The role of extracellular vesicles in parasite-host interaction
Justyna Gatkowska 1 , Henryka Długońska 1Abstract
Extracellular vesicles (EVs), initially considered cell debris, were soon proved to be an essential tool of intercellular communication enabling the exchange of information without direct contact of the cells. At present EVs are the subject of extensive research due to their universal presence in single- and multi-cell organisms, regardless of their systematic position, and their substantial role in cell-to-cell communication. EVs seem to be released by both prokaryotic and eukaryotic cells under natural (in vivo) and laboratory (in vitro) conditions. Even purified fractions of isolated EVs comprise various membrane-derived structures. However, EVs can be classified into general groups based primarily on their size and origin. EVs may carry various materials, and ongoing research investigations give new insight into their potenti participation in critical biological processes, e.g. carcinogenesis. This paper presents current knowledge on the EVs’ involvement in host–parasite interactions including the invasion process, the maintenance of the parasite infection and modulation of the host immune response to parasite antigenic stimulation, as well as perspectives of the potential use of EVs as immunoprophylactic and diagnostic tools for controlling parasite infections. The most numerous literature data concern protozoan parasites, especially those of the greatest medical and social importance worldwide. However, available information about the EVs’ contribution to helminth invasion has also been included.
References
- 1. Aline F., Bout D., Amigorena S., Roingeard P., Dimier-Poisson I.:Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomesinduce a protective immune response against T. gondii infection.Infect. Immun., 2004; 72: 4127-4137
Google Scholar - 2. Barteneva N.S., Maltsev N., Vorobjev I.A.: Microvesicles and intercellularcommunication in the context of parasitism. Front. Cell.Infect. Microbiol., 2013; 3: 49
Google Scholar - 3. Bayer-Santos E., Aguilar-Bonavides C., Rodrigues S.P., CorderoE.M., Marques A.F., Varela-Ramirez A., Choi H., Yoshida N., da SilveiraJ.F., Almeida I.C.: Proteomic analysis of Trypanosoma cruzi secretome:characterization of two populations of extracellular vesicles and solubleproteins. J. Proteome Res., 2013, 12, 883-897
Google Scholar - 4. Beauvillain C., Juste M.O., Dion S., Pierre J., Dimier-Poisson I.:Exosomes are an effective vaccine against congenital toxoplasmosisin mice. Vaccine, 2009; 27: 1750-1757
Google Scholar - 5. Beauvillain C., Ruiz S., Guiton R., Bout D., Dimier-Poisson I.: A vaccinebased on exosomes secreted by a dendritic cell line confersPiśmiennictwoprotection against T. gondii infection in syngeneic and allogeneicmice. Microb. Infect., 2007; 9: 1614-1622
Google Scholar - 6. Bernal D., Trelis M., Montaner S., Cantalapiedra F., Galiano A., HackenbergM., Marcilla A.: Surface analysis of Dicrocoelium dendriticum.The molecular characterization of exosomes reveals the presenceof miRNAs. J. Proteomics, 2014; 105: 232-241
Google Scholar - 7. Buck A.H., Coakley G., Simbari F., McSorley H.J., Quintana J.F., LeBihan T., Kumar S., Abreu-Goodger C., Lear M., Harcus Y., Ceroni A.,Babayan S.A., Blaxter M., Ivens A., Maizels R.M.: Exosomes secretedby nematode parasites transfer small RNAs to mammalian cells andmodulate innate immunity. Nat. Commun., 2014; 5: 5488
