermanG.A., Weyrich A.S.: Anucleate platelets generate progeny. Blood,2010; 115: 3801-3809
Google Scholar - 53. Schwertz H., Rowley J.W., Tolley N.D., Campbell R.A., WeyrichA.S.: Assessing protein synthesis by platelets. Methods Mol. Biol.,2012; 788: 141-153
Google Scholar - 54. Shaklai M., Tavassoli M.: Demarcation membrane system in ratmegakaryocyte and the mechanism of platelet formation: a membranereorganization process. J. Ultrastruct. Res., 1978; 62: 270-285
Google Scholar - 55. Sharnoff J.G., Scardino V.: Pulmonary megakaryocytes in humanfetuses and premature and full-term infants. Arch. Pathol.,1960; 69: 139-141
Google Scholar - 56. Shashkin P.N., Brown G.T., Ghosh A., Marathe G.K., McIntyreT.M.: Lipopolysaccharide is a direct agonist for platelet RNA splicing.J. Immunol., 2008; 181: 3495-3502
Google Scholar - 57. Shivdasani R.A.: Molecular and transcriptional regulation ofmegakaryocyte differentiation. Stem Cells, 2001; 19: 397-407
Google Scholar - 58. Stalsberg H., Prydz H.: Studies on chick embryo thrombocytes.ii. function in primary hemostasis. Thromb. Diath. Haemorrh.,1963; 143: 291-299
Google Scholar - 59. Stenberg P.E., Levin J.: Mechanisms of platelet production. BloodCells, 1989; 15: 23-47
Google Scholar - 60. Tanaka Y., Eishi Y., Morris B.: Splenic hemopoiesis of the platypus(Ornithorhynchus anatinus): evidence of primary hemopoiesisin the spleen of a primitive mammal. Am. J. Anat., 1988; 181: 401-405
Google Scholar - 61. Tavassoli M.: Fusion-fission reorganization of membrane: a developingmembrane model for thrombocytogenesis in megakaryocytes.Blood Cells, 1979; 5: 89-99
Google Scholar - 62. Tavassoli M., Aoki M.: Migration of entire megakaryocytes throughthe marrow-blood barrier. Br. J. Haematol., 1981; 48: 25-29
Google Scholar - 63. Thon J.N., Italiano J.E.: Platelet formation. Semin. Hematol.,2010; 47: 220-226
Google Scholar - 64. Travlos G.S.: Normal structure, function, and histology of thebone marrow. Toxicol. Pathol., 2006; 34: 548-565
Google Scholar - 65. Trowbridge E.A., Martin J.F., Slater D.N.: Evidence for a theoryof physical fragmentation of megakaryocytes, implying thatall platelets are produced in the pulmonary circulation. Thromb.Res., 1982; 28: 461-475
Google Scholar - 66. Vitrat N., Cohen-Solal K., Norol F., Guichard J., Cramer E., VainchenkerW., Wendling F., Debili N.: Compared effects of Mpl ligand and othercytokines on human MK differentiation. Stem Cells, 1998; 16: 37-51
Google Scholar - 67. Weber A.A., Przytulski B., Schumacher M., Zimmermann N.,Gams E., Hohlfeld T., Schror K.: Flow cytometry analysis of plateletcyclooxygenase-2 expression: induction of platelet cyclooxygenase-2in patients undergoing coronary artery bypass grafting. Br. J.Haematol., 2002; 117: 424-426
Google Scholar - 68. Wolber E.M., Jelkmann W.: Thrombopoietin: the novel hepatichormone. News Physiol. Sci, 2002; 17: 6-10
Google Scholar - 69. Wright J.H.: Die Entstehung der Blutplattchen. Virchow’s Arch.,1906; 186: 55-63
Google Scholar - 70. Yamada E.: The fine structure of the megakaryocyte in the mousespleen. Acta Anat. (Basel), 1957; 29: 267-290
Google Scholar - 71. Ye M., Graf T.: Early decisions in lymphoid development. Curr.Opin. Immunol., 2007; 19: 123-128
Google Scholar - 72. Zielinski T., Wachowicz B., Saluk-Juszczak J., Kaca W.: Polysaccharidepart of Proteus mirabilis lipopolysaccharide may be responsiblefor the stimulation of platelet adhesion to collagen. Platelets,2002; 13: 419-424
Google Scholar