The role of hexokinase in cancer
Paulina Stachyra-Strawa 1 , Paweł Cisek 1 , Michał Janiszewski 1 , Ludmiła Grzybowska-Szatkowska 1Abstract
A thorough understanding of the processes occurring in cancer cells is necessary to make cancer treatment as effective as possible. Changes in cellular metabolism in relation to normal cells are considered particularly important. One of the most interesting and promising areas is glucose metabolism and the factors affecting this process, with special emphasis on the potential role of hexokinases, especially the isoform II of this enzyme. Hexokinases (HK) are transferase enzymes involved in the process of glycolysis. Hexokinase II (HK II) plays an important role in initiating and maintaining the glycolysis process at a high level of efficiency, which is crucial for the growth and proliferation of cancer cells. An increase in the number of copies of the HK II gene and increased transcription of this enzyme resulting in the suppression of apoptosis and the enhancement of cell proliferation have been found in tumor cells. Hexokinase II also participates in the Crabtree effect by affecting the amount of ATP and thus the efficiency of the Ca2+ removal process outside the cell membrane by Ca2+ ATPase. Overexpression of HK II has thus far been found in pancreatic cancer, gastric cancer, breast cancer, squamous cell carcinoma of the larynx, glioblastoma multiforme, ovarian cancer and biliary tract cancer, indicating the possible key role of this enzyme in their formation and progression and providing the basis for seeking potential benefits of cancer treatment using HK II as a target of new drugs.
References
- 1. Al-Zeer M.A., Xavier A., Abu Lubad M., Sigulla J., Kessler M., HurwitzR., Meyer T.F.: Chlamydia trachomatis prevents apoptosis viaactivation of PDPK1-MYC and enhanced mitochondrial binding ofhexokinase II. E Bio Medicine, 2017; 23: 100–110
Google Scholar - 2. Anderson M., Marayati R., Moffitt R., Yeh J.J.: Hexokinase 2 promotestumor growth and metastasis by regulating lactate productionin pancreatic cancer. Oncotarget, 2016; 8: 56081–56094
Google Scholar - 3. Ardehali H., Yano Y., Printz R.L., Koch S., Whitesell R.R., May J.M.,Granner D.K.: Functional organization of mammalian hexokinase II.Retention of catalytic and regulatory functions in both the NH2- andCOOH-terminal halves. J. Biol. Chem., 1996; 271: 1849–1852
Google Scholar - 4. Bogucka K., Wojtczak L.: The Crabtree effect as a metabolic strategyof fast growing tumors and other rapidly proliferating cells.Post. Biochem., 1999; 45: 100–108
Google Scholar - 5. Bonuccelli G., Whitaker-Menezes D., Castello-Cros R., PavlidesS., Pestell R.G., Fatatis A., Witkiewicz A.K., Vander Heiden M.G., MignecoG., Chiavarina B., Frank P.G., Capozza F., Flomenberg N., Martinez-Outschoorn U.E., Sotgia F., Lisanti M.P.: The reverse Warburgeffect: glycolysis inhibitors prevent the tumor promoting effects ofcaveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 2010;9: 1960–1971
Google Scholar - 6. Bramer S.A., Macedo A., Klein C.: Hexokinase 2 drives glycogenaccumulation in equine endometrium at day 12 of diestrus and pregnancy.Reprod. Biol. Endocrinol., 2017; 15: 4
Google Scholar - 7. Bryan N., Raisch K.P.: Identification of a mitochondrial-binding siteon the N-terminal end of hexokinase II. Biosci. Rep., 2015; 35: e00205
Google Scholar - 8. Bustamante E., Morris H.P., Pedersen P.L.: Energy metabolism oftumor cells. Requirement for a form of hexokinase with a propensityfor mitochondrial binding. J. Biol. Chem., 1981; 256: 8699–8704
