The importance of environmental exposure on selected xenoestrogens in the pathogenesis of breast cancer

REVIEW ARTICLE

The importance of environmental exposure on selected xenoestrogens in the pathogenesis of breast cancer

Ewa Sawicka 1 , Kamila Boszkiewicz 1 , Martyna Wolniak 2 , Agnieszka Piwowar 1

1. Katedra i Zakład Toksykologii, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu,
2. Studenckie Naukowe Koło Toksykologiczne, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu,

Published: 2020-05-25
DOI: 10.5604/01.3001.0014.1542
GICID: 01.3001.0014.1542
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 155-170

 

Abstract

Breast cancer is one of the most common types of cancer observed in women, and in its pathogenesis, in addition to endogenous estrogens, a significant role is played by xenoestrogens, which are present in the human life environment. It is a large group of exogenous compounds of diverse structure, not produced in the human body, which imitate the action of female sex hormones, especially estrogens, and in consequence affect the hormonal balance of the body. Despite the diverse structure, their common feature is the ability to interact with estrogen receptors. In this way they change the functioning of the endocrine system and, consequently, they can induce negative changes in the human body and effects on the health of both the parental generation and its offspring. Some xenoestrogens may cause tumor growth by stimulating cell proliferation, angiogenesis and metastasis. So far, such properties have been found for organic compounds, but also for some metal ions, referred to as metalloestrogens. For this reason, it is extremely important to know the sources of the presence and mechanisms of xenoestrogens in the pathogenesis of mammary gland cancer. The presented paper discusses the role of selected xenoestrogens, such as: bisphenol A, phthalates, parabens or cadmium, as a metalloestrogen. A wide range of xenoestrogens has been selected for the compounds given above, due to their importance in the pathogenesis of breast cancer and their widespread presence in the human environment, as well as to draw attention to the still-present problem of possible chronic environmental or occupational exposure of humans. The paper also explores the problem of the effect of xenoestrogens on the efficacy of breast cancer treatment, presenting possible xenoestrogen-drug interactions. It also explains how xenoestrogens present in foods (phytoestrogens) can affect the effectiveness of pharmacotherapy of breast cancer.

