The impact of chromatin modification on the development of chronic complications in patients with diabetes

COMMENTARY ON THE LAW

The impact of chromatin modification on the development of chronic complications in patients with diabetes

Małgorzata Wegner 1 , Maria Pioruńska-Stolzmann 2 , Paweł P. Jagodziński 3

1. Pracownia Metabolizmu Lipidów, Katedra Chemii i Biochemii Klinicznej Uniwersytetu Medycznego im. K. Marcinkowskiego w Poznaniu
2. Zakład Biochemii Klinicznej i Medycyny Laboratoryjnej, Katedra Chemii i Biochemii Klinicznej Uniwersytetu Medycznego im. K. Marcinkowskiego w Poznaniu
3. Katedra i Zakład Biochemii i Biologii Molekularnej Uniwersytetu Medycznego im. K. Marcinkowskiego w Poznaniu

Published: 2015-08-19
DOI: 10.5604/17322693.1165198
GICID: 01.3001.0009.6566
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 964-968

 

Abstract

Diabetes is a chronic, metabolic disease. Over 347 million people worldwide have diabetes. Chronic complications (retinopathy, nephropathy or neuropathy) are the major dangerous outcome of this disease. Recent studies indicate a significant role of epigenetic regulation in the development of chronic complications in patients with diabetes. Hyperglycemia could cause abnormal regulation of the activity of enzymes participating in the post-translational histone modifications (PTHMs) and initiation of changes in patterns of DNA methylation. It leads to modification of chromatin structure. These epigenetic abnormalities result in changes in the expression of genes involved in development of chronic inflammation, such as NF-KAPPAB (nuclear factor kappaB gene), TNFα (tumor necrosis factor a gene), IL6 (interleukin 6 gene) or MCP1 (monocyte chemoattractant protein 1 gene). It enhances endothelial cell dysfunction, which plays an important role in development of chronic, diabetic complications. In addition, caused by hyperglycemia epigenetic modifications changes in structure of chromatin explains “metabolic memory”, a phenomenon of presence of pathological pathways related to the prolonged hyperglycemia in the past, despite maintaining good metabolic control later on.

