The importance of Bordetella pertussis strains which do not produce virulence factors in the epidemiology of pertussis

COMMENTARY ON THE LAW

The importance of Bordetella pertussis strains which do not produce virulence factors in the epidemiology of pertussis

Maciej Polak 1 , Anna Lutyńska 1

1. Zakład Badania Surowic i Szczepionek, Narodowy Instytut Zdrowia Publicznego, Państwowy Zakład Higieny w Warszawie

Published: 2017-05-09
DOI: 10.5604/01.3001.0010.3821
GICID: 01.3001.0010.3821
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 367-379

 

Abstract

Bordetella pertussis strains, which have lost the ability to produce antigens, such as pertactin – Prn, pertussis toxin – Ptx, filamentous haemagglutinin – FHA, fimbriae type 2 and 3 – Fim 2 and 3, tracheal colonization factor – TcfA, have recently been isolated in countries with a high vaccination coverage. The emergence of such isolates might have resulted from B. pertussis natural evolution course or adaptive mechanisms, allowing increased circulation of the pathogen in vaccinated populations. So far, the majority of described mutants were deficient in the Prn production. Prn deficient isolates were found in countries which use acellular pertussis vaccines (aP) in routine immunization programmes. The increase of frequency of Prn¯ strains isolation was correlated with the period of routine vaccination with aP vaccines. In most countries, the spread of these isolates has resulted from independent mutations rather than from the expansion of a single clone. Prn¯ isolates were collected from patients showing typical clinical symptoms of pertussis found for Prn+ strains. Results of in vitro and in vivo studies have shown that Prn¯, Ptx¯ and FHA¯ isolates retain cytotoxic properties, and besides Ptx¯ isolates, were lethal in intranasally infected mice. Further explanation of the impact of antigen deficiencies on virulence and transmission of B. pertussis in the context of the continuous increase of pertussis incidence is necessary to develop a new, optimized strategy of pertussis prevention.

References

  • 1. Abramson T., Kedem H., Relman D.A.: Proinflammatory and proapoptoticactivities associated with Bordetella pertussis filamentoushemagglutinin. Infect. Immun., 2001; 69: 2650-2658
    Google Scholar
  • 2. Advani A., Hallander H.O., Dalby T., Krogfelt K.A., Guiso N., NjamkepoE., von Könnig C.H., Riffelmann M., Mooi F.R., Sandven P., LutynskaA., Fry N.K., Mertsola J., He Q.: Pulsed-field gel electrophoresisanalysis of Bordetella pertussis isolates circulating in Europe from 1998to 2009. J. Clin. Microbiol., 2013; 51: 422-428
    Google Scholar
  • 3. Bamberger E., Abu Raya B., Cohen L., Golan-Shany O., DavidsonS., Geffen Y., Srugo I.: Pertussis resurgence associated with pertactin-deficientand genetically divergent Bordetella pertussis isolates inIsrael. Pediatr. Infect. Dis. J., 2015; 34: 898-900
    Google Scholar
  • 4. Barkoff A.M., Mertsola J., Guillot S., Guiso N., Berbers G., He Q.:Appearance of Bordetella pertussis strains not expressing the vaccineantigen pertactin in Finland. Clin. Vaccine Immunol., 2012; 19:1703-1704
    Google Scholar
  • 5. Bodilis H., Guiso N.: Virulence of pertactin-negative Bordetellapertussis isolates from infants, France. Emerg. Infect. Dis., 2013; 19:471-474
