The role of IL-10 in the modulation of the immune response in normal conditions and the tumor environment

COMMENTARY ON THE LAW

The role of IL-10 in the modulation of the immune response in normal conditions and the tumor environment

Jagoda Kicielińska 1 , Elżbieta Pajtasz-Piasecka 1

1. Laboratorium Doświadczalnej Terapii Przeciwnowotworowej, Instytut Immunologii i Terapii Doświadczalnej PAN im. L. Hirszfelda we Wrocławiu

Published: 2014-06-30
DOI: 10.5604/17322693.1111123
GICID: 01.3001.0003.1261
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 879-892

 

Abstract

Under the influence of the various stimuli that activate transcription factors such as cMaf, NFIL3, and ERK, many normal and neoplastic cells are able to produce the same cytokine – IL-10. There is increasing evidence that this cytokine has a significant impact on various aspects of the immune control mechanisms. Therefore, it is important to complete understanding of which factors are responsible for regulation of Il10 gene expression and protein secretion. The influence of IL-10 on cells, as in the case of other cytokines, depends on the presence of the specific receptor. Its expression has been shown, among others, on the surface of antigen-presenting cells (dendritic cells, macrophages, B cells), NK cells, T lymphocytes CD8+ and CD4+ (including Tr1, Th1 and Th2), which play an important role in the development of anti-tumor immunity. Therefore, the role of IL-10 in this process is considered to an increasing extent. There are a number of results showing that IL-10 is involved in the generation of immunosuppression, while others demonstrate immunostimulatory properties of this cytokine. This functional duality of IL-10 is substantial in the context of the regulation of tumor growth, both its promotion and fighting against it.

References

  • 1. Adris S., Klein S., Jasnis M., Chuluyan E., Ledda M., Bravo A., CarboneC., Chernajovsky Y., Podhajcer O.: IL-10 expression by CT26 coloncarcinoma cells inhibits their malignant phenotype and inducesa T cell-mediated tumor rejection in the context of a systemic Th2response. Gene Ther., 1999; 6: 1705-1712
    Google Scholar
  • 2. Agematsu K., Nagumo H., Oguchi Y., Nakazawa T., Fukushima K.,Yasui K., Ito S., Kobata T., Morimoto C., Komiyama A.: Generation ofplasma cells from peripheral blood memory B cells: synergistic effectof interleukin-10 and CD27/CD70 interaction. Blood, 1998; 91: 173-180
    Google Scholar
  • 3. Asadullah K., Sterry W., Volk H:. Interleukin-10 therapy – reviewof a new approach. Pharmacol. Rev., 2003; 55: 241-269
    Google Scholar
  • 4. Beebe A., Cua D., De Waal Malefyt R.: The role of interleukin-10 inautoimmune disease: systemic lupus erythematosus (SLE) and multiplesclerosis (MS). Cytokine Growth Factor Rev., 2002; 13: 403-412
    Google Scholar
  • 5. Boonstra A., Rajsbaum R., Holman M., Marques R., Asselin-PaturelC., Pereira J., Bates E.E. M., Akira S., Vieira P., Liu Y., TrinchieriG., O’Garra A.: Macrophages and myeloid dendritic cells, but notplasmacytoid dendritic cells, produce IL-10 in response to MyD88-and TRIF-dependent TLR signals, and TLR-independent signals. J.Immunol., 2006; 177: 7551-7558
    Google Scholar
  • 6. Briere F., Bridon J., Chevet D., Souillet G., Bienvenu F., Guret C.,Martinez-Valdez H., Banchereau J.: Interleukin 10 induces B lymphocytesfrom IgA-deficient patients to secrete IgA. J. Clin. Invest.,1994; 94: 97-104