References

  • 1. Albini A., Rosano C., Angelini G., Amaro A., Esposito A., MaramottiS., Noonan D.M., Pfeffer U.: Exogenous hormonal regulationin breast cancer cells by phytoestrogens and endocrine disruptors.Curr. Med. Chem., 2014; 21: 1129–1145
    Google Scholar
  • 2. Ayyanan A., Laribi O., Schuepbach-Mallepell S., Schrick C., GutierrezM., Tanos T., Lefebvre G., Rougemont J., Yalcin-Ozuysal Ö., Brisken C.: Perinatalexposure to bisphenol A increases adult mammary gland progesteroneresponse and cell number. Mol. Endocrinol., 2011; 25: 1915–1923
    Google Scholar
  • 3. Beaver J.A., Amiri-Kordestani L., Charlab R., Chen W., Palmby T., TilleyA., Zirkelbach J.F., Yu J., Liu Q., Zhao L., Crich J., Chen X.H., Hughes M.,Bloomquist E., Tang S. i wsp.: FDA approval: Palbociclib for the treatmentof postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin. Cancer Res., 2015; 21: 4760–4766
    Google Scholar
  • 4. Bisphenol A. Environmental Chemicals. Version current 4 April 2014 http://flipper.diff.org/app/items/6697 (23.04.2018)
    Google Scholar
  • 5. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., JemalA.: Global cancer statistics 2018: GLOBOCAN estimates of incidenceand mortality worldwide for 36 cancers in 185 countries. C. A. CancerJ. Clin., 2018; 68: 394–424
    Google Scholar
  • 6. Byrne C., Divekar S.D., Storchan G.B., Parodi D.A., Martin M.B.:Metals and breast cancer. J. Mammary Gland Biol. Neoplasia, 2013;18: 63–73
    Google Scholar
  • 7. Castro B., Sánchez P., Torres J.M., Preda O., del Moral R. G., Ortega E.:Bisphenol A exposure during adulthood alters expression of aromataseand 5α-reductase isozymes in rat prostate. PLoS One, 2013; 8: e55905
    Google Scholar
  • 8. Chang Y.W., Singh K.P.: Long-term exposure to estrogen enhanceschemotherapeutic efficacy potentially through epigenetic mechanismin human breast cancer cells. PLoS One, 2017; 12: e0174227
    Google Scholar
  • 9. Chen F.P., Chien M.H., Chern I.Y.: Impact of low concentrationsof phthalates on the effects of 17β-estradiol in MCF-7 breast cancercells. Taiwan. J. Obstet. Gynecol., 2016; 55: 826–834
    Google Scholar
  • 10. Choe S.Y., Kim S.J., Kim H.G., Lee J.H., Choi Y., Lee H., Kim Y.:Evaluation of estrogenicity of major heavy metals. Sci. Total Environ.,2003; 312: 15–21
    Google Scholar
  • 11. Czeczot H., Majewska M.: Kadm – zagrożenie i skutki zdrowotne.Farm. Pol., 2010; 66: 243–250
    Google Scholar
  • 12. Czeczot H., Skrzycki M.: Kadm – pierwiastek całkowicie zbędnydla organizmu. Postępy Hig. Med. Dośw., 2010; 64: 38–49
    Google Scholar
  • 13. Dall G.V., Britt K.L.: Estrogen effects on the mammary gland inearly and late life and breast cancer risk. Front. Oncol., 2017; 7: 110–117
    Google Scholar
  • 14. Darbre P.D.: Metalloestrogens: an emerging class of inorganicxenoestrogens with potential to add to the oestrogenic burden ofthe human breast. J. Appl. Toxicol., 2006; 26: 191–197
    Google Scholar
  • 15. Deb P., Bhan A., Hussain I., Ansari K.I., Bobzean S.A., Pandita T.K.,Perrotti L.I., Mandal S.S.: Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitroand in vivo. Gene, 2016; 590: 234–243
    Google Scholar
  • 16. Derouiche S., Warnier M., Mariot P., Gosset P., Mauroy B., BonnalJ.L., Slomianny C., Delcourt P., Prevarskaya N., Roudbaraki M.:Bisphenol A stimulates human prostate cancer cell migration viaremodelling of calcium signalling. Springerplus, 2013; 2: 54
