The impact of chromatin modification on the development of chronic complications in patients with diabetes
Małgorzata Wegner 1 , Maria Pioruńska-Stolzmann 2 , Paweł P. Jagodziński 3Abstract
Diabetes is a chronic, metabolic disease. Over 347 million people worldwide have diabetes. Chronic complications (retinopathy, nephropathy or neuropathy) are the major dangerous outcome of this disease. Recent studies indicate a significant role of epigenetic regulation in the development of chronic complications in patients with diabetes. Hyperglycemia could cause abnormal regulation of the activity of enzymes participating in the post-translational histone modifications (PTHMs) and initiation of changes in patterns of DNA methylation. It leads to modification of chromatin structure. These epigenetic abnormalities result in changes in the expression of genes involved in development of chronic inflammation, such as NF-KAPPAB (nuclear factor kappaB gene), TNFα (tumor necrosis factor a gene), IL6 (interleukin 6 gene) or MCP1 (monocyte chemoattractant protein 1 gene). It enhances endothelial cell dysfunction, which plays an important role in development of chronic, diabetic complications. In addition, caused by hyperglycemia epigenetic modifications changes in structure of chromatin explains “metabolic memory”, a phenomenon of presence of pathological pathways related to the prolonged hyperglycemia in the past, despite maintaining good metabolic control later on.
References
- 1. Barski A., Cuddapah S., Cui K., Roh T.Y., Schones D.E., Wang Z., WeiG., Chepelev I., Zhao K.: High-resolution profiling of histone methylationsin the human genome. Cell, 2007; 129: 823-837
Google Scholar - 2. Brasacchio D., Okabe J., Tikellis C., Balcerczyk A., George P., BakerE.K., Calkin A.C., Brownlee M., Cooper M.E., El-Osta A.: Hyperglycemiainduces a dynamic cooperativity of histone methylase anddemethylase enzymes associated with gene-activating epigeneticmarks that coexist at the lysine tail. Diabetes, 2009; 58: 1229-1236
Google Scholar - 3. Bush K.M., Yuen B.T., Barrilleaux B.L., Riggs J.W., O’Geen H., CottermanR.F., Knoepfler P.S.: Endogenous mammalian histone H3.3 exhibits chromatin-relatedfunctions during development. Epigenetics Chromatin, 2013; 6: 7
Google Scholar - 4. Butler J.S., Koutelou E., Schibler A.C., Dent S.Y.: Histone-modifyingenzymes: regulators of developmental decisions and drivers of humandisease. Epigenomics, 2012; 4: 163-177
Google Scholar - 5. Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., PaciorekC.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K.,Riley L.M., Robinson C.A., Ezzati M., Global Burden of Metabolic RiskFactors of Chronic Diseases Collaborating Group (Blood Glucose):National, regional, and global trends in fasting plasma glucose anddiabetes prevalence since 1980: systematic analysis of health examinationsurveys and epidemiological studies with 370 country-yearsand 2.7 million participants. Lancet, 2011; 378: 31-40
Google Scholar - 6. Dembińska-Kieć A.: Pamięć metaboliczna – epigenetyczne modyfikacjemateriału jądrowego jako przyczyna powikłań cukrzycy.Diagn. Labor., 2011; 47: 263-268
Google Scholar - 7. El-Osta A., Brasacchio D., Yao D., Pocai A., Jones P.L., Roeder R.G.,Cooper M.E., Brownlee M.: Transient high glucose causes persistentepigenetic changes and altered gene expression during subsequentnormoglycemia. J. Exp. Med., 2008; 205: 2409-2417
Google Scholar - 8. Fan S., Zhang X.: CpG island methylation pattern in differenthuman tissues and its correlation with gene expression. Biochem.Biophys. Res. Commun., 2009; 383: 421-425