Google Scholar - 9. Bustamante E., Pedersen P.L.: High aerobic glycolysis of rat hepatomacells in culture: Role of mitochondrial hexokinase. Proc. Natl.Acad. Sci. USA, 1977; 74: 3735–3739
Google Scholar - 10. Calmettes G., Ribalet B., John S., Korge P., Ping P., Weiss J.N.: Hexokinasesand cardioprotection. J. Mol. Cell. Cardiol., 2015; 78: 107–115
Google Scholar - 11. Chen J., Zhang S., Li Y., Tang Z., Kong W.: Hexokinase 2 overexpressionpromotes the proliferation and survival of laryngeal squamouscell carcinoma. Tumour Biol., 2014; 35: 3743–3753
Google Scholar - 12. Coelho R.G., Calaça I.C., Celestrini D.M., Correia-Carneiro A.H.,Costa M.M., Zancan P., Sola-Penna M.: Hexokinase and phosphofructokinaseactivity and intracellular distribution correlate withaggressiveness and invasiveness of human breast carcinoma. Oncotarget,2015; 6: 29375–29387
Google Scholar - 13. Deeb S.S., Malkki M., Laakso M.: Human hexokinase II: sequenceand homology to other hexokinases. Biochem. Biophys. Res. Commun.,1993; 197: 68–74
Google Scholar - 14. Diaz-Ruiz R., Rigoulet M., Devin A.: The Warburg and Crabtreeeffects: On the origin of cancer cell energy metabolism and of yeastglucose repression. Biochim. Biophys. Acta, 2011; 1807: 568–576
Google Scholar - 15. Gershon T.R., Crowther A.J., Tikunov A., Garcia I., Annis R., YuanH., Miller C.R., Macdonald J., Olson J., Deshmukh M.: Hexokinase–2-mediated aerobic glycolysis is integral to cerebellar neurogenesisand pathogenesis of medulloblastoma. Cancer Metab., 2013; 1: 2
Google Scholar - 16. Gong L., Cui Z., Chen P., Han H., Peng J., Leng X.: Reduced survivalof patients with hepatocellular carcinoma expressing hexokinase II.Med. Oncol.: 2012; 29: 909–914
Google Scholar - 17. Grüning N.M., Ralser M.: Cancer: Sacrifice for survival. Nature,2011; 480: 190–191
Google Scholar - 18. Hanahan D., Weinberg R.A.: Hallmarks of cancer: the next generation.Cell, 2011; 144: 646–674
Google Scholar - 19. Huang X., Liu M., Sun H., Wang F., Xie X., Chen X., Su J., He Y.,Dai Y., Wu H., Shen L.: HK2 is a radiation resistant and independentnegative prognostic factor for patients with locally advancedcervical squamous cell carcinoma. Int. J. Clin. Exp. Pathol., 2015;8: 4054–4063
Google Scholar - 20. Johansson T., Berrez J.M., Nelson B.D.: Evidence that transcriptionof the hexokinase gene is increased in a rapidly growing rathepatoma. Biochem. Biophys. Res. Commun., 1985; 133: 608–613
Google Scholar - 21. Katagiri M., Karasawa H., Takagi K., Nakayama S., Yabuuchi S.,Fujishima F., Naitoh T., Watanabe M., Suzuki T., Unno M., SasanoH.: Hexokinase 2 in colorectal cancer: A potent prognostic factorassociated with glycolysis, proliferation and migration. Histol. Histopathol.;2017; 32: 351–360
Google Scholar - 22. Katzen H.M., Schimke R.T.: Multiple forms of hexokinase in therat: tissue distribution, age dependency, and properties. Proc. Natl.Acad. Sci. USA, 1965; 54: 1218–1225
Google Scholar - 23. Lindén M., Gellerfors P., Nelson B.D.: Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondriaare identical. FEBS Lett., 1982; 141: 189–192
Google Scholar - 24. Liu H., Li Y., Raisch K.P.: Clotrimazole induces a late G1 cell cyclearrest and sensitizes glioblastoma cells to radiation in vitro. AnticancerDrugs, 2010; 21: 841–849
Google Scholar - 25. Lunt S.Y., Vander Heiden M.G.: Aerobic glycolysis: meeting themetabolic requirements of cell proliferation. Annu. Rev. Cell Dev.Biol. 2011; 27: 441–464
