The influence of pyrethroides: permethrin, deltamethrin and alpha-cypermetrin on oxidative damage
Agnieszka Chrustek 1 , Iga Hołyńska-Iwan 1 , Dorota Olszewska-Słonina 1Abstract
Pyrethroids, synthetic derivatives of natural pyrethrins derived from Chrysanthemum cinerariaefolim, are commonly used for plant protection in the forestry, agricultural, pharmaceutical industry as well as in medicine and veterinary medicine. They can enter the body by inhalation, ingestion and skin contact. It was assumed that they are characterized by low toxicity to humans, are quickly metabolized and do not accumulate in tissues, and are excreted in the urine. Despite the existing restrictions, their use carries a great risk, because these compounds and their metabolites can get into the natural environment, contaminating water, soil and food. The consequences of using pyrethroids as a direct threat to animal and human health have been described for many years. They are published on an ongoing basis informing about poisoning with these compounds in humans and animals, and about fatalities after their taking. Children are most at risk because pyrethroids can be found in breast milk. These compounds have nephrotoxic, hepatotoxic, immunotoxic, neurotoxic effects and have a negative effect on the reproductive system and the fetus. Pyrethroids such as permethrin, deltamethrin, alpha-cypermethrin are approved by the World Health Organization for daily use; however, numerous scientific studies indicate that they can cause oxidative stress. They lead to DNA, protein, lipid damage and induction of apoptosis. The purpose of the work was to collect and systematize the available knowledge regarding the induction of oxidative stress by selected pyrethroids.
References
- 1. Abdel-Daim M., El-Bialy B.E., Abdel Rahman H.G., Radi A.M., HefnyH.A., Hassan A.M.: Antagonistic effects of Spirulina platensis againstsub-acute deltamethrin toxicity in mice: Biochemical and histopathologicalstudies. Biomed. Pharmacother., 2016; 77: 79-85
Google Scholar - 2. Adams L., Franco M.C., Estevez A.G.: Reactive nitrogen species incellular signaling. Exp. Biol. Med., 2015; 240: 711-717
Google Scholar - 3. Arafa M.H., Mohamed D.A., Atteia H.H.: Ameliorative effect of Nacetylcysteine on alpha-cypermethrin-induced pulmonary toxicityin male rats. Environ Toxicol., 2015; 30: 26-43
Google Scholar - 4. Arrighetti F., Ambrosio E., Astiz M., Capítulo A.R., Lavarías S.: Differentialresponse between histological and biochemical biomarkersin the apple snail Pomacea canaliculata (Gasteropoda: Amullariidae)exposed to cypermethrin. Aquat Toxicol., 2018; 194: 140-151
Google Scholar - 5. Arslan H, Altun S., Özdemir S.: Acute toxication of deltamethrinresults in activation of iNOS, 8-OHdGand up-regulation of caspase 3,iNOS gene expression in common carp (Cyprinus carpio L.). AquatToxicol,. 2017; 187: 90-99
Google Scholar - 6. Bordoni L., Nasuti C., Mirto M., Caradonna F., Gabbianelli R.: Intergenerationaleffect of early life exposure to Permethrin: Changesin global DNA methylation and in Nurr1 gene expression. Toxics,2015; 3: 451-461
Google Scholar - 7. Cadet J., Douki T., Gasparutto D., Ravanat J.L.: Oxidative damageto DNA: Formation, measurement and biochemical features. Mutat.Res., 2003; 531: 5-23
Google Scholar - 8. Carloni M., Nasuti C., Fedeli D., Montani M., Amici A., VadhanaM.S., Gabbianelli R.: The impact of early life permethrin exposureon development of neurodegeneration in adulthood. Exp. Gerontol.,2012; 47: 60-66
Google Scholar - 9. Chandra N., Jain N.K., Sondhia S., Srivastava A.B.: Deltamethrin inducedtoxicity and ameliorative effect of alpha-tocopherol in broilers.Bull Environ Contam. Toxicol., 2013; 90: 673-678
