The oral cavity – potential source of stem cells

REVIEW ARTICLE

The oral cavity – potential source of stem cells

Rafał Brożek 1 , Maciej Kurpisz 2 , Ryszard Koczorowski 1

1. Klinika Gerostomatologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu,
2. Instytut Genetyki Człowieka Polskiej Akademii Nauk, Poznań,

Published: 2017-10-19
DOI: 10.5604/01.3001.0010.5385
GICID: 01.3001.0010.5385
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 881-894

 

Abstract

The purpose of this review is to present the current knowledge regarding the hierarchy of stem cells originating from the oral cavity, which could have a potential value when applied to regenerative stomatology. It must be particularly emphasized that the heterogenous nature of its biology and function within oral compartment may predispose them to different types of applications. Stem cells can be perceived as immature, primitive and unspecialized types of cells with the ability to proliferate, self-renew and differentiate into specialized progeny according to the compartmental signaling. Their presence in tissue reservoirs was already discovered in many organs and tissues as well as in the stomatognathic system. The oral cavity appears to be an exceptionally attractive site to acquire stem cells. The common presence and easy access to these cells in dental and peridental tissues provides a real chance to apply them for therapeutic purposes. Such an opportunity would also be neutral to bioethical and moral issues, assuming autologous stem cells employment. Many authors suspect that stem cells have epigenetic memory, so some of their features can be inherited through generations. They are not connected, however, with DNA sequence modifications. It is, therefore, justified to apply the cells, which have the oral cavity as their natural reservoir, in interventions associated with tissue engineering within the stomatognathic system. An increasing number of clinical trials, among which the number of randomized studies with large group of patients is progressively carried out, allows for a prediction that shortly therapeutic methods based on stem cells of dental origin may be implemented to the routine repertoire of clinical practice.

References

  • 1. Agata H., Asahina I., Yamazaki Y., Uchida M., Shinohara Y., Honda M.J., Kagami H., Ueda M.: Effective bone engineering with periosteum-derived cells. J. Dent. Res., 2007; 86: 79-83
    Google Scholar
  • 2. Aghaloo T.L., Chaichanasakul T., Bezouglaia O., Kang B., Franco R., Dry S.M., Atti E., Tetradis S.: Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J. Dent. Res., 2010; 89: 1293-1298
    Google Scholar
  • 3. Akintoye S.O., Lam T., Shi S., Brahim J., Collins M.T., Robey P.G.: Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone, 2006; 38: 758-768
    Google Scholar
  • 4. Allen M.R., Hock J.M., Burr D.B.: Periosteum: biology, regulation, and response to osteoporosis therapies. Bone, 2004; 35: 1003-1012
    Google Scholar
  • 5. Arnsdorf E.J., Jones L.M., Carter D.R., Jacobs C.R.: The periosteum as a cellular source for functional tissue engineering. Tissue Eng. Part A, 2009; 15: 2637-2642
    Google Scholar
  • 6. Ball M.D., Bonzani I.C., Bovis M.J., Williams A., Stevens M.M.: Human periosteum is a source of cells for orthopaedic tissue engineering: a pilot study. Clin. Orthop. Relat. Res., 2011; 469: 3085-3093
    Google Scholar
  • 7. Bar-Nur O., Russ H.A., Efrat S., Benvenisty N.: Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 2011; 9: 17-23
    Google Scholar
  • 8. Battula V.L., Treml S., Bareiss P.M., Gieseke F., Roelofs H., de Zwart P., Müller I., Schewe B., Skutella T., Fibbe W.E., Kanz L., Bühring H.J.: Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 2009; 94: 173-184