Google Scholar - 9. Holliday R.: The inheritance of epigenetic defects. Science, 1987;238: 163-170
Google Scholar - 10. Jin B., Robertson K.D.: DNA methyltransferases (DNMTs), DNAdamage repair, and cancer. Adv. Exp. Med. Biol., 2013; 754: 3-29
Google Scholar - 11. Karnafel W.: Przewlekłe powikłania cukrzycy – patogeneza, implikacjekliniczne. Przew. Lek., 2000; 9: 61-68
Google Scholar - 12. Kim H.J., Kim S.H., Yun JM.: Fisetin inhibits hyperglycemia-inducedproinflammatory cytokine production by epigenetic mechanisms.Evid. Based Complement. Alternat. Med., 2012; 2012: 639469
Google Scholar - 13. Li B., Carey M., Workman J.L.: The role of chromatin duringtranscription. Cell, 2007; 128: 707-719
Google Scholar - 14. Li E.: Chromatin modification and epigenetic reprogramming inmammalian development. Nat. Rev. Genet., 2002; 3: 662-673
Google Scholar - 15. Ling C., Groop L.: Epigenetics: a molecular link between environmentalfactors and type 2 diabetes. Diabetes, 2009; 58: 2718-2725
Google Scholar - 16. Martin C., Zhang Y.: The diverse functions of histone lysinemethylation. Nat. Rev. Mol. Cell Biol., 2005; 6: 838-849
Google Scholar - 17. Nitert M.D., Dayeh T., Volkov P., Elgzyri T., Hall E., Nilsson E.,Yang B.T., Lang S., Parikh H., Wessman Y., Weishaupt H., Attema J.,Abels M., Wierup N., Almgren P. i wsp.: Impact of an exercise interventionon DNA methylation in skeletal muscle from first-degree relativesof patients with type 2 diabetes. Diabetes, 2012; 61: 3322-3332
Google Scholar - 18. Serrano L., Vazquez B.N., Tischfield J.: Chromatin structure,pluripotency and differentiation. Exp. Biol. Med., 2013; 238: 259-270
Google Scholar - 19. Shahbazian M.D., Grunstein M.: Functions of site-specific histoneacetylation and deacetylation. Annu. Rev. Biochem., 2007; 76:75-100
Google Scholar - 20. Taylor R.: Type 2 diabetes: etiology and reversibility. DiabetesCare, 2013; 36: 1047-1055
Google Scholar - 21. Tewari S., Zhong Q., Santos J.M., Kowluru R.A.: MitochondriaDNA replication and DNA methylation in the metabolic memory associatedwith continued progression of diabetic retinopathy. Invest.Ophthalmol. Vis. Sci., 2012; 53: 4881-4888
Google Scholar - 22. van Belle T.L., Coppieters K.T., von Herrath M.G.: Type 1 diabetes:etiology, immunology, and therapeutic strategies. Physiol.Rev., 2011; 91: 79-118
Google Scholar - 23. Villeneuve L.M., Reddy M.A., Natarajan R.: Epigenetics: decipheringits role in diabetes and its chronic complications. Clin. Exp.Pharmacol. Physiol., 2011; 38: 451-459
Google Scholar - 24. Waddington C.H.: Der Epigenotypus. Endeavour,1942; 1: 18-20
Google Scholar - 25. Walsh C.P., Bestor T.H.: Cytosine methylation and mammaliandevelopment. Genes Dev., 1999; 13: 26-34
Google Scholar - 26. Wang Z., Zang C., Rosenfeld J.A., Schones D.E., Barski A., CuddapahS., Cui K., Roh T.Y., Peng W., Zhang M.Q., Zhao K.: Combinatorialpatterns of histone acetylations and methylations in the humangenome. Nat. Genet., 2008; 40: 897-903
Google Scholar - 27. Williams K.T., Schalinske K.L.: Tissue-specific alterations ofmethyl group metabolism with DNA hypermethylation in the Zucker(type 2) diabetic fatty rat. Diabetes Metab. Res. Rev., 2012; 28: 123-131
Google Scholar - 28. Zhang L., Chen B., Tang L.: Metabolic memory: mechanismsand implications for diabetic retinopathy. Diabetes Res. Clin. Pract.,2012; 96: 286-293
Google Scholar - 29. Zhong Q., Kowluru R.A.: Epigenetic modification of Sod2 in thedevelopment of diabetic retinopathy and in the metabolic memory:role of histone methylation. Invest. Ophthalmol. Vis.Sci., 2013;54: 244-250
Google Scholar