Google Scholar - 10. Chrustek A., Hołyńska-Iwan I., Dziembowska I, Bogusiewicz J.,Wróblewski M., Cwynar A., Olszewska-Słonina D.: Current research onthe safety of pyrethroids used as insecticides. Medicina, 2018; 54: 61
Google Scholar - 11. Dasuri K., Zhang L., Keller J.N.: Oxidative stress, neurodegeneration,and the balance of protein degradation and protein synthesis.Free Radic. Biol. Med., 2013; 62: 170-185
Google Scholar - 12. Ðikić D., Mojsović-Cuić A., Cupor I., Benković V., Horvat-KnezevićA., Lisicić D., Orsolić N.: Carbendazim combined with imazalil or cypermethrinpotentiate DNA damage in hepatocytes of mice. Hum.Exp. Toxicol., 2012; 31: 492-505
Google Scholar - 13. Ding R., Cao Z., Wang Y., Gao X., Luo H., Zhang C., Ma S., Ma X.,Jin H., Lu C.: The implication of p66shc in oxidative stress induced bydeltamethrin. Chem. Biol. Interact., 2017; 278: 162-169
Google Scholar - 14. El Okda E.S., Abdel-Hamid M.A., Hamdy A.M: Immunological andgenotoxic effects of occupational exposure to α-cypermethrin pesticide.Int. J. Occup. Med. Environ. Health, 2017; 30: 603-615
Google Scholar - 15. Fedeli D., Montani M., Carloni M., Nasuti C., Amici A., GabbianelliR., Vadhana M.S.: Leukocyte Nurr1 as peripheral biomarker of earlylifeenvironmental exposure to permethrin insecticide. Biomarkers,2012; 17: 604-609
Google Scholar - 16. Gabbianelli R., Falcioni M.L., Nasuti C., Cantalamessa F., Imada I.,Inoue M.: Effect of permethrin insecticide on rat polymorphonuclearneutrophils. Chem. Biol. Interact., 2009; 182: 245-252
Google Scholar - 17. Gabbianelli R., Palan M., Flis D.J., Fedeli D., Nasuti C., SkarydovaL., Ziolkowski W.: Imbalance in redox system of rat liver followingpermethrin treatment in adolescence and neonatal age. Xenobiotica,2013; 43: 1103-1110
Google Scholar - 18. Galal M.K., Khalaf A.A., Ogaly H.A., Ibrahim M.A.: Vitamin E attenuatesneurotoxicity induced by deltamethrin in rats. BMC ComplementAltern Med., 2014: 14: 458
Google Scholar - 19. Gasmi S., Rouabhi R., Kebieche M., Boussekine S., Salmi A., ToualbiaN., Taib C., Bouteraa Z., Chenikher H., Henine S., Djabri B.: Effectsof Deltamethrin on striatum and hippocampus mitochondrial integrityand the protective role of Quercetin in rats. Environ. Sci. Pollut.Res., 2017; 24: 16440-16457
Google Scholar - 20. Grosicka-Maciąg E.: Biological consequences of oxidative stressinduced by pesticides Postępy Hig. Med. Dośw., 2011; 65: 357-366
Google Scholar - 21. Hashema H.E., Abd El-Haleema M.R., Abass M.A.: Epithelial andstromal alterations in prostate after cypermethrin administration inadult albino rats (histological and biochemical study). Tissue Cell.,2015; 47: 366-372
Google Scholar - 22. Higuchi Y.: Chromosomal DNA fragmentation in apoptosis andnecrosis induced by oxidative stress. Biochem. Pharmacol., 2003; 66:1527-1535
Google Scholar - 23. Hocine L., Merzouk H., Merzouk S.A., Ghorzi H., Youbi M., NarceM.: The effects of alpha-cypermethrin exposure on biochemical andredox parameters in pregnant rats and their newborns. Pestic. Biochem.Physiol., 2016; 134: 49-54
Google Scholar - 24. Hongsibsonga S., Stuetza W., Susa N., Prapamontol T., Grune T.,Frank J.: Dietary exposure to continuous small doses of α-cypermethrinin the presence or absence of dietary curcumin does not induce oxidativestress in male Wistar rats. Toxicol. Rep., 2014; 1: 1106-1114
Google Scholar - 25. Huang F., Liu Q., Xie S., Xu J., Huang B., Wu Y., Xia D.: Cypermethrininduces macrophages death through cell cycle arrest and oxidativestress-mediated JNK/ERK signaling regulated apoptosis. Int. J.Mol. Sci., 2016; 17: 885
Google Scholar - 26. Hussiena H.M., Abdoub H.M., Mokhtar I.Y.: Cypermethrin induceddamage in genomic DNA and histopathological changes in brain andhaematotoxicity in rats: The protective effect of sesame oil. BrainRes. Bull., 2013; 92: 76-83