References

  • 1. Barski A., Cuddapah S., Cui K., Roh T.Y., Schones D.E., Wang Z., WeiG., Chepelev I., Zhao K.: High-resolution profiling of histone methylationsin the human genome. Cell, 2007; 129: 823-837
    Google Scholar
  • 2. Brasacchio D., Okabe J., Tikellis C., Balcerczyk A., George P., BakerE.K., Calkin A.C., Brownlee M., Cooper M.E., El-Osta A.: Hyperglycemiainduces a dynamic cooperativity of histone methylase anddemethylase enzymes associated with gene-activating epigeneticmarks that coexist at the lysine tail. Diabetes, 2009; 58: 1229-1236
    Google Scholar
  • 3. Bush K.M., Yuen B.T., Barrilleaux B.L., Riggs J.W., O’Geen H., CottermanR.F., Knoepfler P.S.: Endogenous mammalian histone H3.3 exhibits chromatin-relatedfunctions during development. Epigenetics Chromatin, 2013; 6: 7
    Google Scholar
  • 4. Butler J.S., Koutelou E., Schibler A.C., Dent S.Y.: Histone-modifyingenzymes: regulators of developmental decisions and drivers of humandisease. Epigenomics, 2012; 4: 163-177
    Google Scholar
  • 5. Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., PaciorekC.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K.,Riley L.M., Robinson C.A., Ezzati M., Global Burden of Metabolic RiskFactors of Chronic Diseases Collaborating Group (Blood Glucose):National, regional, and global trends in fasting plasma glucose anddiabetes prevalence since 1980: systematic analysis of health examinationsurveys and epidemiological studies with 370 country-yearsand 2.7 million participants. Lancet, 2011; 378: 31-40
    Google Scholar
  • 6. Dembińska-Kieć A.: Pamięć metaboliczna – epigenetyczne modyfikacjemateriału jądrowego jako przyczyna powikłań cukrzycy.Diagn. Labor., 2011; 47: 263-268
    Google Scholar
  • 7. El-Osta A., Brasacchio D., Yao D., Pocai A., Jones P.L., Roeder R.G.,Cooper M.E., Brownlee M.: Transient high glucose causes persistentepigenetic changes and altered gene expression during subsequentnormoglycemia. J. Exp. Med., 2008; 205: 2409-2417
    Google Scholar
  • 8. Fan S., Zhang X.: CpG island methylation pattern in differenthuman tissues and its correlation with gene expression. Biochem.Biophys. Res. Commun., 2009; 383: 421-425
    Google Scholar
  • 9. Holliday R.: The inheritance of epigenetic defects. Science, 1987;238: 163-170
    Google Scholar
  • 10. Jin B., Robertson K.D.: DNA methyltransferases (DNMTs), DNAdamage repair, and cancer. Adv. Exp. Med. Biol., 2013; 754: 3-29
    Google Scholar
  • 11. Karnafel W.: Przewlekłe powikłania cukrzycy – patogeneza, implikacjekliniczne. Przew. Lek., 2000; 9: 61-68
    Google Scholar
  • 12. Kim H.J., Kim S.H., Yun JM.: Fisetin inhibits hyperglycemia-inducedproinflammatory cytokine production by epigenetic mechanisms.Evid. Based Complement. Alternat. Med., 2012; 2012: 639469
    Google Scholar
  • 13. Li B., Carey M., Workman J.L.: The role of chromatin duringtranscription. Cell, 2007; 128: 707-719
    Google Scholar
  • 14. Li E.: Chromatin modification and epigenetic reprogramming inmammalian development. Nat. Rev. Genet., 2002; 3: 662-673
    Google Scholar
  • 15. Ling C., Groop L.: Epigenetics: a molecular link between environmentalfactors and type 2 diabetes. Diabetes, 2009; 58: 2718-2725
    Google Scholar
  • 16. Martin C., Zhang Y.: The diverse functions of histone lysinemethylation. Nat. Rev. Mol. Cell Biol., 2005; 6: 838-849
    Google Scholar
  • 17. Nitert M.D., Dayeh T., Volkov P., Elgzyri T., Hall E., Nilsson E.,Yang B.T., Lang S., Parikh H., Wessman Y., Weishaupt H., Attema J.,Abels M., Wierup N., Almgren P. i wsp.: Impact of an exercise interventionon DNA methylation in skeletal muscle from first-degree relativesof patients with type 2 diabetes. Diabetes, 2012; 61: 3322-3332
    Google Scholar
  • 18. Serrano L., Vazquez B.N., Tischfield J.: Chromatin structure,pluripotency and differentiation. Exp. Biol. Med., 2013; 238: 259-270
    Google Scholar
  • 19. Shahbazian M.D., Grunstein M.: Functions of site-specific histoneacetylation and deacetylation. Annu. Rev. Biochem., 2007; 76:75-100
    Google Scholar
  • 20. Taylor R.: Type 2 diabetes: etiology and reversibility. DiabetesCare, 2013; 36: 1047-1055
    Google Scholar
  • 21. Tewari S., Zhong Q., Santos J.M., Kowluru R.A.: MitochondriaDNA replication and DNA methylation in the metabolic memory associatedwith continued progression of diabetic retinopathy. Invest.Ophthalmol. Vis. Sci., 2012; 53: 4881-4888
    Google Scholar
  • 22. van Belle T.L., Coppieters K.T., von Herrath M.G.: Type 1 diabetes:etiology, immunology, and therapeutic strategies. Physiol.Rev., 2011; 91: 79-118
    Google Scholar
  • 23. Villeneuve L.M., Reddy M.A., Natarajan R.: Epigenetics: decipheringits role in diabetes and its chronic complications. Clin. Exp.Pharmacol. Physiol., 2011; 38: 451-459
    Google Scholar
  • 24. Waddington C.H.: Der Epigenotypus. Endeavour,1942; 1: 18-20
    Google Scholar
  • 25. Walsh C.P., Bestor T.H.: Cytosine methylation and mammaliandevelopment. Genes Dev., 1999; 13: 26-34
    Google Scholar
  • 26. Wang Z., Zang C., Rosenfeld J.A., Schones D.E., Barski A., CuddapahS., Cui K., Roh T.Y., Peng W., Zhang M.Q., Zhao K.: Combinatorialpatterns of histone acetylations and methylations in the humangenome. Nat. Genet., 2008; 40: 897-903
    Google Scholar
  • 27. Williams K.T., Schalinske K.L.: Tissue-specific alterations ofmethyl group metabolism with DNA hypermethylation in the Zucker(type 2) diabetic fatty rat. Diabetes Metab. Res. Rev., 2012; 28: 123-131
    Google Scholar
  • 28. Zhang L., Chen B., Tang L.: Metabolic memory: mechanismsand implications for diabetic retinopathy. Diabetes Res. Clin. Pract.,2012; 96: 286-293
    Google Scholar
  • 29. Zhong Q., Kowluru R.A.: Epigenetic modification of Sod2 in thedevelopment of diabetic retinopathy and in the metabolic memory:role of histone methylation. Invest. Ophthalmol. Vis.Sci., 2013;54: 244-250
    Google Scholar

Full text

Skip to content