The influence of the intestinal microbiota and its modifications on the well-being of patients with depression

ORIGINAL ARTICLE

The influence of the intestinal microbiota and its modifications on the well-being of patients with depression

Wiktoria Wardziukiewicz 1 , Ewa Stachowska 1

1. Katedra i Zakład Żywienia Człowieka i Metabolomiki Pomorskiego Uniwersytetu Medycznego, Szczecin,

Published: 2020-07-29
DOI: 10.5604/01.3001.0014.3416
GICID: 01.3001.0014.3416
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 314-321

 

Abstract

Depression is an increasingly common disease that significantly reduces quality of life. The number of patients with depression is constantly increasing, especially among younger people. There are many likely causes of depression related to internal as well as environmental factors. It is possible that the intestinal microbiota may play an important role in the development of depressive symptoms. Its diversity is important for the proper development and functioning of the nervous system, in which an important role is played by the gut brain axis, which is the path-way of communication of intestinal microorganisms with the central nervous system. Changes in the number and diversity of the intestinal microbiota affect many pathways potentially related to mood, including hypothalamic-pituitary-adrenal axis, tryptophan metabolism, as well as the synthesis of neurotransmitters, short-chain fatty acids and brainderived neurotrophic factor. These changes can also affect the response of the immune system and inflammatory processes. Therefore, it seems that modulation of the intestinal microbiota through diet components and probiotic supplementation may be extremely important in the treatment of depression, also as one of the methods of treating this pharmacotherapyresistant condition. This work focuses on the effects of intestinal microbiota and its changes on the well-being of patients with depression.