Google Scholar - 8. Campos F.M., Franklin B.S., Teixeira-Carvalho A., Filho A.L., de PaulaS.C., Fontes C.J., Brito C.F., Carvalho L.H.: Augmented plasma microparticlesduring acute Plasmodium vivax infection. Malaria J., 2010; 9: 327
Google Scholar - 9. Cestari I., Ansa-Addo E., Deolindo P., Inal J., Ramirez M.I.: Trypanosomacruzi immune evasion mediated by host cell-derived microvesicles.J. Immunol., 2012; 188: 1942-1952
Google Scholar - 10. Couper K.N., Barnes T., Hafalla J.C.R., Combes V., Ryffel B., SecherT., Grau G.E., Riley E.M., de Souza J.B.: Parasite-derived plasmamicroparticles contribute significantly to malaria infection-inducedinflammation through potent macrophage stimulation. PLoSPathog.; 2010; 6: e1000744
Google Scholar - 11. Coura J.R.: Chagas disease: control, elimination and eradication.Is it possible? Mem. Inst. Oswaldo Cruz., 2013; 108: 962-967
Google Scholar - 12. Crescitelli R., Lässer C., Szabó T.G., Kittel A., Eldh M., DianzaniI., Buzás E.I., Lötvall J.: Distinct RNA profiles in subpopulations ofextracellular vesicles: apoptotic bodies, microvesicles and exosomes.J. Extracell. Vesicles, 2013; 2: 20677
Google Scholar - 13. Damian R.T.: Parasite immune evasion and exploitation: reflectionsand projections. Parasitology, 1997; 115, suppl.: S169-S175
Google Scholar - 14. Dimier-Poisson I., Aline F., Mevelec M.-N., Beauvillain C., Buzoni–Gatel D., Bout D.: Protective mucosal Th2 immune response againstToxoplasma gondii by murine mesenteric lymph node dendritic cells.Infect. Immun., 2003; 71: 5254-5265
Google Scholar - 15. Dold C., Holland C.V.: Ascaris and ascariasis. Microbes Infect.,2011; 13: 632-637
Google Scholar - 16. Dondorp A.M., Yeung S, White L., Nguon C., Day N.P., Socheat D.,von Seidlein L.: Artemisinin resistance: current status and scenariosfor containment. Nat. Rev. Microbiol., 2010; 8: 272-280
Google Scholar - 17. Flegr J.: How and why Toxoplasma makes us crazy. Trends Parasitol.,2013; 29: 156-163
Google Scholar - 18. Foroughi-Parvar F., Hatam G.: Vaccines for canine leishmaniasis.Adv. Prev. Med., 2014; 2014: 569193
Google Scholar - 19. Franco J.R., Simarro P.P., Diarra A., Jannin J.G.: Epidemiology ofhuman African trypanosomiasis. Clin. Epidemiol., 2014; 6: 257-275
Google Scholar - 20. Garcia-Silva M.R.., Cabrera-Cabrera F., das Neves R.F., Souto-PadrónT., de Souza W., Cayota A.: Gene expression changes induced byTrypanosoma cruzi shed microvesicles in mammalian host cells: relevanceof tRNA-derived halves. BioMed Res. Int., 2014; 2014: 305239
Google Scholar - 21. Gatkowska J., Wieczorek M., Dziadek B., Dzitko K., Dlugonska H.:Behavioral changes in mice caused by Toxoplasma gondii invasion ofbrain. Parasitol. Res., 2012; 111: 53-58
Google Scholar - 22. Geiger A., Hirtz C., Bécue T., Bellard E., Centeno D., Gargani D.,Rossignol M., Cuny G., Peltier J.B.: Exocytosis and protein secretionin Trypanosoma. BMC Microbiol., 2010; 10: 20
Google Scholar - 23. Ghosh J., Bose M., Roy S., Bhattacharyya S.N.: Leishmania donovanitargets Dicer1 to downregulate miR-122, lower serum cholesterol,and facilitate murine liver infection. Cell Host Microbe,2013; 13: 277-288
Google Scholar - 24. Grüring C., Heiber A., Kruse F., Ungefehr J, Gilberger T.W., SpielmannT.: Development and host cell modifications of Plasmodium falciparumblood stages in four dimensions. Nat. Commun., 2011; 2: 165
Google Scholar - 25. Hansen E.P., Kringel H., Williams A.R., Nejsum P.: Secretion ofRNA-containing extracellular vesicles by the porcine whipworm,Trichuris suis. J. Parasitol., 2015; 101: 336-340