    Google Scholar
  • 9. Beltrão-Braga P.C., Pignatari G.C., Maiorka P.C., Oliveira N.A., Lizier N.F., Wenceslau C.V., Miglino M.A., Muotri A.R., Kerkis I.: Feeder- -free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant., 2011; 20: 1707-1719
    Google Scholar
  • 10. Bianco P., Riminucci M., Gronthos S., Robey P.G.: Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001; 19: 180-192
    Google Scholar
  • 11. Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B.: Aging of mesenchymal stem cell in vitro. BMC Cell Biol., 2006; 7: 14
    Google Scholar
  • 12. Borstlap W.A., Heidbuchel K.L., Freihofer H.P., Kuijpers-Jagtman A.M.: Early secondary bone grafting of alveolar cleft defects. A comparison between chin and rib grafts. J. Craniomaxillofac. Surg., 1990; 18: 201-205
    Google Scholar
  • 13. Bühring H.J., Battula V.L., Treml S., Schewe B., Kanz L., Vogel W.: Novel markers for the prospective isolation of human MSC. Ann. N. Y. Acad. Sci., 2007; 1106: 262-271
    Google Scholar
  • 14. Cai J., Zhang Y., Liu P., Chen S., Wu X., Sun Y., Li A., Huang K., Luo R., Wang L., Liu Y., Zhou T., Wei S., Pan G., Pei D.: Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen., 2013; 2: 6
    Google Scholar
  • 15. Chai Y., Jiang X., Ito Y., Bringas P.Jr., Han J., Rowitch D.H., Soriano P., McMahon A.P., Sucov H.M.: Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 2000; 127: 1671-1679
    Google Scholar
  • 16. Chung I.H., Yamaza T., Zhao H., Choung P.H., Shi S., Chai Y.: Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development. Stem Cells, 2009; 27: 866-877
    Google Scholar
  • 17. Cicconetti A., Sacchetti B., Bartoli A., Michienzi S., Corsi A., Funari A., Robey P.G., Bianco P., Riminucci M.: Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2007; 104: 618.e1-618.12
    Google Scholar
  • 18. Cox C.F., White K.C., Ramus D.L., Farmer J.B., Snuggs H.M.: Reparative dentin: factors affecting its deposition. Quintessence Int., 1985, 1992; 23: 257-270
    Google Scholar
  • 19. Crespi R., Vinci R., Capparè P., Gherlone E., Romanos G.E.: Calvarial versus iliac crest for autologous bone graft material for a sinus lift procedure: a histomorphometric study. Int. J. Oral Maxillofac. Implants, 2007; 22: 527-532
    Google Scholar
  • 20. Dambrot C., van de Pas S., van Zijl L., Brändl B., Wang J.W., Schalij M.J., Hoeben R.C., Atsma D.E., Mikkers H.M., Mummery C.L., Freund C.: Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth. Differentiation, 2013; 85: 101-109
    Google Scholar
  • 21. De Bari C., Dell’Accio F., Vanlauwe J., Eyckmans J., Khan I.M., Archer C.W., Jones E.A., McGonagle D., Mitsiadis T.A., Pitzalis C., Luyten F.P.: Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum., 2006; 54: 1209-1221
    Google Scholar
  • 22. Denny P.C., Denny P.A.: Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat. Rec., 1999; 254: 408-417
    Google Scholar
  • 23. Derubeis A.R., Cancedda R.: Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann. Biomed. Eng., 2004; 32: 160-165
    Google Scholar
  • 24. Ding G., Wang W., Liu Y., An Y., Zhang C., Shi S., Wang S.: Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J. Cell. Physiol., 2010; 223: 415-422
    Google Scholar
  • 25. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006; 8: 315-317
    Google Scholar
  • 26. Donovan M.G., Dickerson N.C., Hellstein J.W., Hanson L.J.: Autologous calvarial and iliac onlay bone grafts in miniature swine. J. Oral Maxillofac. Surg., 1993; 51: 898-903
    Google Scholar