    Google Scholar
  • 7. Buelens C., Willems F., Delvaux A., Pierard G., Delville J., Velu T.,Goldman M.: Interleukin-10 differentially regulates B7-1 (CD80) andB7-2 (CD86) expression on human peripheral blood dendritic cells.Eur. J. Immunol., 1995; 25: 2668-2672
    Google Scholar
  • 8. Burdin N., Van Kooten C., Galibert L., Abrams J., Wijdenes J., BanchereauJ., Rousset F.: Endogenous IL-6 and IL-10 contribute to thedifferentiation of CD40-activated human B lymphocytes. J. Immunol.,1995; 154: 2533-2544
    Google Scholar
  • 9. Caux C., Massacrier C., Vanbervliet B., Barthelemy C., Liu Y.J.,Banchereau J.: Interleukin 10 inhibits T cell alloreaction induced byhuman dendritic cells. Int. Immunol., 1994; 6: 1177-1185 10 Chang D.M., Chu S.J., Chen H.C., Kuo S.Y., Lai J.H.: Dehydroepiandrosteronesuppresses interleukin 10 synthesis in women with systemiclupus erythematosus. Ann. Rheum. Dis., 2004; 63: 1623-1626
    Google Scholar
  • 10. receptor antibody. J. Exp. Med., 2002; 196: 541-549
    Google Scholar
  • 11. Chatelain R., Wollenberg A., Martin C., Panhans-Gross A., BieberT., Degitz K., Heckmann M.: IL-10 inhibits ICAM-1 expression on human Langerhans cells but not on keratinocytes, dermal endothelialcells or fibroblasts. Arch. Dermatol. Res., 1998; 290: 477-482
    Google Scholar
  • 12. Commins S., Steinke J., Borish L.: The extended IL-10 superfamily:IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. AllergyClin. Immunol., 2008; 121: 1108-1111
    Google Scholar
  • 13. Corinti S., Albanesi C., La Sala A., Pastore S., Girolomoni G.: Regulatoryactivity of autocrine IL-10 on dendritic cell functions. J.Immunol., 2001; 166: 4312-4318
    Google Scholar
  • 14. De Waal Malefyt R., Figdor C., Huijbens R., Mohan-Peterson S.,Bennett B., Culpepper J., Dang W., Zurawski G., De Vries J.: Effects ofIL-13 on phenotype, cytokine production, and cytotoxic function ofhuman monocytes. Comparison with IL-4 and modulation by IFN–gamma or IL-10. J. Immunol., 1993; 151: 6370-6381
    Google Scholar
  • 15. Del Prete G., De Carli M., Almerigogna F., Giudizi M., BiagiottiR., Romagnani S.: Human IL-10 is produced by both type 1 helper(Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specificproliferation and cytokine production. J. Immunol.,1993; 150: 353-360
    Google Scholar
  • 16. Demangel C., Bertolino P., Britton W.J.: Autocrine IL-10 impairsdendritic cell (DC)-derived immune responses to mycobacterial infectionby suppressing DC trafficking to draining lymph nodes andlocal IL-12 production. Eur. J. Immunol., 2002; 32: 994-1002
    Google Scholar
  • 17. Donnelly R., Dickensheets H., Finbloom D.: The interleukin-10 signaltransduction pathway and regulation of gene expression in mononuclearphagocytes. J. Interferon Cytokine Res., 1999; 19: 563-573
    Google Scholar
  • 18. Dummer W., Becker J., Schwaaf A., Leverkus M., Moll T., BrockerE.: Elevated serum levels of interleukin-10 in patients with metastaticmalignant melanoma. Melanoma Res., 1995; 5: 67-68
    Google Scholar
  • 19. Fiorentino D., Bond M., Mosmann T.: Two types of mouse T helpercell. IV. Th2 clones secrete a factor that inhibits cytokine productionby Th1 clones. J. Exp. Med., 1989; 170: 2081-2095
    Google Scholar
  • 20. Gallucci S., Matzinger P.: Danger signals: SOS to the immunesystem. Curr. Opin. Immunol., 2001; 13: 114-119