References

  • 1. Ait-Belgnaoui A., Colom A., Braniste V., Ramalho L., Marrot A.,Cartier C., Houdeau E., Theodorou V., Tompkins T.: Probiotic guteffect prevents the chronic psychological stress-induced brainactivity abnormality in mice. Neurogastroenterol. Motil., 2014;26: 510–520
    Google Scholar
  • 2. Akkasheh G., Kashani-Poor Z., Tajabadi-Ebrahimi M., Jafari P.,Akbari H., Taghizadeh M., Memarzadeh M.R., Asemi Z., EsmaillzadehA.: Clinical and metabolic response to probiotic administrationin patients with major depressive disorder: A randomized,double-blind, placebo-controlled trial. Nutrition, 2016; 32: 315–320
    Google Scholar
  • 3. Bangsgaard Bendtsen K.M., Krych L., Sørensen D.B., Pang W.,Nielsen D.S., Josefsen K., Hansen L.H., Sørensen S.J., Hansen A.K.:Gut microbiota composition is correlated to grid floor inducedstress and behavior in the BALB/c mouse. PLoS One, 2012; 7: e46231
    Google Scholar
  • 4. Barrett E., Ross R.P., O’Toole P.W., Fitzgerald G.F., Stanton C.:γ-Aminobutyric acid production by culturable bacteria from thehuman intestine. J. Appl. Microbiol., 2012; 113: 411–417
    Google Scholar
  • 5. Belmaker R.H., Agam G.: Major depressive disorder. N. Engl.J. Med., 2008; 358: 55–68
    Google Scholar
  • 6. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y.,Blennerhassett P., Macri J., McCoy K.D., Verdu E.F., Collins S.M.:The intestinal microbiota affect central levels of brain-derivedneurotropic factor and behavior in mice. Gastroenterology, 2011;141: 599–609
    Google Scholar
  • 7. Berk M., Williams L.J., Jacka F.N., O’Neil A., Pasco J.A., Moylan S.,Allen N.B., Stuart A.L., Hayley A.C., Byrne M.L., Maes M.: So depressionis an inflammatory disease, but where does the inflammationcome from? BMC Med., 2013; 11: 200
    Google Scholar
  • 8. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M.,Dinan T.G., Bienenstock J., Cryan J.F.: Ingestion of Lactobacillusstrain regulates emotional behavior and central GABA receptorexpression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci.USA, 2011; 108: 16050–16055
    Google Scholar
  • 9. Brunoni A.R., Baeken C., Machado-Vieira R., Gattaz W.F., VanderhasseltM.A.: BDNF blood levels after electroconvulsive therapyin patients with mood disorders: A systematic review and meta–analysis. World J. Biol. Psychiatry, 2014; 15: 411–418
    Google Scholar
  • 10. Burokas A., Arboleya S., Moloney R.D., Peterson V.L., MurphyK., Clarke G., Stanton C., Dinan T.G., Cryan J.F.: Targeting the microbiotagut-brain axis: Prebiotics have anxio-lytic and antidepressant-like effects and reverse the impact of chronic stress in mice.Biol. Psychiatry, 2017; 82: 472–487
    Google Scholar
  • 11. Butler M.I., Sandhu K., Cryan J.F., Dinan T.G.: From isoniazid topsychobiotics: The gut microbiome as a new antidepressant target.Br. J. Hosp. Med., 2019; 80: 139–145
    Google Scholar
  • 12. Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., KelleyK.W.: From inflammation to sickness and depression: When theimmune system subjugates the brain. Nat. Rev. Neurosci., 2008;9: 46–56
    Google Scholar
  • 13. Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G.:The probiotic Bifidobacteria infantis: An assessment of potentialantidepressant properties in the rat. J. Psychiatr. Res., 2008; 43:164–174
    Google Scholar
  • 14. Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J.F., DinanT.G.: Effects of the probiotic Bifidobacterium infantis in the maternalseparation model of depression. Neurosci-ence, 2010; 170:1179–1188
    Google Scholar
  • 15. Dinan T.G., Cryan J.F.: The microbiome-gut-brain axis in healthand disease. Gastroen-terol. Clin. North. Am., 2017; 46: 77–89
    Google Scholar
  • 16. Dinan T.G., Stanton C., Cryan J.F.: Psychobiotics: A novel classof psychotropic. Biol. Psychiatry, 2013; 74: 720–726
    Google Scholar
  • 17. Duclot F., Kabbaj M.: Epigenetic mechanisms underlying therole of brain-derived neurotrophic factor in depression and responseto antidepressants. J. Exp. Biol., 2015; 218: 21–31
    Google Scholar
  • 18. El Aidy S., Dinan T.G., Cryan J.F.: Immune modulation of thebraingut-microbe axis. Front. Microbiol., 2014; 5: 146