Google Scholar - 27. Jia Z.Z., Zhang J.W., Zhou D., Xu D.Q., Feng X.Z.: Deltamethrinexposure induces oxidative stress and affects meiotic maturation inmouse oocyte. Chemosphere, 2019; 223: 704-713
Google Scholar - 28. Jin Y., Zheng S., Fu Z.: Embryonic exposure to cypermethrin inducesapoptosis and immunotoxicity in zebrafish (Danio rerio). FishShellfish Immunol., 2011; 30: 1049-1054
Google Scholar - 29. Kumar A., Sasmal D., Bhaskar A., Mukhopadhyay K., Thakur A.,Sharma N.: Deltamethrin-induced oxidative stress and mitochondrialcaspase-dependent signaling pathways in murine splenocytes. EnvironToxicol., 2016; 31: 808-819
Google Scholar - 30. Lidova J., Stara A., Kouba A., Velisek J.: The effects of cypermethrinon oxidative stress and antioxidant biomarkers in marbled crayfish(Procambarus fallax f. virginalis). Neuro Endocrinol. Lett., 2016; 37: 53-59
Google Scholar - 31. Maalej A., Mahmoudi A., Bouallagui Z., Fki I., Marrekchi R., SayadiS.: Olive phenolic compounds attenuate deltamethrin-induced liverand kidney toxicity through regulating oxidative stress, inflammationand apoptosis. Food Chem. Toxicol., 2017; 106: 455-465
Google Scholar - 32. Maurya S.K., Rai A., Rai N.K., Deshpande S., Jain R., Mudiam M.K.,Prabhakar Y.S., Bandyopadhyay S.: Cypermethrin induces astrocyteapoptosis by the disruption of the autocrine/paracrine mode of epidermalgrowth factor receptor signaling. Toxicol. Sci., 2012; 125: 473-487
Google Scholar - 33. Murkunde Y.V., Sathya T.N., Subashini N., Murthy P.B.: Transplacentalgenotoxicity evaluation of cypermethrin using alkaline cometassay. Hum. Exp. Toxicol., 2012; 31: 185-192
Google Scholar - 34. Nieradko-Iwanicka B., Borzęcki A.: Subacute poisoning of micewith deltamethrin produces memory impairment, reduced locomotoractivity, liver damage and changes in blood morphology in themechanism of oxidative stress. Pharmacol. Rep., 2015; 67: 535-541
Google Scholar - 35. Ogaly H.A., Khalaf A.A., Ibrahim M.A., Galal M.K., Abd-ElsalamR.M.: Influence of green tea extract on oxidative damage and apoptosisinduced by deltamethrin in rat brain. Neurotoxicol Teratol.,2015; 50: 23-31
Google Scholar - 36. Oliveira J.M., Losano N.F., Condessa S.S., de Freitas R.M., CardosoS.A., Freitas M.B., de Oliveira L.L.: Exposure to deltamethrin inducesoxidative stress and decreases of energy reserve in tissues of the Neotropicalfruit-eating bat Artibeus lituratus. Ecotoxicol. Environ. Saf.,2018; 148: 684-692
Google Scholar - 37. Özok N.: Effects of cypermethrin on antioxidant enzymes andlipid peroxidation of Lake Van fish (Alburnus tarichi). Drug Chem.Toxicol., 2020; 43: 51-56
Google Scholar - 38. Raszewski G., Lemieszek M.K., Łukawski K., Juszczak M., RzeskiW.: Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastomacell line SH-SY5Y. Basic Clin. Pharmacol. Toxicol., 2015;116: 158-167
Google Scholar - 39. Romero A., Ramos E., Ares I., Castellano V., Martínez M., Martinez‑LarrañagaM.R., Anadón A., Martínez M.A.: Oxidative stress andgene expression profiling of cell death pathways in alpha‑cypermethrin‑treatedSH‑SY5Y cells. Arch Toxicol., 2017; 91: 2151-2164
Google Scholar - 40. Sellami B., Khazri A., Mezni A., Louati H., Dellali M., Aissa P.,Mahmoudi E., Beyrem H., Sheehan D.: Effect of permethrin, anthraceneand mixture exposure on shell components, enzymatic activitiesand proteins status in the Mediterranean clam Venerupis decussate.Aquatic Toxicol., 2015; 158: 22-32
Google Scholar - 41. Stępień A., Izdebska M., Grzanka A.: The types of cell death.Postępy Hig. Med. Dośw., 2007; 61: 420-428