  • 27. Duan X., Tu Q., Zhang J., Ye J., Sommer C., Mostoslavsky G., Kaplan D., Yang P., Chen J.: Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J. Cell. Physiol., 2011; 226: 150-157
    Google Scholar
  • 28. Egusa H., Okita K., Kayashima H., Yu G., Fukuyasu S., Saeki M., Matsumoto T., Yamanaka S., Yatani H.: Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One, 2010; 5: e12743
    Google Scholar
  • 29. Egusa H., Schweizer F.E., Wang C.C., Matsuka Y., Nishimura I.: Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J. Biol. Chem., 2005; 280: 23691-23697
    Google Scholar
  • 30. Evans M.J., Kaufman M.H.: Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981; 292: 154-156
    Google Scholar
  • 31. Gorjup E., Danner S., Rotter N., Habermann J., Brassat U., Brummendorf T.H., Wien S., Meyerhans A., Wollenberg B., Kruse C., von Briesen H.: Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur. J. Cell Biol., 2009; 88: 409-421
    Google Scholar
  • 32. Gottlow J., Nyman S., Lindhe J., Karring T., Wennström J.: New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J. Clin. Periodontol., 1986; 13: 604-616
    Google Scholar
  • 33. Gronthos S., Mankani M., Brahim J., Robey P.G., Shi S.: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2000; 97: 13625-13630
    Google Scholar
  • 34. Han J., Okada H., Takai H., Nakayama Y., Maeda T., Ogata Y.: Collection and culture of alveolar bone marrow multipotent mesenchymal stromal cells from older individuals. J. Cell. Biochem., 2009; 107: 1198-1204
    Google Scholar
  • 35. Harada H., Kettunen P., Jung H.S., Mustonen T., Wang Y.A., Thesleff I.: Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J. Cell Biol., 1999; 147: 105-120
    Google Scholar
  • 36. Hu Q., Friedrich A.M., Johnson L.V., Clegg D.O.: Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells, 2010; 28: 1981-1991
    Google Scholar
  • 37. Huang G.T., Gronthos S., Shi S.: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res., 2009; 88: 792-806
    Google Scholar
  • 38. Hung C.N., Mar K., Chang H.C., Chiang Y.L., Hu H.Y., Lai C.C., Chu R.M., Ma C.M.: A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials, 2011; 32: 6995-7005
    Google Scholar
  • 39. Hynes K., Menicanin D., Han J., Marino V., Mrozik K., Gronthos S., Bartold P.M.: Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J. Dent. Res., 2013; 92: 833-839
    Google Scholar
  • 40. Igarashi A., Segoshi K., Sakai Y., Pan H., Kanawa M., Higashi Y., Sugiyama M., Nakamura K., Kurihara H., Yamaguchi S., Tsuji K., Kawamoto T., Kato Y.: Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng., 2007; 13: 2405-2417
    Google Scholar
  • 41. Ishizaka R., Iohara K., Murakami M., Fukuta O., Nakashima M.: Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials, 2012; 33: 2109-2118
    Google Scholar
  • 42. Izadpanah R., Trygg C., Patel B., Kriedt C., Dufour J., Gimble J.M., Bunnell B.A.: Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell. Biochem., 2006; 99: 1285-1297
    Google Scholar
  • 43. Izumi K., Feinberg S.E., Iida A., Yoshizawa M.: Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report. Int. J. Oral Maxillofac. Surg., 2003; 32: 188-197
    Google Scholar
  • 44. Izumi K., Feinberg S.E., Terashi H., Marcelo C.L.: Evaluation of transplanted tissue-engineered oral mucosa equivalents in severe combined immunodeficient mice. Tissue Eng., 2003; 9: 163-174
    Google Scholar
  • 45. Izumi K., Tobita T., Feinberg S.E.: Isolation of human oral keratinocyte progenitor/stem cells. J. Dent. Res., 2007; 86: 341-346
    Google Scholar
  • 46. Jiang Y., Mishima H., Sakai S., Liu Y.K., Ohyabu Y., Uemura T.: Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of aging, gender, and age-related disorders. J. Orthop. Res., 2008; 26: 910-917
