The importance of ADAM family proteins in malignant tumors
Katarzyna Walkiewicz 1 , Monika Gętek 1 , Małgorzata Muc-Wierzgoń 1 , Teresa Kokot 1 , Ewa Nowakowska-Zajdel 2Abstract
Increasing numbers of reports about the role of adamalysins (ADAM) in malignant tumors are being published. To date, more than 30 representatives of this group, out of which about 20 occur in humans, have been described. The ADAM family is a homogeneous group of proteins which regulate, from the stage of embryogenesis, a series of processes such as cell migration, adhesion, and cell fusion. Half of them have proteolytic activity and are involved in the degradation of the extracellular matrix and the disintegration of certain protein complexes, thereby regulating the bioavailability of various growth factors. Many of these functions have a direct role in the processes of carcinogenesis and promoting the growth of tumor, which affect some signaling pathways, including those related to insulin-like growth factors (IGF1, IGF2), vascular growth factor (VEGF), tumor necrosis factor α (TNFα) and the EGFR/HER pathway. Another branch of studies is the evaluation of the possibility of using members of ADAM family proteins in the diagnosis, especially in breast, colon and non- small cell lung cancer. The detection of concentrations of adamalysin in serum, urine and pleural aspirates might contribute to the development of methods of early diagnosis of cancer and monitoring the therapy. However, both the role of adamalysins in the development and progression of tumors and their importance as a diagnostic and predictive further research still need to be checked on large groups of patients.
References
- 1. Adachi Y., Ohashi H., Imsumran A., Yamamoto H., Matsunaka Y.,Taniguchi H., Nosho K., Suzuki H., Sasaki Y., Arimura Y., CarboneD., Imai K., Shinomura Y.: The effect of IGF-I receptor blockade forhuman esophageal squamous cell carcinoma and adenocarcinoma.Tumour Biol., 2014; 35: 973-985
Google Scholar - 2. Beadling C., Patterson J., Justusson E., Nelson D., Pantaleo M.A.,Hornick J.L., Chacon M., Corless C.L., Heinrich M.C.: Gene expressionof the IGF pathway family distinguishes subsets of gastrointestinalstromal tumors wild type for KIT and PDGFRA. Cancer Med.,2013; 2: 21-31 3 Belardi V., Gallagher E.J., Novosyadlyy R., LeRoith D.: Insulin andIGFs in obesity-related breast cancer. J. Mammary Gland Biol. Neoplasia,2013; 18: 277-289
Google Scholar - 3. Biochem. Biophys. Res. Commun., 2004; 315: 79-84
Google Scholar - 4. Bolger J.C., Young L.S.: ADAM22 as a prognostic and therapeuticdrug target in the treatment of endocrine-resistant breast cancer.Vitam. Horm., 2013; 93: 307-321
Google Scholar - 5. Bret C., Hose D., Reme T., Kassambara A., Seckinger A., MeissnerT., Schved J.F., Kanouni T., Goldschmidt H., Klein B.: Gene expressionprofile of ADAMs and ADAMTSs metalloproteinases in normal andmalignant plasma cells and in the bone marrow environment. Exp.Hematol., 2011; 39: 546-557
Google Scholar - 6. Carloni V., Mazzocca A., Mello T., Galli A., Capaccioli S.: Cell fusionpromotes chemoresistance in metastatic colon carcinoma. Oncogene,2013; 32: 2649-2660
