The maintenance of genetic stability of embryonic and induced pluripotent stem cells during anticancer therapies

REVIEW ARTICLE

The maintenance of genetic stability of embryonic and induced pluripotent stem cells during anticancer therapies

Ewelina Stelcer 1 , Magdalena Łukjanow 1 , Wiktoria Maria Suchorska 2

1. Pracownia Radiobiologii, Wielkopolskie Centrum Onkologii,
2. Katedra i Zakład Elektroradiologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu,

Published: 2017-12-28
DOI: 10.5604/01.3001.0010.7615
GICID: 01.3001.0010.7615
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1129-1139

 

Abstract

Regenerative medicine is a very rapidly developing discipline. Its progress contributes to elongated life expectancy and improved quality of life of patients suffering from so far incurable diseases. Stem cells (SCs) are undifferentiated cells that are able to undergo unlimited number of cell divisions and differentiation into specialized cells. Therapies based on SCs constitute a relatively new and promising approach in regenerative medicine. Radiotherapy is the most often used method in the treatment of cancer. In the future, the usage of SCs will be connected with the inevitable exposure of SCs to ionizing radiation during both treatment and diagnosis. The issue of genetic stability of SCs and cells differentiated from them is crucial, particularly regarding the application of these cells in clinical practice. It is important to emphasize that differentiated and undifferentiated cells possess different cell cycle, metabolism, initial level of reactive oxygen species, DNA repair mechanisms, susceptibility to apoptosis and frequency of mutations. All these factors contribute to the distinct radiosensitivity of SCs and differentiated cells. The aim of this study was to present the latest literature data concerning DNA repair mechanisms in pluripotent SCs (Homologous Recombination, Non-homologous End Joining, Mismatch Repair, Base Excision Repair and Nucleotide Excision Repair) in response to the influence of cyto- and genotoxic agents, such as ionizing radiation and chemotherapeutics. Evaluation the efficacy of DNA repair mechanisms is relevant for pluripotent SCs, because ineffective DNA repair mechanisms may result in the accumulation of mutations and, consequently, to cancer.