    Google Scholar
  • 47. Kanke K., Masaki H., Saito T., Komiyama Y., Hojo H., Nakauchi H., Lichtler A.C., Takato T., Chung U.I., Ohba S.: Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Reports, 2014; 2: 751-760
    Google Scholar
  • 48. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K.: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006; 24: 1294-1301
    Google Scholar
  • 49. Kim K., Doi A., Wen B., Ng K., Zhao R., Cahan P., Kim J., Aryee M.J., Ji H., Ehrlich L.I., Yabuuchi A., Takeuchi A., Cunniff K.C., Hongguang H., McKinney-Freeman S. i wsp.: Epigenetic memory in induced pluripotent stem cells. Nature, 2010; 467: 285-290
    Google Scholar
  • 50. Kishi T., Takao T., Fujita K., Taniguchi H.: Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem. Biophys. Res. Commun., 2006; 340: 544-552
    Google Scholar
  • 51. Kitamura C., Kimura K., Nakayama T., Terashita M.: Temporal and spatial expression of c-jun and jun-B proto-oncogenes in pulp cells involved with reparative dentinogenesis after cavity preparation of rat molars. J. Dent. Res., 1999; 78: 673-680
    Google Scholar
  • 52. Koole R., Bosker H., van der Dussen F.N.: Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J. Craniomaxillofac. Surg., 1989; 17: 28-30
    Google Scholar
  • 53. Kulakov A.A., Goldshtein D.V., Grigoryan A.S., Rzhaninova A.A., Alekseeva I.S., Arutyunyan I.V., Volkov A.V.: Clinical study of the efficiency of combined cell transplant on the basis of multipotent mesenchymal stromal adipose tissue cells in patients with pronounced deficit of the maxillary and mandibulary bone tissue. Bull. Exp. Biol. Med., 2008; 146: 522-525
    Google Scholar
  • 54. Langer R., Vacanti J.P.: Tissue engineering. Science, 1993; 260: 920-926
    Google Scholar
  • 55. Lombaert I.M.A., Brunsting J.F., Wierenga P.K., Faber H., Stokman M.A., Kok T., Visser W.H., Kampinga H.H., de Haan G., Coppes R.P.: Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One, 2008; 3: e2063
    Google Scholar
  • 56. Man Y.G., Ball W.D., Marchetti L., Hand A.R.: Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat. Rec., 2001; 263: 202-214
    Google Scholar
  • 57. Marynka-Kalmani K., Treves S., Yafee M., Rachima H., Gafni Y., Cohen M.A., Pitaru S.: The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells, 2010; 28: 984-995
    Google Scholar
  • 58. Matsubara T., Suardita K., Ishii M., Sugiyama M., Igarashi A., Oda R., Nishimura M., Saito M., Nakagawa K., Yamanaka K., Miyazaki K., Shimizu M., Bhawal U.K., Tsuji K., Nakamura K., Kato Y.: Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J. Bone Miner. Res., 2005; 20: 399-409
    Google Scholar
  • 59. Matsumoto S., Okumura K., Ogata A., Hisatomi Y., Sato A., Hattori K., Matsumoto M., Kaji Y., Takahashi M., Yamamoto T., Nakamura K., Endo F.: Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells, 2007; 9: 176-190
    Google Scholar
  • 60. Mendes S.C., Tibbe J.M., Veenhof M., Bakker K., Both S., Platenburg P.P., Oner F.C., de Bruijn J.D., van Blitterswijk C.A.: Bone tissue- -engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng., 2002; 8: 911-920
    Google Scholar
  • 61. Mesimäki K., Lindroos B., Törnwall J., Mauno J., Lindqvist C., Kontio R., Miettinen S., Suuronen R.: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg., 2009; 38: 201-209
    Google Scholar
  • 62. Miura M., Gronthos S., Zhao M., Lu B., Fisher L.W., Robey P.G., Shi S.: SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA, 2003; 100: 5807-5812
    Google Scholar
  • 63. Miyoshi K., Tsuji D., Kudoh K., Satomura K., Muto T., Itoh K., Noma T.: Generation of human induced pluripotent stem cells from oral mucosa. J. Biosci. Bioeng., 2010; 110: 345-350
