The role of centrosomes in cells and their potential contribution to carcinogenesis
Aneta Białkowska 1 , Aleksandra M. Koczorowska 1 , Katarzyna Kluzek 2Abstract
The centrosomes are subcellular organelles composed of two centrioles surrounded by a pericentriolar material. In animal cells they are responsible for the organization of the interphase microtubule cytoskeleton including microtubule nucleation and elongation, their attachment and release. The centrosomes are also involved in the construction of the mitotic spindle and chromosome segregation. More than a century ago it was suggested that these structures might be involved in human diseases, including cancer. Cancer cells show a high frequency of centrosome aberrations, especially amplification. Centrosome defects may increase the incidence of multipolar mitoses that lead to chromosomal segregation abnormalities and aneuploidy, which is the predominant type of genomic instability found in human solid tumors. The number of these organelles in cells is strictly controlled and is dependent on the proper process of centrosome duplication. Multiple genes that are frequently found mutated in cancers encode proteins which participate in the regulation of centrosome duplication and the numeral integrity of centrosomes. In recent years there has been growing interest in the potential participation of centrosomes in the process of carcinogenesis, especially because centrosome abnormalities are observed in premalignant stages of cancer development. The common presence of abnormal centrosomes in cancer cells and the role these organelles play in the cells suggest that the factors controlling the number of centrosomes may be potential targets for cancer therapy.
References
- 1. Abal M., Piel M., Bouckson-Castaing V., Mogensen M., Sibarita J.B.,Bornens M.: Microtubule release from the centrosome in migratingcells. J. Cell Biol., 2002; 159: 731-737 2 Ahmad F.J., Yu W., McNally F.J., Baas P.W.: An essential role forkatanin in severing microtubules in the neuron. J. Cell Biol., 1999;145: 305-315
Google Scholar - 2. (Cdk2) is required for centrosome duplication in mammalian cells.Curr. Biol., 1999; 9: 429-432
Google Scholar - 3. Andersen J.S., Wilkinson C.J., Mayor T., Mortensen P., Nigg E.A.,Mann M.: Proteomic characterization of the human centrosomeby protein correlation profiling. Nature, 2003; 426: 570-574
Google Scholar - 4. Anderson C.T., Stearns T.: Centriole age underlies asynchronous primarycilium growth in mammalian cells. Curr. Biol., 2009; 19: 1498-1502
Google Scholar - 5. Azimzadeh J., Marshall W.F.: Building the centriole. Curr. Biol.,2010; 20: R816-R825
Google Scholar - 6. Bahe S., Stierhof Y.D., Wilkinson C.J., Leiss F., Nigg E.A.: Rootletinforms centriole-associated filaments and functions in centrosomecohesion. J. Cell Biol., 2005; 171: 27-33
Google Scholar - 7. Bakhoum S.F., Thompson S.L., Manning A.L., Compton D.A.: Genomestability is ensured by temporal control of kinetochore-microtubuledynamics. Nat. Cell Biol., 2009; 11: 27-35
Google Scholar - 8. Bärenz F., Mayilo D., Gruss O.J.: Centriolar satellites: busy orbitsaround the centrosome. Eur. J. Cell Biol., 2011; 90: 983-989
Google Scholar - 9. Bayani J., Selvarajah S., Maire G., Vukovic B., Al-Romaih K., ZielenskaM., Squire J.A.: Genomic mechanisms and measurement ofstructural and numerical instability in cancer cells. Semin. CancerBiol., 2007; 17: 5-18