References

  • 1. Abujarour R., Bennett M., Valamehr B., Lee T.T., Robinson M., Robbins D., Le T., Lai K., Flynn P.: Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Trans. Med., 2014; 3: 149-160
    Google Scholar
  • 2. Banáth J.P., Bañuelos C.A., Klokov D., MacPhail S.M., Lansdorp P.M., Olive P.L.: Explanation for excessive DNA signle-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells. Exp. Cell Res., 2009; 315: 1505-1520
    Google Scholar
  • 3. Bernstein C., Bernstein H., Payne C.M., Garewal H.: DNA repair/ pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat. Res., 2002; 511: 145-178
    Google Scholar
  • 4. Blanpain C., Mohrin M., Sotiropoulou P.A., Passequè E.: DNA- damage response in tissue-specific and cancer stem cells. Cell Stem Cell., 2011; 8: 16-29
    Google Scholar
  • 5. Bolli R., Chugh A.R., D’Amario D., Loughran J.H., Stoddard M.F., Ikram S., Beache G.M., Wagner S.G., Leri A., Hosoda T., Sanada F., Elmore J.B., Goichberg P., Cappetta D., Solankhi N.K. i wsp.: Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 2011; 378: 1847-1857
    Google Scholar
  • 6. Christensen D.M., Iddins C.J., Sugarman S.L.: Ionizing radiation injuries and illnesses. Emerg Med. Clin. North Am., 2014; 32: 245-265
    Google Scholar
  • 7. Creagh E.M., Martin S.J.: Caspases: cellular demolition experts. Biochem. Soc. Trans., 2001; 29: 696-702
    Google Scholar
  • 8. Desmarais J.A., Hoffmann M.J., Bingham G., Gagou M.E., Meuth M., Andrews P.W.: Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells, 2012; 30: 1385-1393
    Google Scholar
  • 9. de Waard H., Sonneveld E., de Wit J., Esvaldt-van Lange R., Hoeijmakers J.H., Vrieling H., van der Horst G.T.: Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair, 2008; 7: 1659-1669
    Google Scholar
  • 10. Dexheimer T.S.: DNA repair pathways and mechanisms. W: DNA Repair of Cancer Stem Cells. Mathews L.A., Carbarcas S.M., Hurt E. (red.) Springer Science+Business Media, Dordrecht 2013; 19-32
    Google Scholar
  • 11. Dominguez-Bendala J., Lanzoni G., Inverardi L., Ricordi C.: Concise Review: Mesenchymal stem cells for diabetes. Stem Cells Trans. Med., 2012; 1: 59-63
    Google Scholar
  • 12. Elmore S.: Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007; 35: 495-516
    Google Scholar
  • 13. Fan J., Robert C., Jang Y.Y., Liu H., Sharkis S., Byalin S.B., Rassool F.V.: Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining. Mutat. Res., 2011; 713: 8-17
    Google Scholar
  • 14. Feng Z., Gao F.: Stem cell challenges in the treatment of neurodegenerative disease. CNS Neurosci. Ther., 2012; 18: 142-148
    Google Scholar
  • 15. Ferdousi L.V., Rocheteau P., Chayot R., Montagne B., Chaker Z., Flament P., Tajbakhsh S., Ricchetti M.: More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res., 2014; 13: 492-507
    Google Scholar
  • 16. Filion T.M., Qiao M., Ghule P.N., Mandeville M., van Wijnen A.J., Stein J.L., Lian J.B., Altieri D.C., Stein G.S.: Survival responses of human embryonic stem cells to DNA damage. J. Cell Physiol., 2009; 220: 586-592
    Google Scholar
  • 17. Fragma A.M., de Araújo É.S., Vergani N., Fonseca S.A., Pereira L.V.: Use of human embryonic stem cells in therapy. stem cells and cell therapy cell engineering, 2014; 8: 1-19
    Google Scholar
  • 18. Fuchs Y., Steller H.: Programmed cell death in animal development and disease. Cell, 2011; 147: 742-758
    Google Scholar
  • 19. Fung H., Weinstock D.M.: Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One, 2011; 6: e20514
    Google Scholar
  • 20. Giglia-Mari G., Zotter A., Vermeulen W.: DNA damage response. Cold Spring Harb Perspect. Biol., 2011; 3: a000745
    Google Scholar
  • 21. Gruszecka A., Kopczyński P., Cudziło D., Lipińska N., Romaniuk A., Barczak W., Rozwadowska N., Totoń E., Rubiś B.: Telomere shortening in down syndrome patients – when does it start? DNA Cell Biol., 2015; 34:412-417
    Google Scholar
  • 22. Han J., Hendzel M.J., Allalunis-Turner J.: Quantitative analysis reveals asynchronous and more than DSB-associated histone H2AX phosphorylation after exposure to ionizing radiation. Radiat. Res., 2006; 165: 283-292
    Google Scholar
  • 23. Harfouche G., Martin M.T.: Response of normal stem cells to ionizing radiation: a balance between homeostasis and genomic stability. Mutat Res., 2010; 704: 167-174
    Google Scholar
  • 24. He Y.C., Zhou F.L., Shen Y., Liao D.F., Cao D.: Apoptotic death of cancer stem cells for cancer therapy. Int. J. Mol. Sci., 2014; 15: 8335-8351
    Google Scholar
  • 25. Hong Y., Stambrook P.J.: Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc. Natl. Acad. Sci. USA, 2004; 101: 14443-14448
    Google Scholar
  • 26. Igney F.H., Krammer P.H.: Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer, 2002; 2: 277-288
    Google Scholar
  • 27. Inzunza J., Sahlén S., Holmberg K, Strömberg A.M., Teerijoki H., Blennow E., Hovatta O., Malmgren H.: Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol. Hum. Reprod., 2004; 10: 461-466