    Google Scholar
  • 64. Morsczeck C., Götz W., Schierholz J., Zeilhofer F., Kühn U., Möhl C., Sippel C., Hoffmann K.H.: Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol., 2005; 24: 155-165
    Google Scholar
  • 65. Mueller S.M., Glowacki J.: Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J. Cell. Biochem., 2001; 82: 583-590
    Google Scholar
  • 66. Nagata M., Hoshina H., Li M., Arasawa M., Uematsu K., Ogawa S., Yamada K., Kawase T., Suzuki K., Ogose A., Fuse I., Okuda K., Uoshima K., Nakata K., Yoshie H., Takagi R.: A clinical study of alveolar bone tissue engineering with cultured autogenous periosteal cells: coordinated activation of bone formation and resorption. Bone, 2012; 50: 1123-1129
    Google Scholar
  • 67. Nanduri L.S., Maimets M., Pringle S.A., van der Zwaag M., van Os R.P., Coppes R.P.: Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother. Oncol., 2011; 99: 367-372
    Google Scholar
  • 68. Neumann Y., David R., Stiubea-Cohen R., Orbach Y., Aframian D.J., Palmon A.: Long-term cryopreservation model of rat salivary gland stem cells for future therapy in irradiated head and neck cancer patients. Tissue Eng. Part C Methods, 2012; 18: 710-718
    Google Scholar
  • 69. Nishida S., Endo N., Yamagiwa H., Tanizawa T., Takahashi H.E.: Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J. Bone Miner. Metab., 1999; 17: 171-177
    Google Scholar
  • 70. Nyman S., Gottlow J., Lindhe J., Karring T., Wennstrom J.: New attachment formation by guided tissue regeneration. J. Periodontal Res., 1987; 22: 252-254
    Google Scholar
  • 71. Ochiai-Shino H., Kato H., Sawada T., Onodera S., Saito A., Takato T., Shibahara T., Muramatsu T., Azuma T.: A novel strategy for enrichment and isolation of osteoprogenitor cells from induced pluripotent stem cells based on surface marker combination. PLoS One, 2014; 9: e99534
    Google Scholar
  • 72. Oda Y., Yoshimura Y., Ohnishi H., Tadokoro M., Katsube Y., Sasao M., Kubo Y., Hattori K., Saito S., Horimoto K., Yuba S., Ohgushi H.: Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J. Biol. Chem., 2010; 285: 29270-29278
    Google Scholar
  • 73. Ohi Y., Qin H., Hong C., Blouin L., Polo J.M., Guo T., Qi Z., Downey S.L., Manos P.D., Rossi D.J., Yu J., Hebrok M., Hochedlinger K., Costello J.F., Song J.S., Ramalho-Santos M.: Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol., 2011; 13: 541-549
    Google Scholar
  • 74. Otsu K., Kishigami R., Oikawa-Sasaki A., Fukumoto S., Yamada A., Fujiwara N., Ishizeki K., Harada H.: Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev., 2012; 21: 1156-1164
    Google Scholar
  • 75. Patil R., Kumar B.M., Lee W.J., Jeon R.H., Jang S.J., Lee Y.M., Park B.W., Byun J.H., Ahn C.S., Kim J.-., Rho G.J.: Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp. Cell Res., 2014; 320: 92-107
    Google Scholar
  • 76. Phillips M.D., Kuznetsov S.A., Cherman N., Park K., Chen K.G., McClendon B.N., Hamilton R.S., McKay R.D., Chenoweth J.G., Mallon B.S., Robey P.G.: Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays. Stem Cells Transl. Med., 2014; 3: 867-878
    Google Scholar
  • 77. Pieri F., Lucarelli E., Corinaldesi G., Aldini N.N., Fini M., Parrilli A., Dozza B., Donati D., Marchetti C.: Dose-dependent effect of adipose-derived adult stem cells on vertical bone regeneration in rabbit calvarium. Biomaterials, 2010; 31: 3527-3535
    Google Scholar
  • 78. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R.: Multilineage potential of adult human mesenchymal stem cells. Science, 1999; 284: 143-147
    Google Scholar
  • 79. Pojda Z., Machaj E., Kurzyk A., Mazur S., Dębski T., Gilewicz J., Wysocki J.: Mezenchymalne komórki macierzyste. Postępy Biochem., 2013; 59: 187-197