Google Scholar - 7. Chen X., Chen L., Zhang R., Yi Y., Ma Y., Yan K., Jiang X., Wang X.:ADAM17 regulates self-renewal and differentiation of U87 glioblastomastem cells. Neurosci. Lett., 2013; 537: 44-49
Google Scholar - 8. Chen Y.Y., Brown N.J., Jones R., Lewis C.E., Mujamammi A.H.,Muthana M., Seed M.P., Barker M.D.: A peptide derived from TIMP- 3 inhibits multiple angiogenic growth factor receptors and tumourgrowth and inflammatory arthritis in mice. Angiogenesis, 2014;17: 207-219
Google Scholar - 9. Cheung S.C., Long X., Liu L., Liu Q., Lan L., Tong P., Sun S.S.: Inhibitionof human MCF-7 breast cancer cells and HT-29 colon cancercells by rice-produced recombinant human insulin-like growth bindingprotein-3 (rhIGFBP-3). PLoS One, 2013; 8: e77516
Google Scholar - 10. Das S., Czarnek M., Bzowska M., Mężyk- Kopeć R., Stalińska K.,Wyroba B., Sroka J., Jucha J., Deneka D., Stokłosa P., Ogonek J., SwartzM., Madeja Z., Bereta J.: ADAM17 silencing in mouse colon carcinomacells: the effect on tumoricidal cytokines and angiogenesis. PLoSOne, 2012; 7: e50791
Google Scholar - 11. Duffy M.J., McKiernan E., O’Donovan N., McGowan P.M.: Roleof ADAMs in cancer formation and progression. Clin. Cancer Res.,2009; 15: 1140-1144
Google Scholar - 12. Duffy M.J., Mullooly M., O’Donovan N., Sukor S., Crown J., PierceA., McGowan P.: The ADAMs family of proteases: new biomarkersand therapeutic targets for cancer? Clin. Proteinomics, 2011; 8: 9
Google Scholar - 13. Freitas V.M., do Amaral J.B., Silva T.A., Santos E., Mangone F., PinheiroJ., Jaeger R., Nagai M., Machado-Santelli G.: Decreased expressionof ADAMTS-1 in human breast tumors stimulates migration andinvasion. Mol. Cancer, 2013; 12: 2
Google Scholar - 14. Fushida S., Oyama K., Kinoshita J., Yagi Y., Okamoto K., TajimaH., Ninomiya I., Fujimura T., Ohta T.: VEGF is a target molecule forperitoneal metastasis and malignant ascites in gastric cancer: prognosticsignificance of VEGF in ascites and efficacy of anti-VEGFmonoclonal antibody. Onco Targets Ther., 2013; 6: 1445-1451
Google Scholar - 15. Gao M.Q., Kim B.G., Kang S., Choi Y.P., Yoon J.H., Cho N.H.: Humanbreast cancer-associated fibroblasts enhance cancer cell proliferationthrough increased TGF-a cleavage by ADAM17. CancerLet., 2013; 336: 240-246
Google Scholar - 16. Gong Y., Scott E., Lu R., Xu Y., Oh W., Yu Q.: TIMP-1 promotesaccumulation of cancer associated fibroblasts and cancer progression.PLoS One, 2013; 8: e77366
Google Scholar - 17. Hawsawi Y., El-Gendy R., Twelves C., Speirs V., Beattie J.: Insulin–like growth factor-oestradiol crosstalk and mammary gland tumourigenesis.Biochim. Biophys. Acta; 2013; 1836: 345-353
Google Scholar - 18. Hirakawa T., Yashiro M., Murata A., Hirata K., Kimura K., AmanoR., Yamada N., Nakata B., Hirakawa K.: IGF-1 receptor and IGF bindingprotein-3 might predict prognosis of patients with resectablepancreatic cancer. BMC Cancer, 2013; 13: 392
Google Scholar - 19. Jones A. V., Lambert D., Speight P., Whawell S.: ADAM 10 is overexpressed in oral squamous cell carcinoma and contributes to invasivebehaviour through a functional association with αvβ6 integrin.FEBS Lett.,2013; 587: 3529-3534