Google Scholar - 26. Mathupala S.P., Ko Y.H., Pedersen P.L.: Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancywhen bound to mitochondria. Oncogene, 2006; 25: 4777–4786
Google Scholar - 27. Mathupala S.P., Ko Y.H., Pedersen P.L.: Hexokinase-2 bound tomitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotaltarget for effective therapy. Semin. Cancer Biol., 2009; 19: 17–24
Google Scholar - 28. Mathupala S.P., Rempel A., Pedersen P.L.: Aberrant glycolyticmetabolism of cancer cells: A remarkable coordination of genetic,transcriptional, post-translational, and mutational events thatlead to a critical role for type II hexokinase. J. Bioenerg. Biomembr.,1997; 29: 339–343
Google Scholar - 29. Menendez M.T., Teygong C., Wade K., Florimond C., Blader I.J.:siRNA screening identifies the host hexokinase 2 (HK2) gene as animportant hypoxia-inducible transcription factor 1 (HIF-1) targetgene in Toxoplasma gondii-infected cells. mBio, 2015; 6: e00462
Google Scholar - 30. Nakashima R.A., Scott L.J., Pedersen P.L.: The role of mitochondrialhexokinase binding in the abnormal energy metabolism oftumor cell lines. Ann. N.Y. Acad. Sci., 1986; 488: 438–450
Google Scholar - 31. Pastorino J.G., Hoek J.B., Shulga N.: Activation of glycogen synthasekinase 3β disrupts the binding of hexokinase II to mitochondriaby phosphorylating voltage-dependent anion channel and potentiateschemotherapy-induced cytotoxicity. Cancer Res., 2005;65: 10545–10554
Google Scholar - 32. Paudyal B., Oriuchi N., Paudyal P., Higuchi T., Nakajima T., EndoK.: Expression of glucose transporters and hexokinase II in cholangiocellularcarcinoma compared using [18F]-2-fluro-2-deoxy-D-glucosepositron emission tomography. Cancer Sci., 2008; 99: 260–266
Google Scholar - 33. Peng Q.P., Zhou J.M., Zhou Q., Pan F., Zhong D.P., Liang H.J.: Downregulationof the hexokinase II gene sensitizes human colon cancercells to 5-fluorouracil. Chemotherapy, 2008; 54: 357–363
Google Scholar - 34. Qiu M.Z., Han B., Luo H.Y., Zhou Z.W., Wang Z.Q., Wang F.H., Li Y.H.,Xu R.H.: Expression of hypoxia-inducible factor-1α and hexokinase-IIin gastric adenocarcinoma: The impact on prognosis and correlationto clinicopathologic features. Tumour Biol., 2011; 32: 159–166
Google Scholar - 35. Rajala A., Gupta V.K., Anderson R.E., Rajala R.V.: Light activationof the insulin receptor regulates mitochondrial hexokinase.A possible mechanism of retinal neuroprotection. Mitochondrion,2013; 13: 566–576
Google Scholar - 36. Ramière C., Rodriguez J., Enache L.S., Lotteau V., André P., DiazO.: Activity of hexokinase is increased by its interaction with hepatitisC virus protein NS5A. J. Virol., 2014; 88: 3246–3254
Google Scholar - 37. Rho M., Kim J., Jee C.D., Lee Y.M., Lee H.E., Kim M.A., Lee H.S.,Kim W.H.: Expression of type 2 hexokinase and mitochondria-relatedgenes in gastric carcinoma tissues and cell lines. AnticancerRes., 2007; 27: 251–258
Google Scholar - 38. Rivenzon-Segal D., Boldin-Adamsky S., Seger D., Seger R., DeganiH.: Glycolysis and glucose transporter 1 as markers of response tohormonal therapy in breast cancer. Int. J. Cancer, 2003; 107: 177–182
Google Scholar - 39. Sato-Tadano A., Suzuki T., Amari M., Takagi K., Miki Y., TamakiK., Watanabe M., Ishida T., Sasano H., Ohuchi N.: Hexokinase II inbreast carcinoma: A potent prognostic factor associated with hypoxia-inducible factor-1α and Ki-67. Cancer Sci., 2013; 104: 1380–1388
Google Scholar - 40. Shinohara Y., Yamamoto K., Kogure K., Ichihara J., Terada H.:Steady state transcript levels of the type II hexokinase and type 1glucose transporter in human tumor cell lines. Cancer Lett., 1994;82: 27–32