    Google Scholar
  • 80. Poulsom R., Alison M.R., Forbes S.J., Wright N.A.: Adult stem cell plasticity. J. Pathol., 2002; 197: 441-456
    Google Scholar
  • 81. Ruch J.V.: Odontoblast commitment and differentiation. Biochem. Cell Biol., 1998; 76: 923-938
    Google Scholar
  • 82. Sakaguchi Y., Sekiya I., Yagishita K., Muneta T.: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum., 2005; 52: 2521-2529
    Google Scholar
  • 83. Sato A., Okumura K., Matsumoto S., Hattori K., Hattori S., Shinohara M., Endo F.: Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning Stem Cells, 2007; 9: 191-205
    Google Scholar
  • 84. Schmelzeisen R., Schimming R., Sittinger M.: Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J. Craniomaxillofac. Surg., 2003; 31: 34-39
    Google Scholar
  • 85. Schofield R.: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978; 4: 7-25
    Google Scholar
  • 86. Seo B.M., Miura M., Gronthos S., Bartold P.M., Batouli S., Brahim J., Young M., Robey P.G., Wang C.Y., Shi S.: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004; 364: 149-155
    Google Scholar
  • 87. Seo B.M., Miura M., Sonoyama W., Coppe C., Stanyon R., Shi S.: Recovery of stem cells from cryopreserved periodontal ligament. J. Dent. Res., 2005; 84: 907-912
    Google Scholar
  • 88. Sikora M.A., Olszewski W.L.: Komórki macierzyste – biologia i zastosowanie terapeutyczne. Postępy Hig. Med. Dośw., 2004; 58: 202-208
    Google Scholar
  • 89. Simmons P.J., Gronthos S., Zannettino A., Ohta S., Graves S.: Isolation, characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Prog. Clin. Biol. Res., 1994; 389: 271-280
    Google Scholar
  • 90. Soltan M., Smiler D., Soltan C.: The inverted periosteal flap: a source of stem cells enhancing bone regeneration. Implant Dent., 2009; 18: 373-379
    Google Scholar
  • 91. Sonoyama W., Liu Y., Fang D., Yamaza T., Seo B.M., Zhang C., Liu H., Gronthos S., Wang C.Y., Wang S., Shi S.: Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 2006; 1: e79
    Google Scholar
  • 92. Sonoyama W., Liu Y., Yamaza T., Tuan R.S., Wang S., Shi S., Huang G.T.: Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod., 2008; 34: 166-171
    Google Scholar
  • 93. Stenderup K., Justesen J., Eriksen E.F., Rattan S.I., Kassem M.: Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J. Bone Miner. Res., 2001; 16: 1120-1129
    Google Scholar
  • 94. Strem B.M., Hicok K.C., Zhu M., Wulur I., Alfonso Z., Schreiber R.E., Fraser J.K., Hedrick M.H.: Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med., 2005; 54: 132-141
    Google Scholar
  • 95. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007; 131: 861-872
    Google Scholar
  • 96. Takahashi K., Yamanaka S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006; 126: 663-676
    Google Scholar
  • 97. Tamaoki N., Takahashi K., Tanaka T., Ichisaka T., Aoki H., TakedaKawaguchi T., Iida K., Kunisada T., Shibata T., Yamanaka S., Tezuka K.: Dental pulp cells for induced pluripotent stem cell banking. J. Dent. Res., 2010; 89: 773-778
    Google Scholar
  • 98. Tang M., Chen W., Liu J., Weir M.D., Cheng L., Xu H.H.: Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Eng. Part A, 2014; 20: 1295-1305
    Google Scholar
  • 99. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M.: Embryonic stem cell lines derived from human blastocysts. Science, 1998; 282: 1145-1147
    Google Scholar
  • 100. Tobita M., Uysal A.C., Ogawa R., Hyakusoku H., Mizuno H.: Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng. Part A, 2008; 14: 945-953
    Google Scholar