Google Scholar - 10. Bertrand P., Lambert S., Joubert C., Lopez B.S.: Overexpressionof mammalian Rad51 does not stimulate tumorigenesis while a dominant-negativeRad51 affects centrosome fragmentation, ploidyand stimulates tumorigenesis, in p53-defective CHO cells. Oncogene,2003; 22: 7587-7592
Google Scholar - 11. Bettencourt-Dias M., Glover D.M.: Centrosome biogenesis andfunction: centrosomics brings new understanding. Nat. Rev. Mol.Cell Biol., 2007; 8: 451-463
Google Scholar - 12. Bettencourt-Dias M., Hildebrandt F., Pellman D., Woods G., GodinhoS.A.: Centrosomes and cilia in human disease. Trends Genet.,2011; 27: 307-315
Google Scholar - 13. Cam W.R., Masaki T., Shiratori T.Y., Kato N., Okamoto M., YamajiY., Igarashi K., Sano T., Omata M.: Activation of cyclin E-dependentkinase activity in colorectal cancer. Dig. Dis. Sci., 2001; 46:2187-2198
Google Scholar - 14. Cappelli E., Townsend S., Griffin C., Thacker J.: Homologousrecombination proteins are associated with centrosomes and arerequired for mitotic stability. Exp. Cell Res., 2011; 317: 1203-1213
Google Scholar - 15. Cho E.H., Whipple R.A., Matrone M.A., Balzer E.M., Martin S.S.:Delocalization of γ-tubulin due to increased solubility in humanbreast cancer cell lines. Cancer Biol. Ther., 2010; 9: 66-76
Google Scholar - 16. Cunha-Ferreira I., Rodrigues-Martins A., Bento I., Riparbelli M.,Zhang W., Laue E., Callaini G., Glover D.M., Bettencourt-Dias M.: TheSCF/Slimb ubiquitin ligase limits centrosome amplification throughdegradation of SAK/PLK4. Curr. Biol., 2009; 19: 43-49
Google Scholar - 17. D’Assoro A.B., Lingle W.L., Salisbury J.L.: Centrosome amplificationand the development of cancer. Oncogene, 2002; 21:6146-6153
Google Scholar - 18. Dammermann A., Merdes A.: Assembly of centrosomal proteinsand microtubule organization depends on PCM-1. J. Cell Biol.,2002; 159: 255-266
Google Scholar - 19. Date O., Katsura M., Ishida M., Yoshihara T., Kinomura A., SuedaT., Miyagawa K.: Haploinsufficiency of RAD51B causes centrosomefragmentation and aneuploidy in human cells. Cancer Res., 2006;66: 6018-6024
Google Scholar - 20. Davies A.A., Masson J.Y., McIlwraith M.J., Stasiak A., VenkitaramanA.R., West S.C.: Role of BRCA2 in control of the RAD51 recombinationand DNA repair protein. Mol. Cell, 2001; 7: 273-282
Google Scholar - 21. Deng C.X.: Roles of BRCA1 in centrosome duplication. Oncogene,2002; 21: 6222-6227
Google Scholar - 22. Dodson H., Bourke E., Jeffers L.J., Vagnarelli P., Sonoda E., TakedaS., Earnshaw W.C., Merdes A., Morrison C.: Centrosome amplificationinduced by DNA damage occurs during a prolonged G2 phase andinvolves ATM. EMBO J., 2004; 23: 3864-3873
Google Scholar - 23. Duensing A., Ghanem L., Steinman R.A., Liu Y., Duensing S.:p21Waf1/Cip1 deficiency stimulates centriole overduplication. Cell Cycle,2006; 5: 2899-2902
Google Scholar - 24. Duensing S.: A tentative classification of centrosome abnormalitiesin cancer. Cell Biol. Int., 2005; 29: 352-359
Google Scholar - 25. Duensing S., Duensing A., Crum C.P., Münger K.: Human papillomavirustype 16 E7 oncoprotein-induced abnormal centrosomesynthesis is an early event in the evolving malignant phenotype.Cancer Res., 2001; 61: 2356-2360
Google Scholar - 26. Fisk H.A., Mattison C.P., Winey M.: Human Mps1 protein kinaseis required for centrosome duplication and normal mitotic progression.Proc. Natl. Acad. Sci. USA, 2003; 100: 14875-14880
Google Scholar - 27. Fletcher L., Muschel R.J.: The centrosome and the DNA damageinduced checkpoint. Cancer Lett., 2006; 243: 1-8