Google Scholar - 42. Taju G., Abdul Majeed S., Nambi K.S.,. Farook M.A., Vimal S., SahulHameed A.S.: In vitro cytotoxic, genotoxic and oxidative stress ofcypermethrin on five fish cell lines. Pestic. Biochem. Physiol., 2014;113: 15-24
Google Scholar - 43. Uchendu C., Ambali S.F., Ayo J.O., Esievo K.A., Umosen A.J.: Erythrocyteosmotic fragility and lipid peroxidation following chronic coexposureof rats to chlorpyrifos and deltamethrin, and the beneficialeffect of alpha-lipoic acid. Toxicol. Rep., 2014; 1: 373-378
Google Scholar - 44. Vadhana D., Carloni M., Fedeli D., Nasuti C., Gabbianelli R.: Perturbationof rat heart plasma membrane fluidity due to metabolites ofpermethrin insecticide. Cardiovasc. Toxicol., 2011; 11: 226-234
Google Scholar - 45. Vadhana M.S., Carloni M., Nasuti C., Fedeli D., Gabbianelli R.: Earlylife permethrin insecticide treatment leads to heart damage in adultrats. Exp. Gerontol., 2011; 46: 731-738
Google Scholar - 46. Weidinger A., Kozlov A.V.: Biological activities of reactive oxygenand nitrogen species: Oxidative stress versus signal transduction. Biomolecules,2015; 5: 472-484
Google Scholar - 47. World Health Organization (WHO): WHO Specifications and Evaluationsfor Public Health Pesticides. Deltamethrin Long-Lasting (Coatedonto Filaments) Insecticidal Net. (S)-α-Cyano-3-phenoxybenzyl(1R,3R)-3-(2,2dibromovinyl)-2,2-dimethylcyclopropane Carboxylate.World Health Organization, Geneva 2017
Google Scholar - 48. World Health Organization (WHO): Pesticide Evaluation Scheme,Vector Ecology and Management; World Health Organization: Geneva,Switzerland, 2016
Google Scholar - 49. World Health Organization (WHO): WHO Specifications and Evaluationsfor Public Health Pesticides. Permethrin (25:75 Cis:Trans IsomerRatio) 3-Phenoxybenzyl (1RS,3RS;1RS,3SR)-3-(2,2 dichlorovinyl)-2,2-dimethyl-cyclopropane Carboxylate. World Health Organization, Geneva2015
Google Scholar - 50. World Health Organization (WHO): WHO Specifications and Evaluationsfor Public Health Pesticides. Alpha-Cypermethrin Long-Lasting(Incorporated into Filaments) Insecticidal Net. A Racemic Mixtureof: (S)-α-Cyano-3-phenoxybenzyl-(1R,3R)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate and (R)-α-Cyano-3-phenoxybenzyl-(1S,3S)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate.World Health Organization, Geneva 2014
Google Scholar - 51. Xu M., Wang P., Sun Y.J., Wang H.P., Liang Y.J., Zhu L., Wu Y.J.:Redox status in liver of rats following subchronic exposure to thecombination of low dose dichlorvos and deltamethrin. Pestic. Biochem.Physiol., 2015; 124: 60-65
Google Scholar - 52. Zabłocka A., Janusz M.: The two faces of reactive oxygen species.Postępy Hig. Med. Dośw., 2008; 62: 118-124
Google Scholar - 53. Želježić D., Mladinić M., Žunec S., Vrdoljak A.L., Kašuba V., TaribaB., Živković T., Marjanović A.M., Pavičić I., Milić M., Rozgaj R., KopjarN.: Cytotoxic, genotoxic and biochemical markers of insecticidetoxicity evaluated in human peripheral blood lymphocytes and anHepG2 cell line. Food Chem. Toxicol., 2016; 96: 90-106
Google Scholar - 54. Zhang C., Zhang Q., Pang Y., Song X., Zhou N., Wang J., He L., LvJ., Song Y., Cheng Y., Yang X.: The protective effects of melatoninon oxidative damage and the immune system of the Chinese mittencrab (Eriocheir sinensis) exposed to deltamethrin. Sci. Total Environ.,2019; 653: 1426-1434
Google Scholar - 55. Zhang J., Liu L., Ren L., Feng W, Lv P., Wu W., Yan Y.: The singleand joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish(Danio rerio) early life stages. J. Hazard Mater., 2017; 334: 121-131
Google Scholar - 56. Zhou F., Sun W., Zhao M.: Controlled formation of emulsiongels stabilized by salted myofibrillar protein undermalondialdehyde(MDA)-induced oxidative stress. J. Agric. FoodChem., 2015; 63: 3766-3777
Google Scholar