    Google Scholar
  • 21. Gerard C., Bruyns C., Delvaux A., Baudson N., Dargent J., GoldmanM., Velu T.: Loss of tumorigenicity and increased immunogenicityinduced by interleukin-10 gene transfer in B16 melanoma cells. Hum.Gene Ther., 1996; 7: 23-31
    Google Scholar
  • 22. Giovarelli M., Musiani P., Modesti A., Dellabona P., Casorati G.,Allione A., Consalvo M., Cavallo F., Di Pierro F., De Giovanni C.: Localrelease of IL-10 by transfected mouse mammary adenocarcinomacells does not suppress but enhances antitumor reaction and elicitsa strong cytotoxic lymphocyte and antibody-dependent immunememory. J. Immunol., 1995; 155: 3112-3123
    Google Scholar
  • 23. Groux H., O’Garra A., Bigler M., Antonenko S.E., De Vries J.,Roncarolo M.: A CD4+ T-cell subset inhibits antigen-specific T-cellresponses and prevents colitis. Nature, 1997; 389: 737-742
    Google Scholar
  • 24. Guney N., Soydinc H., Basaran M., Bavbek S., Derin D., CamlicaH., Yasasever V., Topuz E.: Serum levels of interleukin-6 and interleukin-10in Turkish patients with aggressive non-Hodgkin’s lymphoma.Asian Pac. J. Cancer Prev., 2009; 10: 669-674
    Google Scholar
  • 25. He C., Qiao H., Jiang H., Sun X.: The inhibitory role of B7-H4 inantitumor immunity: association with cancer progression and survival.Clin. Dev. Immunol., 2011; 2011: 695834
    Google Scholar
  • 26. Herbeuval J., Lelievre E., Lambert C., Dy M., Genin C.: Recruitmentof STAT3 for production of IL-10 by colon carcinoma cells inducedby macrophage-derived IL-6. J. Immunol., 2004; 172: 4630-4636
    Google Scholar
  • 27. Hirota K., Martin B., Veldhoen M.: Development, regulation andfunctional capacities of Th17 cells. Semin. Immunopathol., 2010;32: 3-16
    Google Scholar
  • 28. Huang M., Wang J., Lee P., Sharma S., Mao J., Meissner H., UyemuraK., Modlin R., Wollman J., Dubinett S.: Human non-small celllung cancer cells express a type 2 cytokine pattern. Cancer Res.,1995; 55: 3847-3853
    Google Scholar
  • 29. Iezzi G., Sonderegger I., Ampenberger F., Schmitz N.J., MarslandB., Kopf M.: CD40-CD40L cross-talk integrates strong antigenic signalsand microbial stimuli to induce development of IL-17-producingCD4. Proc. Natl. Acad. Sci. USA, 2009; 106: 876-881
    Google Scholar
  • 30. Josephson K., Logsdon N., Walter M.: Crystal structure of theIL-10/IL-10R1 complex reveals a shared receptor binding site. Immunity,2001; 15: 35-46
    Google Scholar
  • 31. Jovasevic V., Gorelik L., Bluestone J., Mokyr M.: Importance ofIL-10 for CTLA-4-mediated inhibition of tumor-eradicating immunity.J. Immunol., 2004; 172: 1449-1454
    Google Scholar
  • 32. Kalli F., Machiorlatti R., Battaglia F., Parodi A., Conteduca G.,Ferrera F., Proietti M., Tardito S., Sanguineti M., Millo E, Fenoglio D.,De Palma R., Inghirami G., Filaci G.: Comparative analysis of cancervaccine settings for the selection of an effective protocol in mice. J.Transl. Med., 2013; 11: 120
    Google Scholar
  • 33. Kang K., Im S.: Differential regulation of the IL-10 gene in Th1and Th2 T cells. Ann. NY Acad. Sci., 2005; 1050: 97-107
    Google Scholar
  • 34. Kawai T., Akira S.: The role of pattern-recognition receptorsin innate immunity: update on Toll-like receptors. Nat. Immunol.,2010; 11: 373-384
    Google Scholar