    Google Scholar
  • 6. Bogdanowicz J.: Krztusiec. Państwowy Zakład Wydawnictw Lekarskich,Warszawa 1954
    Google Scholar
  • 7. Bouchez V., Brun D., Cantinelli T., Dore G., Njamkepo E., Guiso N.:First report and detailed characterization of B. pertussis isolates notexpressing pertussis toxin or pertactin. Vaccine, 2009; 27: 6034-6041
    Google Scholar
  • 8. Bouchez V., Brun D., Dore G., Njamkepo E., Guiso N.: Bordetellaparapertussis isolates not expressing pertactin circulating in France.Clin. Microbiol. Infect., 2011; 17: 675-682
    Google Scholar
  • 9. Bouchez V., Caro V., Levillain E., Guigon G., Guiso N.: Genomiccontent of Bordetella pertussis clinical isolates circulating in areas ofintensive children vaccination. PLoS One, 2008; 3: e2437
    Google Scholar
  • 10. Bouchez V., Hegerle N., Strati F., Njamkepo E., Guiso N.: Newdata on vaccine antigen deficient Bordetella pertussis isolates. Vaccines,2015; 3: 751-770
    Google Scholar
  • 11. Bowden K.E., Williams M.M., Cassiday P.K., Milton A., PawloskiL., Harrison M., Martin S.W., Meyer S., Qin X., DeBolt C., Tasslimi A.,Syed N., Sorrell R., Tran M., Hiatt B., Tondella M.L.: Molecular epidemiologyof the pertussis epidemic in Washington State in 2012. J.Clin. Microbiol., 2014; 52: 3549-3557
    Google Scholar
  • 12. Bradford P.G., Rubin R.P.: Pertussis toxin inhibits chemotacticfactor-induced phospholipase C stimulation and lysosomal enzymesecretion in rabbit neutrophils. FEBS Lett., 1985; 183: 317-320
    Google Scholar
  • 13. Brandt S.J., Dougherty R.W., Lapetina E.G., Niedel J.E.: Pertussistoxin inhibits chemotactic peptide-stimulated generation of inositolphosphates and lysosomal enzyme secretion in human leukemic(HL-60) cells. Proc. Natl. Acad. Sci. USA, 1985; 82: 3277-3280
    Google Scholar
  • 14. Cahill E.S., O’Hagan D.T., Illum L., Redhead K.: Mice are protectedagainst Bordetella pertussis infection by intra-nasal immunizationwith filamentous haemagglutinin. FEMS Microbiol. Lett.,1993; 107: 211-216
    Google Scholar
  • 15. Carbonetti N.H.: Immunomodulation in the pathogenesis ofBordetella pertussis infection and disease. Curr. Opin. Pharmacol.,2007; 7: 272-278
    Google Scholar
  • 16. Carbonetti N.H., Artamonova G.V., Andreasen C., Dudley E., MaysR.M., Worthington Z.E.: Suppression of serum antibody responsesby pertussis toxin after respiratory tract colonization by Bordetellapertussis and identification of an immunodominant lipoprotein. Infect.Immun., 2004; 72: 3350-3358
    Google Scholar
  • 17. Centers for Disease Control and Prevention (CDC): Pertussisepidemic-Washington, 2012. MMWR Morb. Mortal. Wkly. Rep., 2012;61: 517-522
    Google Scholar
  • 18. Cherry J.D.: Pertussis: challenges today and for the future. PLoSPathog., 2013; 9: e1003418
    Google Scholar
  • 19. Cherry J.D., Gornbein J., Heininger U., Stehr K.: A search for serologiccorrelates of immunity to Bordetella pertussis cough illnesses.Vaccine, 1998; 16: 1901-1906
    Google Scholar
  • 20. Chiappini E., Stival A., Galli L., de Martino M.: Pertussis re-emergencein the post-vaccination era. BMC Infect. Dis., 2013; 13: 151
    Google Scholar
  • 21. Clarke M., McIntyre P.B., Blyth C.C., Wood N., Octavia S., SintchenkoV., Giles L., Quinn H., Hill V., Hanly G., Lan R., Marshall H.S.: Therelationship between Bordetella pertussis genotype and clinical severityin Australian children with pertussis. J. Infect., 2016; 72: 171-178