    Google Scholar
  • 17. Dębska-Szmich S., Zięba A., Potemski P.: Fulvestrant in hormonaltreatment of breast cancer. Oncol. Clin. Pract., 2017; 13: 14–23
    Google Scholar
  • 18. Didkowska J., Wojciechowska U., Olasek P.: Nowotwory złośliwew Polsce w 2015 roku. Krajowy Rejestr Nowotworów, Warszawa2017, 8–13
    Google Scholar
  • 19. EFSA Panel on Food Contact Materials, Enzymes, Flavourings andProcessing Aids (CEF) Scientific opinion on the risks to public healthrelated to the presence of bisphenol A in foodstuffs: Toxicologicalassessment and risk characterisation. 2015 EFSA J., 2015; 13: 1–396
    Google Scholar
  • 20. Fernandez S.V., Huang Y., Snider K.E., Zhou Y., Pogash T.J., Russo J.:Expression and DNA methylation changes in human breast epithelialcells after bisphenol A (BPA) exposure. Int. J. Oncol., 2012; 41: 369–377
    Google Scholar
  • 21. Forma E., Szymczyk A., Krześlak A.: Wybrane ksenoestrogenyi ich wpływ na zdrowie człowieka. Folia Med. Lodz., 2013; 40: 79–97
    Google Scholar
  • 22. Fuhrman B.J., Schairer C., Gail M.H., Boyd-Morin J., Xu X., SueL.Y., Buys S.S., Isaacs C., Keefer L.K., Veenstra T.D., Berg C.D., HooverR.N., Ziegler R.G.: Estrogen metabolism and risk of breast cancerin postmenstrual women. J. Natl. Cancer Inst., 2012; 104: 326–339
    Google Scholar
  • 23. Gallagher C.M., Chen J.J., Kovach J.S.: Environmental cadmiumand breast cancer risk. Aging, 2010; 2: 804–814
    Google Scholar
  • 24. Gao H., Yang B.J., Li N., Feng L.M., Shi X.Y., Zhao W.H., Liu S.J.:Bisphenol A and hormone-associated cancers: Current progress andperspectives. Medicine, 2015; 94: e211
    Google Scholar
  • 25. Golden R., Gandy J., Vollmer G.: A review of the endocrine activityof parabens and implications for potential risks to human health.Crit. Rev. Toxicol., 2005; 35: 435–458
    Google Scholar
  • 26. Goodson W.H.3rd, Luciani M.G., Sayeed S.A., Jaffee I.M., MooreD.H.2nd, Dairkee S.H.: Activation of the mTOR pathway by low levelsof xenoestrogens in breast epithelial cells from high-risk women.Carcinogenesis, 2011; 32: 1724–1733
    Google Scholar
  • 27. Gray J.M., Rasanayagam S., Engel C., Rizzo J.: State of the evidence2017: an update on the connection between breast cancer andthe environment. Environ. Health, 2017; 16: 94
    Google Scholar
  • 28. Hiatt R.A., Brody J.G.: Environmental determinants of breastcancer. Annu. Rev. Public Health, 2018; 39: 113–133
    Google Scholar
  • 29. Hsu Y.L., Hung J.Y., Tsai E.M., Wu C.Y., Ho Y.W., Jian S.F., Yen M.C.,Chang W.A., Hou M.F., Kuo P.L.: Benzyl butyl phthalate increases thechemoresistance to doxorubicin/cyclophosphamide by increasingbreast cancer-associated dendritic cell-derived CXCL1/GROα andS100A8/A9. Oncol. Rep., 2015; 34: 2889–2900
    Google Scholar
  • 30. Ionescu J.G., Novotny J., Stejskal V., Lätsch A., Blaurock-Busch E.,Eisenmann-Klein M.: Increased levels of transition metals in breastcancer tissue. Neuro. Endocrinol. Lett., 2006; 27: 36–39
    Google Scholar
  • 31. Jadhav R.R., Santucci-Pereira J., Wang Y.V., Liu J., Nguyen T.D.,Wang J., Jenkins S., Russo J., Huang T.H., Jin V.X., Lamartiniere C.A.:DNA methylation targets influenced by bisphenol A and/or genisteinare associated with survival outcomes in breast cancer patients.Genes, 2017; 8: 144
    Google Scholar
  • 32. Jassem J., Krzakowski M.: Breast cancer. Oncol. Clin. Pract., 2018;14: 171–215
    Google Scholar