Google Scholar - 20. Kuroda H., Mochizuki S., Shimoda S., Chijiiwa M., Kamiya K.,Izumi Y., Watanabe M., Horinouchi H., Kawamura M., KobayashiK., Okada Y.: ADAM28 is a serological and histochemical marker fornon-small cell lung carcinoma. Int. J. Cancer, 2010; 127: 1844-1856
Google Scholar - 21. Letelier P., Garcia P., Leal P., Ili C., Buchegger K., Riquelme I.,Sandoval A., Tapia O., Roa J.C.: Immunohistochemical expression ofvascular endothelial growth factor A in advanced gallbladder carcinoma.Appl. Immunohistochem. Mol. Morphol., 2014; 22: 530-536
Google Scholar - 22. Liang S., Wei X., Gong C., Wei J., Chen Z., Deng J.: A disintegrinand metalloprotease 33 (ADAM33) gene polymorphisms and therisk of asthma: a meta-analysis. Hum. Immunol., 2013; 74: 648-657
Google Scholar - 23. Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura i funkcja.Postępy Hig. Med. Dośw., 2008; 62: 328-336
Google Scholar - 24. Lu J., Ye X., Fan F., Xia L., Bhattacharya R., Bellister S., Tozzi F.,Sceusi E., Zhou Y., Tachibana I., Maru D., Hawke D.H., Rak J., Mani S.,Zweidler-McKay P., Ellis L.: Endothelial cells promote the colorectalcancer stem cell phenotype through a soluble form of Jagged-1.Cancer Cell., 2013; 23: 171-185
Google Scholar - 25. Łukaszewicz M., Mroczko B., Szmitkowski M.: Rola metaloproteinazi ich inhibitorów w raku trzustki. Postępy Hig. Med. Dośw.,2008; 62: 141-147
Google Scholar - 26. Marcello E., Saraceno C., Musardo S., Vara H., Guzman de laFuente A., Pelucchi S., Di Marino D., Borroni B., Tramontano A., Perez-Otano I., Padovani A., Giustetto M., Gardoni F., Di Luca M.: Endocytosisof synaptic ADAM10 in neuronal plasticity and Alzheimer’sdisease. J. Clin. Invest., 2013; 123: 2523-2538
Google Scholar - 27. Martino-Echarri E., Fernández-Rodríguez R., Rodríguez-BaenaF.J., Barrientos-Duran A., Torres-Collado A., Plaza-Calonge M., Amador-Cubero S., Cortes J., Reynolds L., Hodivala-Dilke K., Rodriguez–Manzaneque J.C.: Contribution of ADAMTS1 as a tumor suppressorgene in human breast carcinoma. Linking its tumor inhibitory propertiesto its proteolytic activity on nidogen-1 and nidogen-2. Int.J. Cancer, 2013; 133: 2315-2324
Google Scholar - 28. Mitsui Y., Mochizuki S., Kodama T., Shimoda M., Ohtsuka T.,Shiomi T., Chijiiwa M., Ikeda T., Kitajima M., Okada Y.: ADAM28 isoverexpressed in human breast carcinomas: implications for carcinomacell proliferation through cleavage of insulin-like growthfactor binding protein-3. Cancer Res., 2006; 66: 9913-9920
Google Scholar - 29. Mochizuki S., Okada J.: ADAMs in cancer cell proliferation andprogression. Cancer Sci., 2007; 98: 621-628
Google Scholar - 30. Mochizuki S., Okada Y.: ADAM28 as a target for human cancers.Curr. Pharm. Des., 2009; 15: 2349-2358
Google Scholar - 31. Mochizuki S., Shimoda M., Shiomi T.: ADAM28 is activatedby MMP-7 and cleaves insulin-like growth factor binding protein-
Google Scholar - 32. Mochizuki S., Tanaka R., Shimoda M., Onuma J., Fujii Y., Jinno H.,Okada Y.: Connective tissue growth factor is a substrate of ADAM28.Biochem. Biophys. Res. Comm., 2010; 402: 651-657