    Google Scholar
  • 22. de Gouw D., Diavatopoulos D.A., Bootsma H.J., Hermans P.W.,Mooi F.R.: Pertussis: a matter of immune modulation. FEMS Microbiol.Rev., 2011; 35: 441-474
    Google Scholar
  • 23. Diavatopoulos D.A., Cummings C.A., Schouls L.M., Brinig M.M.,Relman D.A., Mooi F.R.: Bordetella pertussis, the causative agent ofwhooping cough, evolved from a distinct, human-associated lineageof B. bronchiseptica. PLoS Pathog., 2005; 1: e45
    Google Scholar
  • 24. Dubé E., Vivion M., MacDonald N.E.: Vaccine hesitancy, vaccinerefusal and the anti-vaccine movement: influence, impact and implications.Expert Rev. Vaccines, 2015; 14: 99-117
    Google Scholar
  • 25. Fedele G., Bianco M., Ausiello C.M.: The virulence factors ofBordetella pertussis: talented modulators of host immune response.Arch. Immunol. Ther. Exp., 2013; 61: 445-457
    Google Scholar
  • 26. Finn T.M., Stevens L.A.: Tracheal colonization factor: a Bordetellapertussis secreted virulence determinant. Mol. Microbiol., 1995;16: 625-634
    Google Scholar
  • 27. Geuijen C.A., Willems R.J., Bongaerts M., Top J., Gielen H., MooiF.R.: Role of the Bordetella pertussis minor fimbrial subunit, FimD, incolonization of the mouse respiratory tract. Infect. Immun., 1997;65: 4222-4228
    Google Scholar
  • 28. Geuijen C.A., Willems R.J., Mooi F.R.: The major fimbrial subunitof Bordetella pertussis binds to sulfated sugars. Infect. Immun.,1996; 64: 2657-2665
    Google Scholar
  • 29. Gogol E.B., Cummings C.A., Burns R.C., Relman D.A.: Phase variationand microevolution at homopolymeric tracts in Bordetellapertussis. BMC Genomics, 2007; 8: 122
    Google Scholar
  • 30. Gustafsson L., Hallander H.O., Olin P., Reizenstein E., StorsaeterJ.: A controlled trial of a two-component acellular, a five-componentacellular, and a whole-cell pertussis vaccine. N. Engl. J. Med.,1996; 334: 349-355
    Google Scholar
  • 31. Gzyl A., Augustynowicz E., Gniadek G., Rabczenko D., Dulny G.,Slusarczyk J.: Sequence variation in pertussis S1 subunit toxin andpertussis genes in Bordetella pertussis strains used for the whole-cellpertussis vaccine produced in Poland since 1960: efficiency of theDTwP vaccine-induced immunity against currently circulating B.pertussis isolates. Vaccine, 2004; 22: 2122-2128
    Google Scholar
  • 32. He Q., Mertsola J.: Factors contributing to pertussis resurgence.Future Microbiol., 2008; 3: 329-339
    Google Scholar
  • 33. He Q., Viljanen M.K., Olander R.M., Bogaerts H., De Grave D.,Ruuskanen O, Mertsola J.: Antibodies to filamentous hemagglutininof Bordetella pertussis and protection against whooping coughin schoolchildren. J. Infect. Dis., 1994; 170: 705-708
    Google Scholar
  • 34. Hegerle N., Dore G., Guiso N.: Pertactin deficient Bordetella pertussispresent a better fitness in mice immunized with an acellularpertussis vaccine. Vaccine, 2014; 32: 6597-6600
    Google Scholar
  • 35. Hegerle N., Guiso N.: Antibody-mediated inhibition of Bordetellapertussis adenylate cyclase-haemolysin-induced macrophagecytotoxicity is influenced by variations in the bacterial population.Microbiology, 2014; 160: 962-969
    Google Scholar