Google Scholar - 28. Fukasawa K.: Centrosome amplification, chromosome instabilityand cancer development. Cancer Lett., 2005; 230: 6-19
Google Scholar - 29. Fukasawa K.: Oncogenes and tumour suppressors take on centrosomes.Nat. Rev. Cancer, 2007; 7: 911-924
Google Scholar - 30. Fukasawa K.: P53, cyclin-dependent kinase and abnormal amplificationof centrosomes. Biochim. Biophys. Acta, 2008; 1786: 15-23
Google Scholar - 31. Fukasawa K., Choi T., Kuriyama R., Rulong S., Vande Woude G.F.:Abnormal centrosome amplification in the absence of p53. Science,1996; 271: 1744-1747
Google Scholar - 32. Futreal P.A., Coin L., Marshall M., Down T., Hubbard T., WoosterR., Rahman N., Stratton M.R.: A census of human cancer genes. Nat.Rev. Cancer, 2004; 4: 177-183
Google Scholar - 33. Ganem N.J., Godinho S.A., Pellman D.: A mechanism linking extracentrosomes to chromosomal instability. Nature, 2009; 460: 278-282
Google Scholar - 34. Godinho S.A., Kwon M., Pellman D.: Centrosomes and cancer:how cancer cells divide with too many centrosomes. Cancer MetastasisRev., 2009; 28: 85-98
Google Scholar - 35. Golmard L., Caux-Moncoutier V., Davy G., Al Ageeli E., Poirot B.,Tirapo C., Michaux D., Barbaroux C., D’Enghien C.D., Nicolas A., CasteraL., Sastre-Garau X., Stern M.H., Houdayer C., Stoppa-LyonnetD.: Germline mutation in the RAD51B gene confers predisposition tobreast cancer. BMC Cancer, 2013; 13: 484
Google Scholar - 36. Gönczy P.: Towards a molecular architecture of centriole assembly.Nat. Rev. Mol. Cell Biol., 2012; 13: 425-435
Google Scholar - 37. Graser S., Stierhof Y.D., Nigg E.A.: Cep68 and Cep215 (Cdk5rap2)are required for centrosome cohesion. J. Cell Sci., 2007; 120: 4321-4331
Google Scholar - 38. Gregan J., Polakova S., Zhang L., Tolić-Nørrelykke I.M., CiminiD.: Merotelic kinetochore attachment: causes and effects. TrendsCell Biol., 2011; 21: 374-381
Google Scholar - 39. Gretarsdottir S., Thorlacius S., Valgardsdottir R., GudlaugsdottirS., Sigurdsson S., Steinarsdottir M., Jonasson J.G., Anamthawat-JonssonK., Eyfjörd J.E.: BRCA2 and p53 mutations in primary breast cancerin relation to genetic instability. Cancer Res., 1998; 58: 859-862
Google Scholar - 40. Griffin C.S., Simpson P.J., Wilson C.R., Thacker J.: Mammalianrecombination-repair genes XRCC2 and XRCC3 promote correctchromosome segregation. Nat. Cell Biol., 2000; 2: 757-761
Google Scholar - 41. Grisendi S., Mecucci C., Falini B., Pandolfi P.P.: Nucleophosminand cancer. Nat. Rev. Cancer, 2006; 6: 493-505
Google Scholar - 42. Gritsko T.M., Coppola D., Paciga J.E., Yang L., Sun M., Shelley S.A.,Fiorica J.V., Nicosia S.V., Cheng J.Q.: Activation and overexpression ofcentrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin.Cancer Res., 2003; 9: 1420-1426
Google Scholar - 43. Habedanck R., Stierhof Y.D., Wilkinson C.J., Nigg E.A.: The Polokinase Plk4 functions in centriole duplication. Nat. Cell Biol., 2005;7: 1140-1146
Google Scholar - 44. Han X., Saito H., Miki Y., Nakanishi A.: A CRM1-mediated nuclearexport signal governs cytoplasmic localization of BRCA2 andis essential for centrosomal localization of BRCA2. Oncogene, 2008;27: 2969-2977
Google Scholar - 45. Harvey M., Sands A.T., Weiss R.S., Hegi M.E., Wiseman R.W., PantazisP., Giovanella B.C., Tainsky M.A., Bradley A., Donehower L.A.:In vitro growth characteristics of embryo fibroblasts isolated fromp53-deficient mice. Oncogene, 1993; 8: 2457-2467
Google Scholar - 46. Holland A.J., Cleveland D.W.: Boveri revisited: chromosomalinstability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol.,2009; 10: 478-487