    Google Scholar
  • 28. Jackson S.P., Bartek J.: The DNA-damage response in human biology and disease. Nature, 2009; 461: 1071-1078
    Google Scholar
  • 29. Jezierska-Woźniak K., Nosarzewska D., Tutas A., Mikołajczyk A., Okliński M., Jurkowski M.J.: Wykorzystanie tkanki tłuszczowej jako źródła mezenchymalnych komórek macierzystych. Postępy Hig. Med. Dośw., 2010; 64: 326-332
    Google Scholar
  • 30. Jin Z.B., Okamoto S., Mandai M., Takahashi M.: Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J. Genet., 2009; 8: 417-424
    Google Scholar
  • 31. Kenyon J., Gerson S.L.: The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res., 2007; 35: 7557-7565
    Google Scholar
  • 32. Krejci L., Altmannova V., Spirek M., Zhao X.: Homologous recombination and its regulation. Nucleic Acids Res., 2012; 49: 5795-5818
    Google Scholar
  • 33. Kunkel T.A., Erie D.A.: DNA mismatch repair. Annu. Rev. Biochem., 2005; 74: 681-710
    Google Scholar
  • 34. Lach M., Trzeciak T., Richter M., Pawlicz J., Suchorska W.M.: Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment. J. Tissue Eng., 2014; 5: 2041731414552701
    Google Scholar
  • 35. Li F., Huang Q., Chen J., Peng Y., Roop D., Bedford J.S., Li C.Y.: Apoptotic cells activate the „Phoenix Rising” pathway to promote wound healing and tissue regeneration. Sci. Signal, 2010; 3: ra13
    Google Scholar
  • 36. Lieber R.M.: The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Annu. Rev. Biochem., 2010; 79: 181-211
    Google Scholar
  • 37. Lund P.K.: Fixing the breaks in intestinal stem cells after radiation: a matter of DNA damage and death or DNA repair and regeneration. Gastroenterology, 2012; 143: 1144-1147
    Google Scholar
  • 38. Lund R.J., Närvä E., Lahesmaa R.: Genetic and epigenetic stability of human pluripotent stem cells. Nat. Rev. Genet., 2012; 13: 732-744
    Google Scholar
  • 39. Lundin C., Erixon K., Arnaudeau C., Schultz N., Jenssen D., Meuth M., Helleday T.: Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol. Cell. Biol., 2002; 22: 5869-5878
    Google Scholar
  • 40. Luo L.Z., Gopalakrishna-Pillai S., Nay S.L., Park S.W., Bates S.E., Zeng X., Iverson L.E., O’Connor T.R.: DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One, 2012; 7: e30541
    Google Scholar
  • 41. Magalhaes J.P.: How ageing processes influence cancer. Nat Rev Cancer, 2013; 13: 357-365
    Google Scholar
  • 42. Mandal P.K., Blanpain C., Rossi D.J.: DNA damage response in adult stem cells: pathways and consequences. Nat. Rev. Mol. Cell. Biol., 2011; 12: 198-202
    Google Scholar
  • 43. Mao Z., Bozzella M., Seluanov A., Gorbunova V.: DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008; 7: 2902-2906
    Google Scholar
  • 44. Martins-Taylor K., Nishler S.B., Taapken S.M., Compton T., Crandall L., Montgomery K.D., Lalande M., Xu R.H.: Recurrent copy number variations in human induced pluripotent stem cells. Nat. Biotechnol., 2011; 29: 6-9
    Google Scholar
  • 45. Maugeri-Saccà M., Bartucci M., De Maria R.: DNA damage repair pathways in cancer cells. Mol. Cancer Ther., 2012; 11: 1627-1636
    Google Scholar
  • 46. Maynard S., Swistikowa A.M., Lee J.W., Liu L., Liu Y., Liu S.T., Da Cruz A., Rao M., de Souza-Pinto N.C., Zeng X., Bohr V.A.: Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells, 2008; 26: 2266-2274
    Google Scholar
  • 47. Mcllwain D.R., Berger T., Mak T.K.: Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013; 5: a008656
    Google Scholar
  • 48. Middel V., Blattner C.: DNA repair in embryonic stem cells. W: DNA Repair – On the Pathways to Fixing DNA Damage and Errors. Francesca Storici (red.) In Tech., 2011; 978-953-307-649-2
    Google Scholar
  • 49. Momcilović O., Choi S., Varum S., Bakkenist C., Schatten G., Navara C.: Ionizing radiation induces ATM-dependent checkpoint signaling and G2 but not G1 cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells, 2009; 27: 1822-1835
    Google Scholar
  • 50. Momcilović O., Knobloch L., Fornsaglio J., Varum S., Easley C., Schatten G.: DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS One, 2010; 5: e13410
    Google Scholar
  • 51. Neganova I., Vilella F., Atkinson S.P., Lloret M., Passos J.F., von Zglinicki T., O’Connor J.E., Burks D., Jones R., Armstong L., Lako M.: An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells, 2011; 29: 651-659
    Google Scholar
  • 52. Nguyen H.T., Geens M., Spits C.: Genetic and epigenetic instability in human pluripotent stem cells. Hum. Reprod. Update, 2013; 19:187-205
    Google Scholar
  • 53. Oliver L., Hue E., Séry Q., Lafargue A., Pecqueur C., Paris F., Vallette F.M.: Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells, 2013; 31: 800-807
    Google Scholar
  • 54. Park Y., Gerson S.L.: DNA repair defects in stem cell function and aging. Annu. Rev. Med., 2005; 56: 495-508