  • 36. Hegerle N., Guiso N.: Bordetella pertussis and pertactin-deficientclinical isolates: lessons for pertussis vaccines. Expert Rev. Vaccines,2014; 13: 1135-1146
    Google Scholar
  • 37. Hegerle N., Paris A.S., Brun D., Dore G., Njamkepo E., Guillot S.,Guiso N.: Evolution of French Bordetella pertussis and Bordetella parapertussisisolates: increase of Bordetellae not expressing pertactin.Clin. Microbiol. Infect., 2012; 18: E340-E346
    Google Scholar
  • 38. Heikkinen E., Kallonen T., Saarinen L., Sara R., King A.J., MooiF.R., Soini J.T., Mertsola J., He Q.: Comparative genomics of Bordetellapertussis reveals progressive gene loss in Finnish strains. PLoSOne, 2007; 2: e904
    Google Scholar
  • 39. Hellwig S.M., Rodriguez M.E., Berbers G.A., van de Winkel J.G.,Mooi F.R.: Crucial role of antibodies to pertactin in Bordetella pertussisimmunity. J. Infect. Dis., 2003; 188: 738-742
    Google Scholar
  • 40. Inatsuka C.S., Xu Q., Vujkovic-Cvijin I., Wong S., Stibitz S., MillerJ.F., Cotter P.A.: Pertactin is required for Bordetella species to resistneutrophil-mediated clearance. Infect. Immun., 2010; 78: 2901-2909
    Google Scholar
  • 41. Ishibashi Y., Relman D.A., Nishikawa A.: Invasion of human respiratoryepithelial cells by Bordetella pertussis: possible role for a filamentoushemagglutinin Arg-Gly-Asp sequence and α5β1 integrin.Microb. Pathog., 2001; 30: 279-288
    Google Scholar
  • 42. Jakinovich A., Sood S.K.: Pertussis: still a cause of death, sevendecades into vaccination. Curr. Opin. Pediatr., 2014; 26: 597-604
    Google Scholar
  • 43. Kallonen T., Gröndahl-Yli-Hannuksela K., Elomaa A., LutyńskaA., Fry N.K., Mertsola J., He Q.: Differences in the genomic contentof Bordetella pertussis isolates before and after introduction of pertussisvaccines in four European countries. Infect. Genet. Evol., 2011;11: 2034-2042
    Google Scholar
  • 44. King A.J., Berbers G., van Oirschot H.F., Hoogerhout P., KnippingK., Mooi F.R.: Role of the polymorphic region 1 of the Bordetella pertussisprotein pertactin in immunity. Microbiology, 2001; 147: 2885-2895
    Google Scholar
  • 45. King A.J., van Gorkom T., van der Heide H.G., Advani A., vander Lee S.: Changes in the genomic content of circulating Bordetellapertussis strains isolated from the Netherlands, Sweden, Japan andAustralia: adaptive evolution or drift? BMC Genomics, 2010; 11: 64
    Google Scholar
  • 46. Komatsu E., Yamaguchi F., Abe A., Weiss A.A., Watanabe M.: Synergiceffect of genotype changes in pertussis toxin and pertactinon adaptation to an acellular pertussis vaccine in the murine intranasalchallenge model. Clin. Vaccine. Immunol., 2010; 17: 807-812
    Google Scholar
  • 47. Kurova N., Njamkepo E., Brun D., Tseneva G., Guiso N.: Monitoringof Bordetella isolates circulating in Saint Petersburg, Russiabetween 2001 and 2009. Res. Microbiol., 2010; 161: 810-815
    Google Scholar
  • 48. Lam C., Octavia S., Ricafort L., Sintchenko V., Gilbert G.L., WoodN., McIntyre P., Marshall H., Guiso N., Keil A.D., Lawrence A., RobsonJ., Hogg G., Lan R.: Rapid Increase in pertactin-deficient Bordetellapertussis isolates, Australia. Emerg. Infect. Dis., 2014; 20: 626-633
    Google Scholar