  • 33. Jouybari L., Saei Ghare Naz M., Sanagoo A., Kiani F., SayehmiriF., Sayehmiri K., Hasanpour, Dehkordi A.H.: Toxic elements as biomarkersfor breast cancer: A meta-analysis study. Cancer Manag.Res., 2018; 10: 69–79
    Google Scholar
  • 34. Ju Y.H., Doerge D.R., Allred K.F., Allred C.D., Helferich W.G.: Dietarygenistein negates the inhibitory effect of tamoxifen on growthof estrogen-dependent human breast cancer (MCF-7) cells implantedin athymic mice. Cancer Res., 2002; 62: 2474–2477
    Google Scholar
  • 35. Ju Y.H., Doerge D.R., Woodling K.A., Hartman J.A., Kwak J., HelferichW.G.: Dietary genistein negates the inhibitory effect of letrozoleon the growth of aromatase-expressing estrogen-dependenthuman breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis, 2008;29: 2162–2168
    Google Scholar
  • 36. Kim J.Y., Choi H.G., Lee H.M., Lee G.A., Hwang K.A., Choi K.C.: Effectsof bisphenol compounds on the growth and epithelial mesenchymaltransition of MCF-7 CV human breast cancer cells. J. Biomed.Res., 2017; 31: 358–369
    Google Scholar
  • 37. Lapensee E.W., Tuttle T.R., Fox S.R., Ben-Jonathan N.: BisfenolA at low nanomolar doses confers chemoresistance in estrogenreceptor-α-positive and –negative breast cancer cells. Environ.Health Perspect., 2009; 117: 175–180
    Google Scholar
  • 38. Lim D.S., Roh T.H., Kim M.K., Kwon Y.C., Choi S.M., Kwack S.J.,Kim K.B., Yoon S., Kim H.S., Lee B.M.: Non–cancer, cancer, and dermalsensitization risk assessment of heavy metals in cosmetics. J.Toxicol. Environ. Health A, 2018; 81: 432–452
    Google Scholar
  • 39. Lubovac-Pilav Z., Borràs D.M., Ponce E., Louie M.C.: Using expressionprofiling to understand the effects of chronic cadmiumexposure on MCF-7 breast cancer cells. PLoS One, 2013; 8: e84646
    Google Scholar
  • 40. Luevano J., Damodaran C.: A review of molecular events of cadmium-induced carcinogenesis. J. Environ. Pathol. Toxicol. Oncol.,2014; 33: 183–194
    Google Scholar
  • 41. Makowski M., Połać I., Pertyński T.: Estrogeny a rak sutka. Prz.Menopauz., 2007; 3: 150–154
    Google Scholar
  • 42. Marino M., Pellegrini M., La Rosa P., Acconcia F.: Susceptibilityof estrogen receptor rapid responses to xenoestrogens: Physiologicaloutcomes. Steroids, 2012; 77: 910–917
    Google Scholar
  • 43. Martínez-Campa C.M., Alonso-González C., Mediavilla M.D.,Cos S., González A., Sanchez-Barcelo E.J.: Melatonin down-regulateshTERT expression induced by either natural estrogens (17-β estradiol)or metalloestrogens (cadmium) in MCF-7 human breast cancercells. Cancer Lett., 2008; 268: 272–277
    Google Scholar
  • 44. Matejczyk M., Zalewski P.: Związki endokrynnie aktywne i ichaktywność biologiczna. Kosmos, 2011; 1–2: 17–32
    Google Scholar
  • 45. Mędrela-Kuder M.: Czynniki ryzyka raka piersi – Porównaniewiedzy na ten temat u „Amazonek” i kobiet zdrowych w wieku 40–60lat. Pol. Przegl. Nauk Zdr., 2016; 2: 142–147
    Google Scholar
  • 46. Mlynarcikova A., Macho L., Fickova M.: Bisphenol A alone andin combination with estradiol modulates cell cycle- and apoptosisrelatedproteins and genes in MCF-7 cells. Endocr. Regul., 2013; 47:189–199
    Google Scholar
  • 47. Murray T.J., Maffini M.V., Ucci A.A., Sonnenschein C., Soto A.M.:Induction of mammary gland ductal hyperplasias and carcinomain situ following fetal bisphenol A exposure. Reprod. Toxicol., 2007;23: 383–390
    Google Scholar