Google Scholar - 41. Shoshan-Barmatz V., Zakar M., Rosenthal K., Abu-Hamad S.: Keyregions of VDAC1 functioning in apoptosis induction and regulationby hexokinase. Biochim. Biophys. Acta, 2009; 1787: 421–430
Google Scholar - 42. Shulga N., Wilson-Smith R., Pastorino J.G.: Hexokinase II detachmentfrom the mitochondria potentiates cisplatin induced cytotoxicitythrough a caspase-2 dependent mechanism. Cell Cycle,2009; 8: 3355–3364
Google Scholar - 43. Suh D.H., Kim M.A., Kim H., Kim M.K., Kim H.S., Chung H.H.,Kim Y.B., Song Y.S.: Association of overexpression of hexokinase IIwith chemoresistance in epithelial ovarian cancer. Clin. Exp. Med.,2014; 14: 345–353
Google Scholar - 44. Sui D., Wilson J.E.: Structural determinants for the intracellularlocalization of the isozymes of mammalian hexokinase: Intracellularlocalization of fusion constructs incorporating structural elementsfrom the hexokinase isozymes and the green fluorescent protein.Arch. Biochem. Biophys., 1997; 345: 111–125
Google Scholar - 45. Tsai H.J., Wilson J.E.: Functional organization of mammalianhexokinases: Both N- and C-terminal halves of the rat type II isozymepossess catalytic sites. Arch. Biochem. Biophys., 1996; 329: 17–23
Google Scholar - 46. Vander Heiden M.G., Cantley L.C., Thompson C.B.: Understandingthe Warburg effect: The metabolic requirements of cell proliferation.Science, 2009; 324: 1029–1033
Google Scholar - 47. Warburg O.: On the origin of cancer cells. Science, 1956; 123: 309–314
Google Scholar - 48. Warburg O., Wind F., Negelein E.: The metabolism of tumors inthe body. J. Gen. Physiol., 1927; 8: 519–530
Google Scholar - 49. Ward P.S., Thompson C.B.: Metabolic reprogramming: A cancer hallmarkeven Warburg did not anticipate. Cancer Cell, 2012; 21: 297–308
Google Scholar - 50. Whitaker-Menezes D., Martinez-Outschoorn U.E., FlomenbergN. Birbe R.C., Witkiewicz A.K., Howell A., Pavlides S., Tsirigos A.,Ertel A., Pestell R.G., Broda P., Minetti C., Lisanti M.P., Sotgia F.: Hyperactivationof oxidative mitochondrial metabolism in epithelialcancer cells in situ: Visualizing the therapeutic effects of metforminin tumor tissue. Cell Cycle, 2011; 10: 4047–4064
Google Scholar - 51. Wilson J.E.: Hexokinases. Rev. Physiol. Biochem. Pharmacol.,1995; 126: 65–198
Google Scholar - 52. Wilson J.E.: Isozymes of mammalian hexokinase: structure, subcellularlocalization and metabolic function. J. Exp. Biol., 2003; 206:2049–2057
Google Scholar - 53. Witkiewicz A.K., Whitaker-Menezes D., Dasgupta A., Philp N.J.,Lin Z., Gandara R., Sneddon S., Martinez-Outschoorn U.E., Sotgia F.,Lisanti M.P.: Using the “reverse Warburg effect” to identify high-risk breast cancer patients: Stromal MCT4 predicts poor clinical outcomein triple-negative breast cancers. Cell Cycle, 2012; 11: 1108–1117
Google Scholar - 54. Wolf A., Agnihotri S., Micallef J., Mukherjee J., Sabha N., CairnsR., Hawkins C., Guha A.: Hexokinase 2 is a key mediator of aerobicglycolysis and promotes tumor growth in human glioblastoma multiforme.J. Exp. Med., 2011; 208: 313–326
Google Scholar - 55. Wu H., Ying M., Hu X.: Lactic acidosis switches cancer cells fromaerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget,2016; 7: 40621–40629
Google Scholar - 56. Zhang M.X., Hua Y.J., Wang H.Y., Zhou L., Mai H.Q., Guo X.,Zhao C., Huang W.L., Hong M.H., Chen M.Y.: Long-term prognosticimplications and therapeutic target role of hexokinase II inpatients with nasopharyngeal carcinoma. Oncotarget, 2016; 7:21287–21297
Google Scholar