  • 49. Leininger E., Roberts M., Kenimer J.G., Charles I.G., FairweatherN., Novotny P., Brennan M.J.: Pertactin, an Arg-Gly-Asp-containingBordetella pertussis surface protein that promotes adherence of mammaliancells. Proc. Natl. Acad. Sci. USA, 1991; 88: 345-349
    Google Scholar
  • 50. Liko J., Robison S.G., Cieslak P.R.: Priming with whole-cell versusacellular pertussis vaccine. N. Engl. J. Med., 2013; 368: 581-582
    Google Scholar
  • 51. Locht C.: Molecular aspects of Bordetella pertussis pathogenesis.Int. Microbiol., 1999; 2: 137-144
    Google Scholar
  • 52. Locht C., Bertin P., Menozzi F.D., Renauld G.: The filamentoushaemagglutinin, a multifaceted adhesion produced by virulent Bordetellaspp. Mol. Microbiol., 1993; 9: 653-660
    Google Scholar
  • 53. Martin S.W., Pawloski L., Williams M., Weening K., DeBolt C., QinX., Reynolds L., Kenyon C., Giambrone G., Kudish K., Miller L., SelvageD., Lee A., Skoff T.H., Kamiya H. i wsp.: Pertactin-negative Bordetellapertussis strains: evidence for a possible selective advantage. Clin.Infect. Dis., 2015; 60: 223-227
    Google Scholar
  • 54. Mastrantonio P., Spigaglia P., van Oirschot H., van der Heide H.G.,Heuvelman K., Stefanelli P., Mooi F.R.: Antigenic variants in Bordetellapertussis strains isolated from vaccinated and unvaccinated children.Microbiology, 1999; 145: 2069-2075
    Google Scholar
  • 55. Mattoo S., Cherry J.D.: Molecular pathogenesis, epidemiology,and clinical manifestations of respiratory infections due to Bordetellapertussis and other Bordetella subspecies. Clin. Microbiol Rev.,2005; 18: 326-382
    Google Scholar
  • 56. McCarthy M.: Vaccine refusal may have contributed to California’s 2010 pertussis outbreak, study finds. Br. Med. J., 2013; 347: f6109
    Google Scholar
  • 57. Medical Research Council 1956: VACCINATION against whooping-cough;relation between protection in children and resultsof laboratory tests; a report to the Whooping-cough ImmunizationCommittee of the Medical Research Council and to the medical officersof health for Cardiff, Leeds, Leyton, Manchester, Middlesex,Oxford, Poole, Tottenham, Walthamstow, and Wembley. Br. Med. J.,1956; 2: 454-462
    Google Scholar
  • 58. Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A.: Bordetella pertussispathogenesis: current and future challenges. Nat Rev Microbiol.,2014; 12: 274-288
    Google Scholar
  • 59. Mills K.H., Ryan M., Ryan E., Mahon B.P.: A murine model inwhich protection correlates with pertussis vaccine efficacy in childrenreveals complementary roles for humoral and cell-mediatedimmunity in protection against Bordetella pertussis. Infect. Immun.,1998; 66: 594-602
    Google Scholar
  • 60. Miyaji Y., Otsuka N., Toyoizumi-Ajisaka H., Shibayama K., KamachiK.: Genetic analysis of Bordetella pertussis isolates from the2008-2010 pertussis epidemic in Japan. PLoS One, 2013; 8: e77165
    Google Scholar
  • 61. Mooi F.R.: Bordetella pertussis and vaccination: the persistenceof a genetically monomorphic pathogen. Infect. Genet. Evol., 2010;10: 36-49
    Google Scholar
  • 62. Mooi F.R., van Loo I.H., van Gent M., He Q., Bart M.J., HeuvelmanK.J., de Greeff S.C., Diavatopoulos D., Teunis P., Nagelkerke N.,Mertsola J.: Bordetella pertussis strains with increased toxin productionassociated with pertussis resurgence. Emerg. Infect. Dis., 2009;15: 1206-1213
    Google Scholar