  • 101. Tomar G.B., Srivastava R.K., Gupta N., Barhanpurkar A.P., Pote S.T., Jhaveri H.M., Mishra G.C., Wani M.R.: Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem. Biophys. Res. Commun., 2010; 393: 377-383
    Google Scholar
  • 102. Ueda M., Yamada Y., Kagami H., Hibi H.: Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent., 2008; 17: 82-90
    Google Scholar
  • 103. Ueno T., Honda K., Hirata A., Kagawa T., Kanou M., Shirasu N., Sawaki M., Yamachika E., Mizukawa N., Sugahara T.: Histological comparison of bone induced from autogenously grafted periosteum with bone induced from autogenously grafted bone marrow in the rat calvarial defect model. Acta Histochem., 2008; 110: 217-223
    Google Scholar
  • 104. Villa-Diaz L.G., Brown S.E., Liu Y., Ross A.M., Lahann J., Parent J.M., Krebsbach P.H.: Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells, 2012; 30: 1174-1181
    Google Scholar
  • 105. Wada N., Wang B., Lin N.H., Laslett A.L., Gronthos S., Bartold P.M.: Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J. Periodontal Res., 2011; 46: 438-447
    Google Scholar
  • 106. Wang L., Shen H., Zheng W., Tang L., Yang Z., Gao Y., Yang Q., Wang C., Duan Y., Jin Y.: Characterization of stem cells from alveolar periodontal ligament. Tissue Eng. Part A, 2011; 17: 1015-1026
    Google Scholar
  • 107. Wang M., Deng Y., Zhou P., Luo Z., Li Q., Xie B., Zhang X., Chen T., Pei D., Tang Z., Wei S.: In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS Appl. Mater. Interfaces, 2015; 7: 4560-4572
    Google Scholar
  • 108. Wang P., Liu X., Zhao L., Weir M.D., Sun J., Chen W., Man Y., Xu H.H.: Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater., 2015; 18: 236-248
    Google Scholar
  • 109. Wang Q., Huang C., Zeng F., Xue M., Zhang X.: Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am. J. Pathol., 2010; 177: 3100-3111
    Google Scholar
  • 110. Waś H.: Komórki macierzyste, a starzenie. Postępy Biochem., 2014; 60: 161-176
    Google Scholar
  • 111. Wen X., Nie X., Zhang L., Liu L., Deng M.: Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro. Biochem. Biophys. Res. Commun., 2011; 409: 583-589
    Google Scholar
  • 112. Wobus A.M., Boheler K.R.: Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev., 2005; 85: 635-678
    Google Scholar
  • 113. Wojtowicz A., Perek J., Urbanowska E., Kamiński A., Olender E., Jodko M.: Leczenie defektów tkanki kostnej szczęk z wykorzystaniem autologicznych preosteoblastów na nośniku allogenicznym. Dent. Med. Probl., 2013; 50: 20-29
    Google Scholar
  • 114. Wray J., Kalkan T., Smith A.G.: The ground state of pluripotency. Biochem. Soc. Trans., 2010; 38: 1027-1032
    Google Scholar
  • 115. Yamada Y., Ueda M., Hibi H., Baba S.: A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int. J. Periodontics Restorative Dent., 2006; 26: 363-369
    Google Scholar
  • 116. Yan X., Qin H., Qu C., Tuan R.S., Shi S., Huang G.T.: iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev., 2010; 19: 469-480
    Google Scholar
  • 117. Yang H., Aprecio R.M., Zhou X., Wang Q., Zhang W., Ding Y., Li Y.: Therapeutic effect of TSG-6 engineered iPSC-derived MSCs on experimental periodontitis in rats: a pilot study. PLoS One, 2014; 9: e100285
    Google Scholar
  • 118. Zhang Q., Shi S., Liu Y., Uyanne J., Shi Y., Shi S., Le A.D.: Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J. Immunol., 1950, 2009; 183: 7787-7798
    Google Scholar
  • 119. Zhu S.J., Choi B.H., Huh J.Y., Jung J.H., Kim B.Y., Lee S.H.: A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006; 101: 164-169
    Google Scholar
  • 120. Zins J.E., Whitaker L.A.: Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast. Reconstr. Surg., 1983; 72: 778-785
    Google Scholar

Full text

Skip to content