Google Scholar - 47. Holtrich U., Wolf G., Bräuninger A., Karn T., Böhme B., Rübsamen-WaigmannH., Strebhardt K.: Induction and down-regulationof PLK, a human serine/threonine kinase expressed inproliferating cells and tumors. Proc. Natl. Acad. Sci. USA. 1994;91: 1736-1740
Google Scholar - 48. Hu J., Wang N., Wang Y.J.: XRCC3 and RAD51 expression are associatedwith clinical factors in breast cancer. PLoS One, 2013; 8: e72104
Google Scholar - 49. Hwang H.C., Clurman B.E.: Cyclin E in normal and neoplasticcell cycles. Oncogene, 2005; 24: 2776-2786
Google Scholar - 50. Jordan M.A., Kamath K.: How do microtubule-targeted drugswork? An overview. Curr. Cancer Drug Targets. 2007; 7: 730-742
Google Scholar - 51. Jordan M.A., Wilson L.: Microtubules as a target for anticancerdrugs. Nat. Rev. Cancer, 2004; 4: 253-265
Google Scholar - 52. Kais Z., Chiba N., Ishioka C., Parvin J.D.: Functional differencesamong BRCA1 missense mutations in the control of centrosomeduplication. Oncogene, 2012; 31: 799-804
Google Scholar - 53. Kanai M., Tong W.M., Sugihara E., Wang Z.Q., Fukasawa K., MiwaM.: Involvement of poly(ADP-ribose) polymerase 1 and poly(ADP–ribosyl)ation in regulation of centrosome function. Mol. Cell Biol.,2003; 23: 2451-2462
Google Scholar - 54. Kasbek C., Yang C.H., Fisk H.A.: Mps1 as a link between centrosomesand genomic instability. Environ. Mol. Mutagen., 2009;50: 654-665
Google Scholar - 55. Keller L.C., Romijn E.P., Zamora I., Yates J.R., Marshall W.F.: Proteomicanalysis of isolated chlamydomonas centrioles reveals orthologsof ciliary-disease genes. Curr. Biol., 2005; 15: 1090-1098
Google Scholar - 56. Khodjakov A., Rieder C.L.: Centrosomes enhance the fidelity ofcytokinesis in vertebrates and are required for cell cycle progression.J. Cell Biol., 2001; 153: 237-242
Google Scholar - 57. Khodjakov A., Rieder C.L., Sluder G., Cassels G., Sibon O., WangC.L.: De novo formation of centrosomes in vertebrate cells arrestedduring S phase. J. Cell Biol., 2002; 158: 1171-1181
Google Scholar - 58. Kleylein-Sohn J., Westendorf J., Le Clech M., Habedanck R., StierhofY.D., Nigg E.A.: Plk4-induced centriole biogenesis in human cells.Dev. Cell, 2007; 13: 190-202
Google Scholar - 59. Knecht R., Elez R., Oechler M., Solbach C., von Ilberg C., StrebhardtK.: Prognostic significance of polo-like kinase (PLK) expressionin squamous cell carcinomas of the head and neck. Cancer Res.,1999; 59: 2794-2797
Google Scholar - 60. Ko M.A., Rosario C.O., Hudson J.W., Kulkarni S., Pollett A., DennisJ.W., Swallow C.J.: Plk4 haploinsufficiency causes mitotic infidelityand carcinogenesis. Nat. Genet., 2005; 37: 883-888
Google Scholar - 61. Kohlmaier G., Loncarek J., Meng X., McEwen B.F., MogensenM.M., Spektor A., Dynlacht B.D., Khodjakov A., Gönczy P.: Overlylong centrioles and defective cell division upon excess of the SAS–4-related protein CPAP. Curr. Biol., 2009; 19: 1012-1018
Google Scholar - 62. Korzeniewski N., Hohenfellner M., Duensing S.: The centrosomeas potential target for cancer therapy and prevention. Expert Opin.Ther. Targets, 2013; 17: 43-52
Google Scholar - 63. Krämer A., Maier B., Bartek J.: Centrosome clustering and chromosomal(in)stability: a matter of life and death. Mol. Oncol., 2011;5: 324-335
Google Scholar - 64. Kubo A., Sasaki H., Yuba-Kubo A., Tsukita S., Shiina N.: Centriolarsatellites: molecular characterization, ATP-dependent movementtoward centrioles and possible involvement in ciliogenesis. J. CellBiol., 1999; 147: 969-980