  • 63. Mooi F.R., van der Maas N.A., de Melker H.E.: Pertussis resurgence:waning immunity and pathogen adaptation – two sides of thesame coin. Epidemiol. Infect., 2014; 142: 685-694
    Google Scholar
  • 64. Mosiej E., Augustynowicz E., Zawadka M., Dabrowski W., Lutyń-ska A.: Strain variation among Bordetella pertussis isolates circulatingin Poland after 50 years of whole-cell pertussis vaccine use. J. Clin.Microbiol., 2011; 49: 1452-1457
    Google Scholar
  • 65. Mosiej E., Zawadka M., Krysztopa-Grzybowska K., Polak M., AugustynowiczE., Piekarska K., Lutyńska A.: Sequence variation in virulence-relatedgenes of Bordetella pertussis isolates from Poland in theperiod 1959-2013. Eur. J. Clin. Microbiol. Infect. Dis., 2015; 34: 147-152
    Google Scholar
  • 66. Njamkepo E., Cantinelli T., Guigon G., Guiso N.: Genomic analysisand comparison of Bordetella pertussis isolates circulating in low andhigh vaccine coverage areas. Microbes. Infect., 2008; 10: 1582-1586
    Google Scholar
  • 67. Olin P., Rasmussen F., Gustafsson L., Hallander H.O., Heijbel H.:Randomised controlled trial of two-component, three-component,and five-component acellular pertussis vaccines compared withwhole-cell pertussis vaccine. Ad Hoc Group for the Study of PertussisVaccines. Lancet, 1997; 350: 1569-1577
    Google Scholar
  • 68. Otsuka N., Han H.J., Toyoizumi-Ajisaka H., Nakamura Y., ArakawaY., Shibayama K., Kamachi K.: Prevalence and genetic characterizationof pertactin-deficient Bordetella pertussis in Japan. PLoSOne, 2012; 7: e31985
    Google Scholar
  • 69. Packard E.R., Parton R., Coote J.G., Fry N.K.: Sequence variationand conservation in virulence-related genes of Bordetella pertussisisolates from the UK. J. Med. Microbiol., 2004; 53: 355-365
    Google Scholar
  • 70. Parkhill J., Sebaihia M., Preston A., Murphy L.D., Thomson N., Harris D.E., Holden M.T., Churcher C.M., Bentley S.D., Mungall K.L.,Cerdeño-Tárraga A.M., Temple L., James K., Harris B., Quail M.A.i wsp.: Comparative analysis of the genome sequences of Bordetellapertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat.Genet., 2003; 35: 32-40
    Google Scholar
  • 71. Pawloski L.C., Queenan A.M., Cassiday P.K., Lynch A.S., HarrisonM.J., Shang W., Williams M.M., Bowden K.E., Burgos-Rivera B., Qin X.,Messonnier N., Tondella M.L.: Prevalence and molecular characterizationof pertactin-deficient Bordetella pertussis in the United States.Clin. Vaccine Immunol., 2014; 21: 119-125
    Google Scholar
  • 72. Queenan A.M., Cassiday P.K., Evangelista A.: Pertactin-negativevariants of Bordetella pertussis in the United States. N. Engl. J. Med.,2013; 368: 583-584
    Google Scholar
  • 73. Quinlan T., Musser K.A., Currenti S.A., Zansky S.M., Halse T.A.:Pertactin-negative variants of Bordetella pertussis in New York State:A retrospective analysis, 2004-2013. Mol. Cell. Probes, 2014; 28:138-140
    Google Scholar
  • 74. Rodríguez M.E., Hellwig S.M., Pérez Vidakovics M.L., BerbersG.A., van de Winkel J.G.: Bordetella pertussis attachment to respiratoryepithelial cells can be impaired by fimbriae-specific antibodies.FEMS Immunol. Med. Microbiol., 2006; 46: 39-47
    Google Scholar
  • 75. Safarchi A., Octavia S., Luu L.D., Tay C.Y., Sintchenko V., Wood N,Marshall H., McIntyre P., Lan R.: Pertactin negative Bordetella pertussisdemonstrates higher fitness under vaccine selection pressure ina mixed infection model. Vaccine, 2015; 33: 6277-6281