  • 48. Osborne G., Rudel R., Schwarzman M.: Evaluating chemical effectson mammary gland development: A critical need in diseaseprevention. Reprod. Toxicol., 2015; 54: 148–155
    Google Scholar
  • 49. Osuna M.A.L., Nichols C., Perry C., Runke S., Krutilina R., SeagrovesT.N., Miranda-Carboni G.A., Krum S.A.: Methylparaben stimulatestumor initiating cells in ER+ breast cancer models. J. Appl.Toxicol. 2017; 37: 417–425
    Google Scholar
  • 50. Paruthiyil S., Parmar H., Kerekatte V., Cunha G.R., Firestone G.L.,Leitman D.C.: Estrogen receptor β inhibits human breast cancer cellproliferation and tumor formation by causing a G2 cell cycle arrest.Cancer Res., 2004; 64: 423–428
    Google Scholar
  • 51. Pastor-Barriuso R., Fernández M.F., Castaño-Vinyals G., WhelanD., Pérez-Gómez B., Llorca J., Villanueva C.M., Guevara M., Molina-Molina J.M., Artacho-Cordón F., Barriuso-Lapresa L., Tusquets I., Dierssen-Sotos T., Aragonés N., Olea N., Kogevinas M., Pollán M.: Totaleffective xenoestrogen burden in serum samples and risk for breastcancer in a population-based multicase–control study in Spain. Environ.Health Perspect., 2016; 124: 1575–1582
    Google Scholar
  • 52. Paulose T., Speroni L., Sonnenschein C., Soto A.M.: Estrogens inthe wrong place at the wrong time: fetal BPA exposure and mammarycancer. Reprod. Toxicol., 2015; 54: 58–65
    Google Scholar
  • 53. Rochefort H.: Endocrine disruptors (EDs) and hormone-dependentcancers: Correlation or causal relationship? C.R. Biol., 2017;340: 439–445
    Google Scholar
  • 54. Rodgers K.M., Udesky J.O., Rudel R.A., Brody J.G.: Environmentalchemicals and breast cancer: An updated review of epidemiologicalliterature informed by biological mechanisms. Environ. Res., 2018;160: 152–182
    Google Scholar
  • 55. Rogala D., Kulik-Kupka K., Spychała A., Śnieżek E., Janicka A.,Moskalenko O.: Bisfenol A – niebezpieczny związek ukryty w tworzywachsztucznych. Probl. Hig. Epidemiol., 2016; 97: 213–219
    Google Scholar
  • 56. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr1907/2006 (rozporządzenie REACH) oraz nr 1223/2009 (rozporządzeniedotyczące produktów kosmetycznych)] Scientific Committeeon Consumer Safety SCCS. OPINION ON Parabens https://ec.europa.eu/health/scientific_committees/consumer_safety_en
    Google Scholar
  • 57. Russo J., Russo I.H.: The role of estrogen in the initation of breastcancer. J. Steroid. Biochem. Mol. Biol., 2006; 102: 89–96
    Google Scholar
  • 58. Samavat H., Kurzer M.S.: Estrogen metabolism and breast cancer.Cancer Lett., 2015; 356: 231–243
    Google Scholar
  • 59. Seachrist D.D., Bonk K.W., Ho S.M., Prins G.S., Soto A.M., KeriR.A.: A review of the carcinogenic potential of bisphenol A. Reprod.Toxicol., 2016; 59: 167–182
    Google Scholar
  • 60. Siewit C.L., Gengler B., Vegas E., Puckett R., Louie M.C.: Cadmiumpromotes breast cancer cell proliferation by potentiating the interactionbetween ERα and c-Jun. Mol. Endocrinol., 2010; 24: 981–992
    Google Scholar
  • 61. Song H., Zhang T., Yang P., Li M., Yang Y., Wang Y., Du J., PanK., Zhang K.: Low doses of bisphenol A stimulate the proliferationof breast cancer cells via ERK1/2/ERRγ signals. Toxicol. In Vitro2015; 30: 521–528
    Google Scholar
  • 62. Song X., Wei Z., Shaikh Z.A.: Requirement of ERα and basal activitiesof EGFR and Srckinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 Cells. Toxicol. Appl.Pharmacol., 2015; 287: 26–34
    Google Scholar