  • 35. Kim J., Modlin R., Moy R., Dubinett S., Mchugh T., Nickoloff B.,Uyemura K.: IL-10 production in cutaneous basal and squamouscell carcinomas. A mechanism for evading the local T cell immuneresponse. J. Immunol., 1995; 155: 2240-2247
    Google Scholar
  • 36. Koch N., Stanzl U., Jennewein P., Janke K., Heufler C., KampgenE., Romani N., Schuler G.: High level IL-12 production by murine dendriticcells: upregulation via MHC class II and CD40 molecules anddownregulation by IL-4 and IL-10. J. Exp. Med., 1996; 184: 741-746
    Google Scholar
  • 37. Kono K., Salazar-Onfray F., Petersson M., Hansson J., MasucciG., Wasserman K., Nakazawa T., Anderson P., Kiessling R.: Hydrogenperoxide secreted by tumor-derived macrophages down-modulatessignal-transducing zeta molecules and inhibits tumor-specific Tcell-and natural killer cell-mediated cytotoxicity. Eur. J. Immunol.,1996; 26: 1308-1313
    Google Scholar
  • 38. Lauw F., Pajkrt D., Hack C., Kurimoto M., Van Deventer S., VanDer Poll T.: Proinflammatory effects of IL-10 during human endotoxemia.J. Immunol., 2000; 165: 2783-2789
    Google Scholar
  • 39. Lawrence T., Willoughby D., Gilroy D.: Anti-inflammatory lipidmediators and insights into the resolution of inflammation. Nat.Rev. Immunol., 2002; 2: 787-795
    Google Scholar
  • 40. Le Y., Murphy P., Wang J.: Formyl-peptide receptors revisited.Trends Immunol., 2002; 23: 541-548
    Google Scholar
  • 41. Levy Y., Brouet J.: Interleukin-10 prevents spontaneous deathof germinal center B cells by induction of the bcl-2 protein. J. Clin.Invest., 1994; 94: 424-428
    Google Scholar
  • 42. Mahipal A., Terai M., Berd D., Chervoneva I., Patel K., MastrangeloM., Sato T.: Tumor-derived interleukin-10 as a prognostic factorin stage III patients undergoing adjuvant treatment with anautologous melanoma cell vaccine. Cancer Immunol. Immunother.,2011; 60: 1039-1045
    Google Scholar
  • 43. Malisan F., Briere F., Bridon J.M., Harindranath N., Mills F.C.,Max E.E., Banchereau J., Martinez-Valdez H.: Interleukin-10 inducesimmunoglobulin G isotype switch recombination in human CD40–activated naïve B lymphocytes. J. Exp. Med., 1996; 183: 937-947
    Google Scholar
  • 44. Mocellin S., Marincola F., Riccardo Rossi C., Nitti D., Lise M.: Themultifaceted relationship between IL-10 and adaptive immunity:putting together the pieces of a puzzle. Cytokine Growth FactorRev., 2004; 15: 61-76
    Google Scholar
  • 45. Mocellin S., Marincola F., Young H.A.: Interleukin-10 and theimmune response against cancer: a counterpoint. J. Leukoc. Biol.,2005; 78: 1043-1051
    Google Scholar
  • 46. Mocellin S., Panelli M., Wang E., Nagorsen D., Marincola F.: Thedual role of IL-10. Trends Immunol., 2003; 24: 36-43
    Google Scholar
  • 47. Moore K., De Waal Malefyt R., Coffman R., O’Garra A.: Interleukin-10and the interleukin-10 receptor. Annu. Rev. Immunol.,2001; 19: 683-765
    Google Scholar
  • 48. Morel A., Quaratino S., Douek D., Londei M.: Split activity ofinterleukin-10 on antigen capture and antigen presentation by humandendritic cells: definition of a maturative step. Eur. J. Immunol.,1997; 27: 26-34
    Google Scholar
  • 49. Mosser D.M., Zhang X.: Interleukin-10: new perspectives on anold cytokine. Immunol. Rev., 2008; 226: 205-218
    Google Scholar
  • 50. Mumm J. B., Emmerich J., Zhang X., Chan I., Wu L., Mauze S.,Blaisdell S., Basham B., Dai J., Grein J., Sheppard C., Hong K., CutlerC., Turner S., LaFace D. et al.: IL-10 elicits IFNg-dependent tumorimmune surveillance. Cancer Cell, 2011; 20: 781-796