Google Scholar - 65. Kwon M., Godinho S.A., Chandhok N.S., Ganem N.J., AziouneA., Thery M., Pellman D.: Mechanisms to suppress multipolar divisionsin cancer cells with extra centrosomes. Genes Dev., 2008;22: 2189-2203
Google Scholar - 66. Lawo S., Hasegan M., Gupta G.D., Pelletier L.: Subdiffraction imagingof centrosomes reveals higher-order organizational features ofpericentriolar material. Nat. Cell Biol., 2012; 14: 1148-1158
Google Scholar - 67. Lee K., Rhee K.: Separase-dependent cleavage of pericentrin Bis necessary and sufficient for centriole disengagement during mitosis.Cell Cycle, 2012; 11: 2476-2485
Google Scholar - 68. Li J., Miki H., Ohmori M., Wu F., Funamoto Y.: Expression of cyclinE and cyclin-dependent kinase 2 correlates with metastasis andprognosis in colorectal carcinoma. Hum. Pathol., 2001; 32: 945-953
Google Scholar - 69. Lingle W.L., Barrett S.L., Negron V.C., D’Assoro A.B., BoenemanK., Liu W., Whitehead C.M., Reynolds C., Salisbury J.: Centrosomeamplification drives chromosomal instability in breast tumor development.Proc. Natl. Acad. Sci. USA, 2002; 99: 1978-1983
Google Scholar - 70. Lothschütz D., Jennewein M., Pahl S., Lausberg H.F., Eichler A.,Mutschler W., Hanselmann R.G., Oberringer M.: Polyploidization andcentrosome hyperamplification in inflammatory bronchi. Inflamm.Res., 2002; 51: 416-422
Google Scholar - 71. Lüders J., Stearns T.: Microtubule-organizing centres: a re-evaluation.Nat. Rev. Mol. Cell Biol., 2007; 8: 161-167
Google Scholar - 72. Lukasiewicz K.B., Lingle W.L.: Aurora A, centrosome structure,and the centrosome cycle. Environ. Mol. Mutagen., 2009; 50: 602-619
Google Scholar - 73. Ma Z., Kanai M., Kawamura K., Kaibuchi K., Ye K., Fukasawa K.:Interaction between ROCK II and nucleophosmin/B23 in the regulationof centrosome duplication. Mol. Cell. Biol., 2006; 26: 9016-9034
Google Scholar - 74. Mardin B.R., Schiebel E.: Breaking the ties that bind: new advancesin centrosome biology. J. Cell Biol., 2012; 197: 11-18
Google Scholar - 75. Marine J.C., Jochemsen A.G.: Mdmx and Mdm2: brothers in arms?Cell Cycle, 2004; 3: 900-904
Google Scholar - 76. Martin S.A., Hewish M., Lord C.J., Ashworth A.: Genomic instabilityand the selection of treatments for cancer. J. Pathol., 2010; 220: 281-289
Google Scholar - 77. Matsumoto Y., Hayashi K., Nishida E.: Cyclin-dependent kinase
Google Scholar - 78. Mayor T., Stierhof Y.D., Tanaka K., Fry A.M., Nigg E.A.: The centrosomalprotein C-Nap1 is required for cell cycle-regulated centrosomecohesion. J. Cell Biol., 2000; 151: 837-846
Google Scholar - 79. Mazzorana M., Montoya G., Mortuza G.B.: The centrosome: a targetfor cancer therapy. Curr. Cancer Drug Targets, 2011; 11: 600-612
Google Scholar - 80. Meraldi P., Honda R., Nigg E.A.: Aurora-A overexpression revealstetraploidization as a major route to centrosome amplification inp53-/- cells. EMBO J., 2002; 21: 483-492
Google Scholar - 81. Meraldi P., Lukas J., Fry A.M., Bartek J., Nigg E.A.: Centrosomeduplication in mammalian somatic cells requires E2F and Cdk2-cyclinA. Nat. Cell Biol., 1999; 1: 88-93
Google Scholar - 82. Michael D., Oren M.: The p53-Mdm2 module and the ubiquitinsystem. Semin. Cancer Biol., 2003; 13: 49-58
Google Scholar - 83. Miwa M., Masutani M.: PolyADP-ribosylation and cancer. CancerSci., 2007; 98: 1528-1535
Google Scholar - 84. Morgan-Fisher M., Wewer U.M., Yoneda A.: Regulation of ROCKactivity in cancer. J. Histochem. Cytochem., 2013; 61: 185-198