  • 63. Sowa M., Smuczyński W., Tarkowski M., Wójcik K., KochańskiB.: Analiza wybranych czynników ryzyka raka piersi – przeglądpiśmiennictwa = Analysis of the selected risk factors for breastcancer – literature review. J. Educ. Health Sport, 2015; 5: 245–250
    Google Scholar
  • 64. Stohs S.J., Bagchi D., Hassoun E., Bagchi M.: Oxidative mechanismsin the toxicity of chromium and cadmium ions. J. Environ.Pathol. Toxicol. Oncol., 2001; 20: 77–88
    Google Scholar
  • 65. Stopińska-Głuszak U., Głuszak O.: Rak gruczołu piersiowego:epidemiologia i patogeneza. Postępy Nauk Med., 2008; 3: 159–164
    Google Scholar
  • 66. Sun L., Yu T., Guo J., Zhang Z., Hu Y., Xiao X., Sun Y., Xiao H., LiJ., Zhu D., Sai L., Li J.: The estrogenicity of methylparaben and ethylparabenat doses close to the acceptable daily intake in immatureSprague-Dawley rats. Sci. Rep., 2016; 6: 25173
    Google Scholar
  • 67. Świtalska M., Strządała L.: Niegenomowe działanie estrogenów.Postępy Hig. Med. Dośw., 2007; 61: 541–547
    Google Scholar
  • 68. Tomczyńska M., Saluk J., Sawicka E.: Estrogenne działanie kadmui glinu. Probl. Hig. Epidemiol., 2016; 97: 1–5
    Google Scholar
  • 69. Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M.: Freeradicals, metals and antioxidants in oxidative stress-induced cancer.Chem. Biol. Interact., 2006; 160: 1–40
    Google Scholar
  • 70. Vrtačnik P., Ostanek B., Mencej-Bedrač S., Marc J.: The manyfaces of estrogen signaling. Biochem. Med., 2014; 24: 329–342
    Google Scholar
  • 71. Wallace D.R.: Nanotoxicology and metalloestrogens: Possibleinvolvement in breast cancer. Toxics, 2015; 3: 390–413
    Google Scholar
  • 72. Wang J., Jenkins S., Lamartiniere C.A.: Cell proliferation andapoptosis in rat mammary glands following combinational exposureto bisphenol A and genistein. BMC Cancer, 2014; 14: 379
    Google Scholar
  • 73. Wang Z., Liu H., Liu S.: Low-dose bisphenol A exposure: a seeminglyinstigating carcinogenic effect on breast cancer. Adv. Sci.,2016; 4: 1600248
    Google Scholar
  • 74. Warth B., Raffeiner P., Granados A., Huan T., Fang M., ForsbergE.M., Benton H.P., Goetz L., Johnson C.H., Siuzdak G.: Metabolomicsreveals that dietary xenoestrogens alter cellular metabolism inducedby palbociclib/letrozole combination cancer therapy. Cell. Chem.Biol., 2018; 25: 291–300.e3
    Google Scholar
  • 75. Watson C.S., Hu G., Paulucci-Holthauzen A.A.: Rapid actions ofxenoestrogens disrupt normal estrogenic signaling. Steroids, 2014;81: 36–42
    Google Scholar
  • 76. Wojciechowska U., Czaderny K., Ciuba A., Olasek P., DidkowskaJ.: Nowotwory złośliwe w Polsce w 2016 roku. Krajowy Rejestr Nowotworów,Warszawa 2018
    Google Scholar
  • 77. World Health Organization, Breast cancer. Internet: http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ (23.04.2018)
    Google Scholar
  • 78. Woźniak M., Murias M.: Ksenoestrogeny: substancje zakłócającefunkcjonowanie układu hormonalnego. Ginekol. Pol., 2008; 79:785–790
    Google Scholar
  • 79. Wróbel A., Gregoraszczuk E.Ł.: Effects of single and repeated invitro exposure of three forms of parabens, methyl-, butyl- and propylparabenson the proliferation and estradiol secretion in MCF-7and MCF-10A cells. Pharmacol. Rep., 2013; 65: 484–493
    Google Scholar
  • 80. Zielniok K., Gajewska M., Motyl T.: Molekularne aspekty działania17β-estradiolu i progesteronu w komórkowych szlakach sygnałowych.Postępy Hig. Med. Dośw., 2014; 68: 777–792
    Google Scholar

Full text

Skip to content