    Google Scholar
  • 19. Evrensel A., Ceylan M.E.: The gut-brain axis: The missing linkin depression. Clin. Psychopharmacol. Neurosci., 2015; 13: 239–244
    Google Scholar
  • 20. Guida F., Turco F., Iannotta M., De Gregorio D., Palumbo I.,Sarnelli G., Furiano A., Napolitano F., Boccella S., Luongo L., MazzitelliM., Usiello A., De Filippis F., Iannotti F.A., Piscitelli F. i wsp.:Antibiotic-induced microbiota perturbation causes gut endocannabinoidomechanges, hippocampal neuroglial reorganization anddepression in mice. Brain. Behav. Immun., 2018; 67: 230–245
    Google Scholar
  • 21. Han A., Sung Y.B., Chung S.Y., Kwon M.S.: Possible additionalantidepressant-like mechanism of sodium butyrate: Targeting thehippocampus. Neuropharmacology, 2014; 81: 292–302
    Google Scholar
  • 22. Hasler G.: Pathophysiology of depression: Do we have anysolid evidence of interest to clinicians? World Psychiatry, 2010;9: 155–161
    Google Scholar
  • 23. Iannone L.F., Preda A., Blottière H.M., Clarke G., Albani D.,Belcastro V., Carotenuto M., Cattaneo A., Citraro R., Ferraris C.,Ronchi F., Luongo G., Santocchi E., Guiducci L., Baldelli P. i wsp.:Microbiota-gut brain axis involvement in neuropsychiatric disorders.Expert. Rev. Neurother., 2019; 19: 1037–1050
    Google Scholar
  • 24. Inserra A., Rogers G.B., Licinio J., Wong M.L.: The microbiota–inflammasome hypothesis of major depression. Bioessays, 2018;40: e1800027
    Google Scholar
  • 25. Kelly J.R., Allen A.P., Temko A., Hutch W., Kennedy P.J., Farid N., Murphy E., Boylan G., Bienenstock J., Cryan J.F., Clarke G., DinanT.G.: Lost in translation? The potential psychobiotic Lactobacillusrhamnosus (JB-1) fails to modulate stress or cognitive performancein healthy male subjects. Brain Behav. Immun., 2017; 61: 50–59
    Google Scholar
  • 26. Kelly J.R., Borre Y., O’ Brien C., Patterson E., El Aidy S., DeaneJ., Kennedy P.J., Beers S., Scott K., Moloney G., Hoban A.E., ScottL., Fitzgerald P., Ross P., Stanton C., Clarke G., Cryan J.F., DinanT.G.: Transferring the blues: Depression-associated gut microbiotainduces neurobehavioural changes in the rat. J. Psychiatr. Res.,2016; 82: 109–118
    Google Scholar
  • 27. Köhler C.A., Freitas T.H., Maes M., de Andrade N.Q., Liu C.S.,Fernandes B.S., Stubbs B., Solmi M., Veronese N., Herrmann N.,Raison C.L., Miller B.J., Lanctôt K.L., Carvalho A.F.: Peripheral cytokineand chemokine alterations in depression: A meta-analysisof 82 studies. Acta. Psychiatr. Scand., 2017; 135: 373–387
    Google Scholar
  • 28. Köhler C.A., Freitas T.H., Stubbs B., Maes M., Solmi M., VeroneseN., de Andrade N.Q., Morris G., Fernandes B.S., Brunoni A.R.,Herrmann N., Raison C.L., Miller B.J., Lanctôt K.L., Carvalho A.F.:Peripheral alterations in cytokine and chemokine levels after antidepressantdrug treatment for major depressive disorder: Systematicreview and meta-analysis. Mol. Neurobiol., 2018; 55: 4195–4206
    Google Scholar
  • 29. Kopp M.V., Goldstein M., Dietschek A., Sofke J., HeinzmannA., Urbanek R.: Lactoba-cillus GG has in vitro effects on enhancedinterleukin-10 and interferon-γ release of mononuclear cells butno in vivo effects in supplemented mothers and their neonates.Clin. Exp. Allergy, 2008; 38: 602–610
    Google Scholar
  • 30. Kunugi H., Hori H., Adachi N., Numakawa T.: Interface betweenhypothalamic-pituitary-adrenal axis and brain-derived neurotrophicfactor in depression. Psychiatry Clin. Neurosci., 2010;64: 447–459
    Google Scholar
  • 31. Levkovich T., Poutahidis T., Smillie C., Varian B.J., IbrahimY.M., Lakritz J.R., Alm E.J., Erdman S.E.: Probiotic bacteria inducea ‘glow of health’. PLoS One, 2013; 8: e53867
    Google Scholar
  • 32. Liang S., Wang T., Hu X., Luo J., Li W., Wu X., Duan Y., Jin F.: Administrationof Lactobacillus helveticus NS8 improves behavioral,cognitive, and biochemical aberrations caused by chronic restraintstress. Neuroscience, 2015; 310: 561–577
    Google Scholar
  • 33. Liang S., Wu X., Hu X., Wang T., Jin F.: Recognizing depressionfrom the microbiota-gut-brain axis. Int. J. Mol. Sci., 2018; 29; 1592