Google Scholar - 85. Moser J.J., Fritzler M.J., Ou Y., Rattner J.B.: The PCM-basal body/primary cilium coalition. Semin. Cell Dev. Biol., 2010; 21: 148-155
Google Scholar - 86. Mussman J.G., Horn H.F., Carroll P.E., Okuda M., Tarapore P.,Donehower L.A., Fukasawa K.: Synergistic induction of centrosomehyperamplification by loss of p53 and cyclin E overexpression. Oncogene,2000; 19: 1635-1646
Google Scholar - 87. Nakanishi A., Han X., Saito H., Taguchi K., Ohta Y., Imajoh-OhmiS., Miki Y.: Interference with BRCA2, which localizes to the centrosomeduring S and early M phase, leads to abnormal nuclear division.Biochem. Biophys. Res. Commun., 2007; 355: 34-40
Google Scholar - 88. Nigg E.A.: Centrosome aberrations: cause or consequence ofcancer progression? Nat. Rev. Cancer, 2002; 2: 815-825
Google Scholar - 89. Nigg E.A.: Origins and consequences of centrosome aberrationsin human cancers. Int. J. Cancer, 2006; 119: 2717-2723
Google Scholar - 90. Nikonova A.S., Astsaturov I., Serebriiskii I.G., Dunbrack R.L.,Golemis E.A.: Aurora A kinase (AURKA) in normal and pathologicalcell growth. Cell. Mol. Life Sci., 2013; 70: 661-687
Google Scholar - 91. Ogden A., Rida P.C., Aneja R.: Let’s huddle to prevent a muddle:centrosome declustering as an attractive anticancer strategy. CellDeath Differ., 2012; 19: 1255-1267
Google Scholar - 92. Ohashi S., Kanai M., Hanai S., Uchiumi F., Maruta H., Tanuma S.,Miwa M.: Subcellular localization of poly(ADP-ribose) glycohydrolasein mammalian cells. Biochem. Biophys. Res. Commun., 2003;307: 915-921
Google Scholar - 93. Okuda M., Horn H.F., Tarapore P., Tokuyama Y., Smulian A.G.,Chan P.K., Knudsen E.S., Hofmann I.A., Snyder J.D., Bove K.E., FukasawaK.: Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosomeduplication. Cell, 2000; 103: 127-140
Google Scholar - 94. Patel K.J., Yu V.P., Lee H., Corcoran A., Thistlethwaite F.C., EvansM.J., Colledge W.H., Friedman L.S., Ponder B.A., Venkitaraman A.R.:Involvement of Brca2 in DNA repair. Mol. Cell, 1998; 1: 347-357
Google Scholar - 95. Pihan G.A., Purohit A., Wallace J., Knecht H., Woda B., QuesenberryP., Doxsey S.J.: Centrosome defects and genetic instability inmalignant tumors. Cancer Res., 1998; 58: 3974-3985
Google Scholar - 96. Pihan G.A., Wallace J., Zhou Y., Doxsey S.J.: Centrosome abnormalitiesand chromosome instability occur together in pre-invasivecarcinomas. Cancer Res., 2003; 63: 1398-1404
Google Scholar - 97. Raynaud-Messina B., Merdes A.: γ-tubulin complexes and microtubuleorganization. Curr. Opin. Cell Biol., 2007; 19: 24-30
Google Scholar - 98. Renglin Lindh A., Schultz N., Saleh-Gohari N., Helleday T.:RAD51C (RAD51L2) is involved in maintaining centrosome numberin mitosis. Cytogenet. Genome Res., 2007; 116: 38-45
Google Scholar - 99. Rosario C.O., Ko M.A., Haffani Y.Z., Gladdy R.A., Paderova J.,Pollett A., Squire J.A., Dennis J.W., Swallow C.J.: Plk4 is required forcytokinesis and maintenance of chromosomal stability. Proc. Natl.Acad. Sci. USA, 2010; 107: 6888-6893
Google Scholar - 100. Salisbury J.L.: A mechanistic view on the evolutionary originfor centrin-based control of centriole duplication. J. Cell. Physiol.,2007; 213: 420-428
Google Scholar - 101. Schöffski P.: Polo-like kinase (PLK) inhibitors in preclinical andearly clinical development in oncology. Oncologist, 2009; 14: 559-570
Google Scholar - 102. Shimomura A., Miyoshi Y., Taguchi T., Tamaki Y., Noguchi S.:Association of loss of BRCA1 expression with centrosome aberrationin human breast cancer. J. Cancer Res. Clin. Oncol., 2009; 135: 421-430