    Google Scholar
  • 51. Murray P.J.: The JAK-STAT Signaling Pathway: Input and OutputIntegration. J. Immunol., 2007; 178: 2623-2629
    Google Scholar
  • 52. Nacinovic-Duletic A., Stifter S., Dvornik S., Skunca Z., Jonjic N.:Correlation of serum IL-6, IL-8 and IL-10 levels with clinicopathologicalfeatures and prognosis in patients with diffuse large B-celllymphoma. Inter. J. Lab. Hematol., 2008; 30: 230-239
    Google Scholar
  • 53. Ng T., Britton G., Hill E., Verhagen J., Burton B., Wraith D.: Regulationof adaptive immunity; the role of interleukin-10. Front.Immunol., 2013; 4: 129
    Google Scholar
  • 54. O’Shea J.J., Paul W.E.: Mechanisms underlying lineage commitmentand plasticity of helper CD4+ T cells. Science, 2010; 327:1098-1102
    Google Scholar
  • 55. Ochsenbein A., Sierro S., Odermatt B., Pericin M., Karrer U., HermansJ., Hemmi S., Hengartner H., Zinkernagel R.: Roles of tumourlocalization, second signals and cross priming in cytotoxic T-cellinduction. Nature, 2001; 411: 1058-1064
    Google Scholar
  • 56. O’Garra A., Vieira P.: TH1 cells control themselves by producinginterleukin-10. Nat. Rev. Immunol., 2007; 7: 425-428
    Google Scholar
  • 57. Oliveira-Nascimento L., Massari P., Wetzler L.M.: The role of TLR2in infection and immunity. Front. Immunol., 2012; 3: 79
    Google Scholar
  • 58. Petersson M., Charo J., Salazar-Onfray F., Noffz G., MohauptM., Qin Z., Klein G., Blankenstein T., Kiessling R.: Constitutive IL- 10 production accounts for the high NK sensitivity, low MHC classI expression, and poor transporter associated with antigen processing(TAP)-1/2 function in the prototype NK target YAC-1. J. Immunol.,1998; 161: 2099-2105
    Google Scholar
  • 59. Pisa P., Halapi E., Pisa E., Gerdin E., Hising C., Bucht A., GerdinB., Kiessling R.: Selective expression of interleukin 10, interferong, and granulocyte-macrophage colony-stimulating factor in ovariancancer biopsies. Proc. Natl. Acad. Sci. USA, 1992; 89: 7708-7712
    Google Scholar
  • 60. Pletnev S., Magracheva E., Wlodawer A., Zdanov A.: A model ofthe ternary complex of interleukin-10 with its soluble receptors.BMC Struct. Biol., 2005; 5: 10
    Google Scholar
  • 61. Pot C., Jin H., Awasthi A., Liu S., Lai C., Madan R., Sharpe A., KarpC., Miaw S., Ho I., Kuchroo V.K.: Cutting edge: IL-27 induces thetranscription factor c-Maf, cytokine IL-21, and the costimulatoryreceptor ICOS that coordinately act together to promote differentiationof IL-10-producing Tr1 cells. J. Immunol., 2009; 183: 797-801
    Google Scholar
  • 62. Reich N., Liu L.: Tracking STAT nuclear traffic. Nat. Rev. Immunol.,2006; 6: 602-612
    Google Scholar
  • 63. Reis e Sousa C.: Dendritic cells in a mature age. Nat. Rev. Immunol.,2006; 6: 476-483
    Google Scholar
  • 64. Richter G., Kruger-Krasagakes S., Hein G., Huls C., Schmitt E.,Diamantstein T., Blankenstein T.: Interleukin 10 transfected into Chinesehamster ovary cells prevents tumor growth and macrophageinfiltration. Cancer Res., 1993; 53: 4134-4137
    Google Scholar
  • 65. Rousset F., Garcia E., Defrance T., Peronne C., Vezzio N., HsuD., Kastelein R., Moore K., Banchereau J.: Interleukin 10 is a potentgrowth and differentiation factor for activated human B lymphocytes.Proc. Natl. Acad. Sci. USA, 1992; 89: 1890-1893