Google Scholar - 26. Harhay M.O., Horton J., Olliaro P.L.: Epidemiology and controlof human gastrointestinal parasites in children. Expert Rev. AntiInfect. Ther., 2010; 8: 219-234
Google Scholar - 27. Hassani K., Olivier M.: Immunomodulatory impact of Leishmania-inducedmacrophage exosomes: a comparative proteomic andfunctional analysis. PLoS Negl. Trop. Dis., 2013; 7: e2185
Google Scholar - 28. Ito A., Kanazawa T., Nakao M., Sako Y., Ishikawa Y., Nakaya K.:Comparison of the antigenicity of protoscoleces and microvesiclesof Echinococcus multilocularis prepared from rats. J. Helminthol., 2001;75: 355-358
Google Scholar - 29. Kumar R., Engwerda C.: Vaccines to prevent leishmaniasis. Clin.Transl. Immunology, 2014; 3: e13
Google Scholar - 30. Lambertz U., Silverman J.M., Nandan D., McMaster W.R., ClosJ., Foster L.J., Reiner N.E.: Secreted virulence factors and immuneevasion in visceral leishmaniasis. J. Leuk. Biol., 2012; 91: 887-899
Google Scholar - 31. Li Q.Y., Zhao D.H., Qu H.Y., Zhou C.N.: Life-threatening complicationsof ascariasis in trauma patients: a review of the literature.World J. Emerg. Med., 2014; 5: 165-170
Google Scholar - 32. Mantel P.Y., Hoang A.N., Goldowitz I., Potashnikova D., HamzaB., Vorobjev I., Ghiran I., Toner M., Irimia D., Ivanov A.R., BartenevaN., Marti M.: Malaria-infected erythrocyte-derived microvesiclesmediate cellular communication within the parasite population andwith the host immune system. Cell Host Microbe, 2013; 13: 521-534
Google Scholar - 33. Mantel P.Y., Marti M.: The role of extracellular vesicles in Plasmodiumand other protozoan parasites. Cell. Microbiol., 2014: 16: 344-354
Google Scholar - 34. Marcilla A., Perez-Garcia A., Espert A., Bernal D., Muñoz-AntoliC., Esteban J.G., Toledo R.: Echinostoma caproni: identification of enolasein excretory/secretory products, molecular cloning, and functionalexpression. Exp. Parasitol., 2007; 117: 57-64
Google Scholar - 35. Marcilla A., Trelis M., Cortés A., Sotillo J., Cantalapiedra F. MinguezM.T., Valero M.L., Sánchez del Pino M.M., Muñoz-Antoli C.,Toledo R, Bernal D.: Extracellular vesicles from parasitic helminthscontain specific excretory/secretory proteins and are internalizedin intestinal host cells. PLoS One, 2012; 7: e45974
Google Scholar - 36. Martin-Jaular L., Nakayasu E.S., Ferrer M., Almeida I.C., del PortilloH.A.: Exosomes from Plasmodium yoelii-infected reticulocytesprotect mice from lethal infections. PLoS One, 2011; 6: e26588
Google Scholar - 37. Montaner S., Galiano A., Trelis M., Martin-Jaular L., del PortilloH.A., Bernal D., Marcilla A.: The role of extracellular vesicles inmodulating the host immune response during parasitic infections.Front. Immunol., 2014; 5: 433
Google Scholar - 38. Oaks J.A., Holy J.M.: Hymenolepis diminuta: two morphologicallydistinct tegumental secretory mechanisms are present in the cestode.Exp. Parasitol., 1994; 79: 292-300
Google Scholar - 39. Pantaleo A., Ferru E., Vono R., Giribaldi G., Lobina O., Nepveu F.,Ibrahim H., Nallet J.P., Carta F., Mannu F., Pippia P., Campanella E.,Low P.S., Turrini F.: New antimalarial indolone-N-oxides, generatingradical species, destabilize the host cell membrane at early stages ofPlasmodium falciparum growth: role of band 3 tyrosine phosphorylation.Free Radic. Biol. Med., 2012; 52: 527-536