    Google Scholar
  • 76. Sato H., Sato Y.: Bordetella pertussis infection in mice: correlationof specific antibodies against two antigens, pertussis toxin, and filamentoushemagglutinin with mouse protectivity in an intracerebralor aerosol challenge system. Infect. Immun., 1984; 46: 415-421
    Google Scholar
  • 77. Sato H., Sato Y.: Relationship between structure and biologicaland protective activities of pertussis toxin. Dev. Biol. Stand., 1991;73: 121-132
    Google Scholar
  • 78. Scheller E.V., Cotter P.A.: Bordetella filamentous hemagglutininand fimbriae: critical adhesins with unrealized vaccine potential.Pathog. Dis., 2015; 73: ftv079
    Google Scholar
  • 79. Sealey K.L., Harris S.R., Fry N.K., Hurst L.D., Gorringe A.R., ParkhillJ., Preston A.: Genomic analysis of isolates from the United Kingdom 2012 pertussis outbreak reveals that vaccine antigen genes areunusually fast evolving. J. Infect. Dis., 2015; 212: 294-301
    Google Scholar
  • 80. Serra D.O., Conover M.S., Arnal L., Sloan G.P., Rodriguez M.E.,Yantorno O.M., Deora R.: FHA-mediated cell-substrate and cell-celladhesions are critical for Bordetella pertussis biofilm formation onabiotic surfaces and in the mouse nose and the trachea. PLoS One,2011; 6: e28811
    Google Scholar
  • 81. Shahin R.D., Amsbaugh D.F., Leef M.F.: Mucosal immunizationwith filamentous hemagglutinin protects against Bordetella pertussisrespiratory infection. Infect. Immun., 1992; 60: 1482-1488
    Google Scholar
  • 82. Sheridan S.L., Ware R.S., Grimwood K., Lambert S.B.: Numberand order of whole cell pertussis vaccines in infancy and diseaseprotection. JAMA, 2012; 308: 454-456
    Google Scholar
  • 83. Shuel M., Jamieson F.B., Tang P., Brown S., Farrell D., Martin I.,Stoltz J., Tsang R.S.: Genetic analysis of Bordetella pertussis in Ontario,Canada reveals one predominant clone. Int. J. Infect. Dis., 2013;17: e413-417
    Google Scholar
  • 84. Spangrude G.J., Sacchi F., Hill H.R., van Epps D.E., Daynes R.A.:Inhibition of lymphocyte and neutrophil chemotaxis by pertussistoxin. J. Immunol., 1985; 135: 4135-4143
    Google Scholar
  • 85. Stefanelli P., Fazio C., Fedele G., Spensieri F., Ausiello C.M., MastrantonioP.: A natural pertactin deficient strain of Bordetella pertussisshows improved entry in human monocyte-derived dendriticcells. New Microbiol., 2009; 32: 159-166
    Google Scholar
  • 86. Stefanoff P., Paradowska-Stankiewicz I.A., Lipke M., KarasekE., Rastawicki W., Zasada A., Samuels S., Czajka H., Pebody R.G.: Incidence of pertussis in patients of general practitioners in Poland.Epidemiol. Infect., 2014; 142: 714-723
    Google Scholar
  • 87. Storsaeter J., Hallander H.O., Gustafsson L., Olin P.: Levels of anti–pertussis antibodies related to protection after household exposureto Bordetella pertussis. Vaccine, 1998; 16: 1907-1916
    Google Scholar
  • 88. Theofiles A.G., Cunningham S.A., Chia N., Jeraldo P.R., Quest D.J.,Mandrekar J.N., Patel R.: Pertussis outbreak, Southeastern Minnesota, 2012 Mayo Clin. Proc., 2014; 89: 1378-1388
    Google Scholar
  • 89. Thierry-Carstensen B., Dalby T., Stevner M.A., Robbins J.B.,Schneerson R., Trollfors B.: Experience with monocomponent acellularpertussis combination vaccines for infants, children, adolescentsand adults – a review of safety, immunogenicity, efficacy andeffectiveness studies and 15 years of field experience. Vaccine, 2013;31: 5178-5191