Google Scholar - 33. Moss M., Bartsch J.: Therapeutic benefits from targeting ofADAM family members. Biochemistry, 2004; 43: 7227-7235
Google Scholar - 34. Nedić O., Robajac D., Sunderić M., Miljus G., Dukanovic B., MalenkovicV.: Detection and identification of oxidized insulin-like growthfactor-binding proteins and receptors in patients with colorectalcarcinoma. Free Radic. Biol. Med., 2013; 65: 1195-1200
Google Scholar - 35. Ni S.S., Zhang J., Zhao W.L., Dong X.C., Wang J.L.: ADAM17 isoverexpressed in non-small cell lung cancer and its expression correlateswith poor patient survival. Tumor Biol., 2013; 34: 1813-1818
Google Scholar - 36. Nowakowska-Zajdel E., Mazurek U., Wierzgoń J., Kokot T., FatygaE., Ziółko E., Klakla K., Błażelonis A., Waniczek D., Glogowski L., KozowiczA., Niedworok E., Muc-Wierzgoń M.: Expression of ADAM28and IGFBP-3 genes in patients with colorectal cancer- a preliminaryreport. Int. J. Immunopathol. Pharmacol., 2013; 26: 223-228
Google Scholar - 37. Richards F.M., Tape C.J., Jodrell D.I., Murphy G.: Anti-tumour efeffectsof a specific anti-ADAM17 antibody in an ovarian cancer modelin vivo. PLoS One, 2012; 7: e40597
Google Scholar - 38. Sharma J., Gray K.P., Evan C., Nakabayashi M., Fichorova R., RiderJ., Mucci L., Kantoff P., Sweeney C.: Elevated insulin-like growthfactor binding protein-1 (IGFBP-1) in men with metastatic prostatecancer starting androgen deprivation therapy (ADT) is associatedwith shorter time to castration resistance and overall survival. Prostate,2014; 74: 225-234
Google Scholar - 39. Stawikowska R., Cudic M., Giulianotti M., Houghten R., Fields G.,Minond D.: Activity of ADAM17 (a disintegrin and metalloprotease17) is regulated by its noncatalytic domains and secondary structureof its substrates. J. Biol. Chem., 2013; 288: 22871-22879
Google Scholar - 40. Tonilo P., Bruning P., Akhmedkhanov A., Bonfrer J., Koenig K.,Lukanova A., Shore R., Zeleniuch-Jacquotte A.: Serum insulin-likegrowth factor 1 (IGF1) and breast cancer. Int. J. Cancer, 2000; 88:828-832
Google Scholar - 41. Wang Z., Wang Z., Liang Z., Liu J., Shi W., Bai P., Lin X., MagayeR., Zhao J.: Expression and clinical significance of IGF-1, IGFBP-3,and IGFBP-7 in serum and lung cancer tissues from patients withnon-small cell lung cancer. Onco Targets Ther., 2013; 6: 1437-1444
Google Scholar - 42. Xing F., Saidou J., Watabe K.: Cancer associated fibroblasts (CAFs)in tumor microenvironment. Front. Biosc., 2010; 15: 166-179
Google Scholar - 43. Yang M.H., Hu P.Y., Chen S.C., Chung T.W., Chen W.C., Tan L.B.,Kan W.C., Wang H.Y., Su S.B., Tyan Y.C.: Characterization of ADAM28as a biomarker of bladder transitional cell carcinomas by urinaryproteome analysis. Biochem. Biophys. Res. Comm., 2011; 411: 711-720
Google Scholar - 44. Yuan S., Lei S., Wu S.: ADAM10 is overexpressed in human hepatocellularcarcinoma and contributes to the proliferation, invasionand migration of HepG2 cells. Oncol. Rep., 2013; 30: 1715-1722
Google Scholar - 45. Zhang M., Drummen G.P., Luo S.: Anti-insulin-like growth factor-IIP3 DNAzymes inhibit cell proliferation and induce caspase–dependent apoptosis in human hepatocarcinoma cell lines. DrugDes. Devel. Ther., 2013; 4: 1089-1102
Google Scholar