Google Scholar - 103. Smiraldo P.G., Gruver A.M., Osborn J.C., Pittman D.L.: Extensivechromosomal instability in Rad51d-deficient mouse cells. CancerRes., 2005; 65: 2089-2096
Google Scholar - 104. Starita L.M., Machida Y., Sankaran S., Elias J.E., Griffin K., SchlegelB.P., Gygi S.P., Parvin J.D.: BRCA1-dependent ubiquitination ofγ-tubulin regulates centrosome number. Mol. Cell. Biol., 2004; 24:8457-8466
Google Scholar - 105. Strnad P., Gönczy P.: Mechanisms of procentriole formation.Trends Cell Biol., 2008; 18: 389-396
Google Scholar - 106. Suwaki N., Klare K., Tarsounas M.: RAD51 paralogs: roles inDNA damage signalling, recombinational repair and tumorigenesis.Semin. Cell Dev. Biol., 2011; 22: 898-905
Google Scholar - 107. Tanaka T., Kimura M., Matsunaga K., Fukada D., Mori H., OkanoY.: Centrosomal kinase AIK1 is overexpressed in invasive ductalcarcinoma of the breast. Cancer Res., 1999; 59: 2041-2044
Google Scholar - 108. Tang C.J., Lin S.Y., Hsu W.B., Lin Y.N., Wu C.T., Lin Y.C., ChangC.W., Wu K.S., Tang T.K.: The human microcephaly protein STIL interactswith CPAP and is required for procentriole formation. EMBOJ., 2011; 30: 4790-4804
Google Scholar - 109. Tarapore P., Fukasawa K.: Loss of p53 and centrosome hyperamplification.Oncogene, 2002; 21: 6234-6240
Google Scholar - 110. Tarapore P., Hanashiro K., Fukasawa K.: Analysis of centrosomelocalization of BRCA1 and its activity in suppressing centrosomalaster formation. Cell Cycle, 2012; 11: 2931-2946
Google Scholar - 111. Tokuyama Y., Horn H., Kawamura K., Tarapore P., Fukasawa K.:Specific phosphorylation of nucleophosmin on Thr199 by cyclin-dependentkinase 2-cyclin E and its role in centrosome duplication. J.Biol. Chem., 2001; 276: 21529-21537
Google Scholar - 112. Toledo F., Wahl G.M.: MDM2 and MDM4: p53 regulators astargets in anticancer therapy. Int. J. Biochem. Cell Biol., 2007; 39:1476-1482
Google Scholar - 113. Tsou M.F., Stearns T.: Mechanism limiting centrosome duplicationto once per cell cycle. Nature, 2006; 442: 947-951
Google Scholar - 114. Tsou M.F., Wang W.J., George K.A., Uryu K., Stearns T., JallepalliP.V.: Polo kinase and separase regulate the mitotic licensingof centriole duplication in human cells. Dev. Cell, 2009; 17: 344-354
Google Scholar - 115. Vitre B.D., Cleveland D.W.: Centrosomes, chromosome instability(CIN) and aneuploidy. Curr. Opin. Cell Biol., 2012; 24: 809-815
Google Scholar - 116. Vulprecht J., David A., Tibelius A., Castiel A., Konotop G., LiuF., Bestvater F., Raab M.S., Zentgraf H., Izraeli S., Krämer A.: STIL isrequired for centriole duplication in human cells. J. Cell Sci., 2012;125: 1353-1362
Google Scholar - 117. Wade R.H.: On and around microtubules: an overview. Mol.Biotechnol., 2009; 43: 177-191
Google Scholar - 118. Wang H.F., Takenaka K., Nakanishi A., Miki Y.: BRCA2 and nucleophosmincoregulate centrosome amplification and form a complexwith the Rho effector kinase ROCK2. Cancer Res., 2011; 71: 68-77
Google Scholar - 119. Wong J.C., Hasan M.R., Rahman M., Yu A.C., Chan S.K., SchaefferD.F., Kennecke H.F., Lim H.J., Owen D., Tai I.T.: Nucleophosmin1, upregulated in adenomas and cancers of the colon, inhibits p53–mediated cellular senescence. Int. J. Cancer., 2013; 133: 1567-1577
Google Scholar - 120. Zimmerman W., Doxsey S.J.: Construction of centrosomes andspindle poles by molecular motor-driven assembly of protein particles.Traffic, 2000; 1: 927-934
Google Scholar