Google Scholar - 40. Pope S.M., Lässer C.: Toxoplasma gondii infection of fibroblastscauses the production of exosome-like vesicles containing a uniquearray of mRNA and miRNA transcripts compared to serum starvation.J. Extracell. Vesicles, 2013; 2: 22484
Google Scholar - 41. Regev-Rudzki N., Wilson D.W., Carvalho T.G., Sisquella X., ColemanB.M. Rug M., Bursac D., Angrisano F., Gee M., Hill A.F., Baum J.,Cowman A.F.: Cell-cell communication between malaria-infectedred blood cells via exosome-like vesicles. Cell, 2013; 153: 1120-1133
Google Scholar - 42. Silverman J.M., Chan S.K., Robinson D.P., Dwyer D.M., NandanD., Foster L.J. Reiner N.E.: Proteomic analysis of the secretome ofLeishmania donovani. Genome Biol., 2008; 9: R35
Google Scholar - 43. Silverman J.M., Clos J., de’Oliveira C.C., Shirvani O., Fang Y., WangC., Foster L.J., Reiner N.E.: An exosome-based secretion pathway isresponsible for protein export from Leishmania and communicationwith macrophages. J. Cell Sci., 2010; 123: 842-852
Google Scholar - 44. Silverman J.M., Clos J., Horakova E., Wang A.Y., Wiesgigl M.,Kelly I., Lynn M.A., McMaster W.R., Foster L.J., Levings M.K., ReinerN.E.: Leishmania exosomes modulate innate and adaptive immuneresponses through effects on monocytes and dendritic cells. J. Immunol.,2010; 185: 5011-5022
Google Scholar - 45. Silverman J.M., Reiner N.E.: Exosomes and other microvesiclesin infection biology: Organelles with unanticipated phenotypes.Cell. Microbiol., 2011; 13: 1-9
Google Scholar - 46. Silverman J.M., Reiner N.E.: Leishmania exosomes deliver preemptivestrikes to create an environment permissive for early infection. Front. Cell. Infect. Microbiol., 2012; 1: 26
Google Scholar - 47. Spycher C., Rug M., Klonis N., Ferguson D.J., Cowman A.F., BeckH.P., Tilley L.: Genesis of and trafficking to the Maurer’s clefts ofPlasmodium falciparum-infected erythrocytes. Mol. Cell. Biol., 2006;26: 4074-4085
Google Scholar - 48. Thery C., Duban L, Segura E., Veron P., Lantz O., Amigorena S.:Indirect activation of naive CD4+ T cells by dendritic cell-derivedexosomes. Nat. Immunol., 2002; 3: 1156-1162
Google Scholar - 49. Torrecilhas A.C., Schumacher R.I., Alves M.J., Colli W.: Vesicles ascarriers of virulence factors in parasitic protozoan diseases. Microb.Infect., 2012; 14: 1465-1474
Google Scholar - 50. Trocoli Torrecilhas A.C., Tonelli R.R., Pavanelli W.R., da Silva J.S.,Schumacher R.I., de Souza W., E Silva N.C., de Almeida AbrahamsohnI., Colli W., Manso Alves M.J.: Trypanosoma cruzi: parasite shed vesiclesincrease heart parasitism and generate an intense inflammatoryresponse. Microbes Infect., 2009; 11: 29-39
Google Scholar - 51. van Zandbergen G., Klinger M., Müller A., Dannenberg S., GebertA., Solbach W., Laskay T.: Cutting edge: neutrophil granulocyteserves as a vector for Leishmania entry into macrophages. J. Immunol.,2004; 173: 6521-6525
Google Scholar - 52. Wang T., Van Steendam K., Dhaenens M., Vlaminck J., DeforceD. Jex A.R., Gasser R.B., Geldhof P.: Proteomic analysis of the excretory-secretoryproducts from larval stages of Ascaris suum revealshigh abundance of glycosyl hydrolases. PLoS Negl. Trop. Dis., 2013;7: e2467
Google Scholar - 53. Willms K., Merchant M.T.: The inflammatory reaction surroundingTaenia solium larvae in pig muscle: ultrastructural and light microscopicobservations. Parasite Immunol., 1980; 2: 261-275
Google Scholar - 54. Wójtowicz A., Baj-Krzyworzeka M., Baran J.: Charakterystykai znaczenie biologiczne mikropęcherzyków błonowych. Postępy Hig.Med. Dośw., 2014; 68: 1421-1432
Google Scholar