    Google Scholar
  • 90. Tsang R.S., Shuel M., Jamieson F.B., Drews S., Hoang L., HorsmanG., Lefebvre B., Desai S., St-Laurent M.: Pertactin-negative Bordetellapertussis strains in Canada: characterization of a dozen isolates basedon a survey of 224 samples collected in different parts of the countryover the last 20 years. Int. J. Infect. Dis., 2014; 28: 65-69
    Google Scholar
  • 91. van Gent M., Heuvelman C.J., van der Heide H.G., Hallander H.O.,Advani A., Guiso N., Wirsing von Kőnig C.H., Vestrheim D.F., DalbyT., Fry N.K., Pierard D., Detemmerman L., Zavadilova J., FabianovaK., Logan C. i wsp.: Analysis of Bordetella pertussis clinical isolatescirculating in European countries during the period 1998-2012. Eur.J. Clin. Microbiol. Infect. Dis., 2015; 34: 821-830
    Google Scholar
  • 92. van Gent M., Pierard D., Lauwers S., van der Heide H.G., KingA.J., Mooi F.R.: Characterization of Bordetella pertussis clinical isolatesthat do not express the tracheal colonization factor. FEMS Immunol.Med. Microbiol., 2007; 51: 149-154
    Google Scholar
  • 93. van Gent M., van Loo I.H., Heuvelman K.J., de Neeling A.J., TeunisP., Mooi F.R.: Studies on Prn variation in the mouse model andcomparison with epidemiological data. PLoS One, 2011; 6: e18014
    Google Scholar
  • 94. van Hoek A.J., Campbell H., Amirthalingam G., Andrews N., MillerE.: The number of deaths among infants under one year of age inEngland with pertussis: results of a capture/recapture analysis forthe period 2001 to 2011. Euro Surveill., 2013; 18: 20414
    Google Scholar
  • 95. van Loo I.H., Heuvelman K.J., King A.J., Mooi F.R.: Multilocussequence typing of Bordetella pertussis based on surface proteingenes. J. Clin. Microbiol., 2002; 40: 1994-2001
    Google Scholar
  • 96. Vandebriel R.J., Hellwig S.M., Vermeulen J.P., Hoekman J.H.,Dormans J.A., Roholl P.J., Mooi F.R.: Association of Bordetella pertussiswith host immune cells in the mouse lung. Microb. Pathog.,2003; 35: 19-29
    Google Scholar
  • 97. Williams M.M., Sen K., Weigand M.R., Skoff T.H., CunninghamV.A., Halse T.A., Tondella M.L., CDC Pertussis Working Group: Bordetellapertussis strain lacking pertactin and pertussis toxin. Emerg.Infect. Dis., 2016; 22: 319-322
    Google Scholar
  • 98. World Health Organization: WHO – Immunization, Vaccines andBiologicals, Pertussis. http://www.who.int/immunization/topics/pertussis/en/(12.12.2015)
    Google Scholar
  • 99. Zeddeman A., van Gent M., Heuvelman C.J., van der Heide H.G.,Bart M.J., Advani A., Hallander H.O., Wirsing von Konig C.H., RiffelmanM., Storsaeter J., Vestrheim D.F., Dalby T., Krogfelt K.A., Fry N.K.,Barkoff A.M. i wsp.: Investigations into the emergence of pertactin–deficient Bordetella pertussis isolates in six European countries, 1996to 2012. Euro Surveill., 2014; 19: 20881
    Google Scholar
  • 100. Zhu Y.Z., Cai C.S., Zhang W., Guo H.X., Zhang J.P., Ji Y.Y., Ma G.Y.,Wu J.L., Li Q.T., Lu C.P., Guo X.K.: Immunoproteomic analysis of humanserological antibody responses to vaccination with whole-cellpertussis vaccine (WCV). PLoS One, 2010; 5: e13915
    Google Scholar

Full text

Skip to content