    Google Scholar
  • 55. Peterson S.E., Loring J.F.: Genomic instability in pluripotent stem cells: implications for clinical applications. J. Biol. Chem., 2014; 289: 4578-4584
    Google Scholar
  • 56. Pines A., Kelstrup C.D., Vrouwe M.G., Puigvert J.C., Typas D., Misovic B., de Groot A., von Stechow L., van de Water B., Danen E.H., Vrieling H., Mullenders L.H., Olsen J.V.: Global phopshoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells. Mol. Cell Biol., 2011; 31: 4964-4977
    Google Scholar
  • 57. Piskorska-Jasiulewcz M.M., Witkowska-Zimny M.: Okołoporodowe źródła komórek macierzystych. Postępy Hig. Med. Dośw., 2015; 69: 327-334
    Google Scholar
  • 58. Prendergast Á.M., Cruet-Hennequart S., Shaw G., Barry F.P., Carty M.P.: Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or γ-irradiation. Cell Cycle, 2011; 10: 3768-3777
    Google Scholar
  • 59. Qin H., Yu T., Qing T., Liu Y., Zhao Y., Cai J., Li J., Song Z., Qu X., Zhou P., Wu J., Ding M., Deng H.: Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J. Biol. Chem., 2007; 282: 5842-5852
    Google Scholar
  • 60. Rich T., Allen L., Wyllie A.H.: Defying death after DNA damage. Nature, 2000; 407: 777-783
    Google Scholar
  • 61. Robertson A.B., Klungland A., Rognes T., Leiros I.: DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci., 2009; 66: 981-993
    Google Scholar
  • 62. Rocha C.R., Lerner L.K., Okamoto O.K., Marchetto M.C., Menck C.F.: The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutat. Res., 2013; 752: 25-35
    Google Scholar
  • 63. Roos W.P., Kaina B.: DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett., 2013; 332: 237-248
    Google Scholar
  • 64. Ryoo H.D., Bergmann A.: The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb. Perspect. Biol., 2012; 4: a008797
    Google Scholar
  • 65. Serrano L., Liang L., Chang Y., Deng L., Maulion C., Nguyen S., Tischfield J.A.: Homologous recombination conserves DNA sequence integrity throughout the cell cycle in embryonic stem cells. Stem Cells Dev., 2011; 20: 363-374
    Google Scholar
  • 66. Shuck S.C., Short E.A., Turchi J.J.: Eukaryotic nucleotide excision repair, from understanding mechanisms to influencing biology. Cell Res., 2008; 18: 64-72
    Google Scholar
  • 67. Sokolov M.V., Neumann R.D.: Human embryonic stem cells responses to ionizing radiation exposures: current state of knowledge and future challenges. Stem Cells Int., 2012; 2012: 579104
    Google Scholar
  • 68. Sokolov M.V., Neumann R.D.: Radiation-induced bystander effect in cultured human stem cells. PLoS One, 2010; 5: e14195
    Google Scholar
  • 69. Sokolov M., Neumann R.: Effects of low doses of ionizing radiation exposures on sress-responsive gene expression in human embryonic stem cells. Int. J. Mol. Sci., 2014; 15: 588-604
    Google Scholar
  • 70. Taapken S.M., Nisler B.S., Newton M., Sampsell-Barron T.L., Leonhard K., Mclntire E.M., Montgomery K.D.: Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat. Biotechnol., 2011; 29: 313-314
    Google Scholar
  • 71. Tichy E.D., Liang L., Deng L., Tischfield J., Schwemberger S., Babcock G., Stambrook P.J.: Mismatch and base excision repair proficiency in murine embryonic stem cells. DNA Repair., 2011; 10: 445-451
    Google Scholar
  • 72. Tichy E.D., Stambrook P.J.: DNA repair in murine embryonic stem cells and differentiated cells. Exp. Cell. Res., 2008; 314: 1929-1936
    Google Scholar
  • 73. von Stechow L., Ruiz-Aracama A., van de Water B., Peijnenburg A., Danen E., Lommen A.: Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells. PLoS One, 2013; 8: e76476
    Google Scholar
  • 74. Wilson K.D., Sun N., Huang M., Zhang W.Y., Lee A.S., Li Z., Wang S.X., Wu J.C.: Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells. Cancer Res., 2010; 70: 5539-5548
    Google Scholar
  • 75. Wood R.D., Mitchell M., Lindahl T.: Human DNA repair genes. Mutat Res., 2005; 577: 275-283
    Google Scholar
  • 76. Würstle M.L., Laussmann M.A., Rehm M.: The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp. Cell Res., 2012; 318: 1213-1220
    Google Scholar
  • 77. Xu X., Cowley S., Flaim C.J., James W., Seymour L., Cui Z.: The role of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog., 2010; 26: 827-837
    Google Scholar
  • 78. Yang J.K.: FLIP as an anti-cancer therapeutic target. Yonsei Med J., 2008; 49: 19-27
    Google Scholar
  • 79. Zaman M.H.: The role of engineering approaches in analyzing cancer invasion and metastasis. Nat. Rev. Cancer, 2013; 13: 596-603
    Google Scholar
  • 80. Zhao T., Xu Y.: p53 and stem cells: new developments and new concerns. Trends Cell Biol., 2010; 20: 170-175
    Google Scholar
  • 81. Zou Y., Zhang N., Ellerby L.M., Davalos A.R., Zeng X., Campisi J., Desprez P.Y.: Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochem. Biophys. Res. Commun., 2012; 426: 100-105
    Google Scholar

Full text

Skip to content