    Google Scholar
  • 34. Liu W.H., Chuang H.L., Huang Y.T., Wu C.C., Chou G.T., Wang S.,Tsai Y.C.: Alteration of behavior and monoamine levels attributableto Lactobacillus plantarum PS128 in germ-free mice. Behav. BrainRes., 2016; 298: 202–209
    Google Scholar
  • 35. Lombardi V.C., De Meirleir K.L., Subramanian K., Nourani S.M.,Dagda R.K., Delaney S.L., Palotás A.: Nutritional modulation ofthe intestinal microbiota; future opportunities for the preventionand treatment of neuroimmune and neuroinflammatory disease.J. Nutr. Biochem., 2018; 61: 1–16
    Google Scholar
  • 36. Lukić I., Getselter D., Koren O., Elliott E.: Role of tryptophanin microbiota-induced depressive-like behavior: Evidence fromtryptophan depletion study. Front. Behav. Neuro-sci., 2019; 13: 123
    Google Scholar
  • 37. Lyte M.: Microbial endocrinology and the microbiota-gut-brainaxis. Adv. Exp. Med. Biol., 2014; 817: 3–24
    Google Scholar
  • 38. Lyte M.: Microbial endocrinology in the microbiome-gut-brainaxis: how bacterial production and utilization of neurochemicalsinfluence behavior. PLoS Pathog., 2013; 9: e1003726
    Google Scholar
  • 39. Messaoudi M., Violle N., Bisson J.F., Desor D., Javelot H., RougeotC.: Beneficial psychological effects of a probiotic formulation(Lactobacillus helveticus R0052 and Bifidobacterium longumR0175) in healthy human volunteers. Gut Microbes, 2011;2: 256–261
    Google Scholar
  • 40. Misra S., Mohanty D.: Psychobiotics: A new approach for treatingmental illness? Crit. Rev. Food Sci. Nutr., 2019; 59: 1230–1236
    Google Scholar
  • 41. Murawiec S., Wierzbiński P.: Depresja 2016. Via Medica,Gdańsk 2016
    Google Scholar
  • 42. Naseribafrouei A., Hestad K., Avershina E., Sekelja M.,Linløkken A., Wilson R., Rudi K.: Correlation between the humanfecal microbiota and depression. Neurogastroenterol. Motil.,2014; 26: 1155–1162
    Google Scholar
  • 43. Ogawa S., Fujii T., Koga N., Hori H., Teraishi T., Hattori K.,Noda T., Higuchi T., Moto-hashi N., Kunugi H.: Plasma L-tryptophanconcentration in major depressive disorder: New data andmeta-analysis. J. Clin. Psychiatry.; 2014; 75: e906–e915
    Google Scholar
  • 44. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F.:Serotonin, tryptophan metabolism and the brain-gut-microbiomeaxis. Behav. Brain Res., 2015; 277: 32–48
    Google Scholar
  • 45. Pariante C.M., Lightman S.L.: The HPA axis in major depression:Classical theories and new developments. Trends Neurosci.,2008; 31: 464–468
    Google Scholar
  • 46. Perez-Burgos A., Wang B., Mao Y.K., Mistry B., McVey NeufeldK.A., Bienenstock J., Kunze W.: Psychoactive bacteria Lactobacillusrhamnosus (JB-1) elicits rapid frequency facilitation invagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol., 2013;304: G211–G220
    Google Scholar
  • 47. Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., CardoneR.L., Petersen K.F., Kibbey R.G., Goodman A.L., Shulman G.I.:Acetate mediates a microbiome-brain-β-cell axis to promotemetabolic syndrome. Nature, 2016; 534: 213–217
    Google Scholar
  • 48. Piekarzewska M., Wieczorkowski R., Zajenkowska-KozłowskaA.: Stan zdrowia ludności Polski w 2014 roku. GUS, Warszawa 2016
    Google Scholar
  • 49. Pinto-Sanchez M.I., Hall G.B., Ghajar K., Nardelli A., BolinoC., Lau J.T., Martin F.P., Cominetti O., Welsh C., Rieder A., TraynorJ., Gregory C., De Palma G., Pigrau M., Ford A.C. i wsp.: ProbioticBifidobacterium longum NCC3001 reduces depression scores andal-ters brain activity: A pilot study in patients with irritable bowelsyndrome. Gastroenterolo-gy, 2017; 153: 448–459.e8
    Google Scholar
  • 50. Polyakova M., Schroeter M.L., Elzinga B.M., Holiga S., SchoenknechtP., de Kloet E.R., Molendijk M.L.: Brain-derived neurotrophicfactor and antidepressive effect of electroconvulsivetherapy: Systematic review and meta-analyses of the preclinicaland clinical literature. PLoS One, 2015; 10: e0141564
    Google Scholar
  • 51. Pompili M., Lionetto L., Curto M., Forte A., Erbuto D., MonteboviF., Seretti M.E., Berardelli I., Serafini G.,Innamorati M.,Amore M., Baldessarini R.J., Girardi P., Simmaco M.: Tryptophanand kynurenine metabolites: Are they related to depression?Neuropsycho-biology, 2019; 77: 23–28
    Google Scholar
  • 52. Rao A.V., Bested A.C., Beaulne T.M., Katzman M.A., Iorio C.,Berardi J.M., Logan A.C.: A randomized, double-blind, placebo–controlled pilot study of a probiotic in emotional symptoms ofchronic fatigue syndrome. Gut Pathog., 2009; 1: 6
    Google Scholar
  • 53. Rios A.C., Maurya P.K., Pedrini M., Zeni-Graiff M., Asevedo E.,Mansur R.B., Wieck A., Grassi-Oliveira R., McIntyre R.S., HayashiM.A.F., Brietzke E.: Microbiota abnormalities and the therapeuticpotential of probiotics in the treatment of mood disorders. Rev.Neurosci., 2017; 28: 739–749
    Google Scholar
  • 54. Rudzki L., Frank M., Szulc A., Gałęcka M., Szachta P, BarwinekD.: Od jelit do depresji – rola zaburzeń ciągłości bariery jelitoweji następcza aktywacja układu immunologicznego w zapalnej hipoteziedepresji. Neuropsychiatr. Neuropsychol., 2012; 7: 76–84
    Google Scholar
  • 55. Savignac H.M., Corona G., Mills H., Chen L., Spencer J.P.,Tzortzis G., Burnet P.W.: Prebiotic feeding elevates central brainderived neurotrophic factor, N-methyl-D-aspartate receptor subunitsand D-serine. Neurochem. Int., 2013; 63: 756–764
    Google Scholar
  • 56. Schmidt K., Cowen P.J., Harmer C.J., Tzortzis G., ErringtonS., Burnet P.W.: Prebiotic intake reduces the waking cortisol responseand alters emotional bias in healthy volunteers. Psychopharmacology,2015; 232: 1793–1801
    Google Scholar
  • 57. Sherwin E., Dinan T.G., Cryan J.F.: Recent developments inunderstanding the role of the gut microbiota in brain health anddisease. Ann. N. Y. Acad. Sci., 2018; 1420: 5–25
    Google Scholar
  • 58. Steck S.E., Shivappa N., Tabung F.K., Harmon B.E., Wirth M.D.,Hurley T.G., Hebert J.R.: The dietary inflammatory index: A newtool for assessing diet quality based on in-flammatory potential.The Digest, 2014; 49; 1–9
    Google Scholar
  • 59. Steenbergen L., Sellaro R., van Hemert S., Bosch J.A., ColzatoL.S.: A randomized con-trolled trial to test the effect of multispeciesprobiotics on cognitive reactivity to sad mood. Brain Behav.Immun., 2015; 48: 258–264
    Google Scholar
  • 60. Stilling R.M., Dinan T.G., Cryan J.F.: Microbial genes, brain &behaviour – epigenetic regulation of the gut-brain axis. GenesBrain Behav., 2014; 13: 69–86
    Google Scholar
  • 61. Sublette M.E., Galfalvy H.C., Fuchs D., Lapidus M., GrunebaumM.F., Oquendo M.A., Mann J.J., Postolache T.T.: Plasma kynureninelevels are elevated in suicide attempters with major depressivedisorder. Brain Behav. Immun., 2011; 25: 1272–1278
    Google Scholar
  • 62. Światowa Organizacja Zdrowia: Międzynarodowa StatystycznaKlasyfikacja Chorób i Problemów Zdrowotnych. ICD-10. CentrumSystemów Informacyjnych Ochrony Zdro-wia, 2008: 220–222
    Google Scholar
  • 63. Takada M., Nishida K., Kataoka-Kato A., Gondo Y., IshikawaH., Suda K., Kawai M., Hoshi R., Watanabe O., Igarashi T., KuwanoY., Miyazaki K., Rokutan K.: Probiotic Lac-tobacillus casei strainShirota relieves stress-associated symptoms by modulating thegut-brain interaction in human and animal models. Neurogastroenterol.Motil., 2016; 28: 1027–1036
    Google Scholar
  • 64. Tilg H., Moschen A.R.: Food, immunity, and the microbiome.Gastroenterology, 2015; 148: 1107–1119
    Google Scholar
  • 65. Vlainić J.V., Šuran J., Vlainić T., Vukorep A.L.: Probiotics as anadjuvant therapy in ma-jor depressive disorder. Curr. Neuropharmacol.,2016; 14: 952–958
    Google Scholar
  • 66. Wang J., Zhou Y., Chen K., Jing Y., He J., Sun H., Hu X.: Dietaryinflammatory index and depression: A meta-analysis. Public HealthNutr., 2019; 22: 654–660
    Google Scholar
  • 67. Wu G.: Functional amino acids in growth, reproduction, andhealth. Adv. Nutr., 2010; 1: 31–37
    Google Scholar
  • 68. Yu M., Jia H., Zhou C., Yang Y., Zhao Y., Yang M., Zou Z.: Variationsin gut microbio-ta and fecal metabolic phenotype associatedwith depression by 16S rRNA gene sequenc-ing and LC/MS-basedmetabolomics. J. Pharm. Biomed. Anal., 2017; 138: 231–239
    Google Scholar

Full text

Skip to content