    Google Scholar
  • 66. Saraiva M., O’garra A.: The regulation of IL-10 production byimmune cells. Nat. Rev. Immunol., 2010; 10: 170-181
    Google Scholar
  • 67. Sato T., Terai M., Tamura Y., Alexeev V., Mastrangelo M., SelvanS.: Interleukin 10 in the tumor microenvironment: a target for anticancerimmunotherapy. Immunol. Res., 2011; 51: 170-182
    Google Scholar
  • 68. Shoemaker J., Saraiva M., O’Garra A.: GATA-3 directly remodelsthe IL-10 locus independently of IL-4 in CD4+ T cells. J. Immunol.,2006; 176: 3470-3479
    Google Scholar
  • 69. Sing A., Roggenkamp A., Geiger A., Heesemann J.: Yersinia enterocoliticaevasion of the host innate immune response by V antigeninducedIL-10 production of macrophages is abrogated in IL-10-deficientmice. J. Immunol., 2002; 168: 1315-1321
    Google Scholar
  • 70. Steinbrink K., Jonuleit H., Muller G., Schuler G., Knop J., Enk A.H.:Interleukin-10-treated human dendritic cells induce a melanomaantigen-specificanergy in CD8+ T cells resulting in a failure to lysetumor cells. Blood, 1999; 93: 1634-1642
    Google Scholar
  • 71. Stolina M., Sharma S., Lin Y., Dohadwala M., Gardner B., Luo J.,Zhu L., Kronenberg M., Miller P., Portanova J., Lee J.C., Dubinett S.M.:Specific inhibition of cyclooxygenase 2 restores antitumor reactivityby altering the balance of IL-10 and IL-12 synthesis. J. Immunol.,2000; 164: 361-370
    Google Scholar
  • 72. Świst K., Pajtasz-Piasecka E.: Wpływ czynników transkrypcyjnychna różnicowanie limfocytów T CD4+. Postępy Hig. Med. Dośw.,2011; 65: 414-426
    Google Scholar
  • 73. Taga K., Cherney B., Tosato G.: IL-10 inhibits apoptotic cell deathin human T cells starved of IL-2. Int. Immunol., 1993; 5: 1599-1608
    Google Scholar
  • 74. Terai M., Eto M., Young G., Berd D., Mastrangelo M., TamuraY., Harigaya K., Sato T.: Interleukin 6 mediates production of interleukin 10 in metastatic melanoma. Cancer Immunol. Immunother.,2012; 61: 145-155
    Google Scholar
  • 75. Venetsanakos E., Beckman I., Bradley J., Skinner J.: High incidenceof interleukin 10 mRNA but not interleukin 2 mRNA detectedin human breast tumours. Br. J. Cancer, 1997; 75: 1826
    Google Scholar
  • 76. Vicari A.P., Chiodoni C., Vaure C., It-Yahia S., Dercamp C., MatsosF., Reynard O., Taverne C., Merle P., Colombo M.P., O’Garra A., TrinchieriG., Caux C.: Reversal of tumor-induced dendritic cell paralysisby CpG immunostimulatory oligonucleotide and anti–interleukin
    Google Scholar
  • 77. Wilson C., Rowell E., Sekimata M.: Epigenetic control of T-helpercelldifferentiation. Nat. Rev. Immunol., 2009; 9: 91-105
    Google Scholar
  • 78. Wojas J., Pajtasz-Piasecka E.: Oddziaływanie komórek dendrytycznychz limfocytami T regulatorowymi. Postępy Hig. Med. Dośw.,2010; 64: 167-174
    Google Scholar
  • 79. Yang L., Yamagata N., Yadav R., Brandon S., Courtney R.L., MorrowJ.D., Shyr Y., Boothby M., Joyce S., Carbone D.P., Breyer R.M.:Cancer-associated immunodeficiency and dendritic cell abnormalitiesmediated by the prostaglandin EP2 receptor. J. Clin. Invest.,2003; 111: 727-735
    Google Scholar
  • 80. Yokosuka T., Takamatsu M., Kobayashi-Imanishi W., HashimotoTaneA., Azuma M., Saito T.: Programmed cell death 1 forms negativecostimulatory microclusters that directly inhibit T cell receptorsignaling by recruiting phosphatase SHP2. J. Exp. Med., 2012;209: 1201-1217
    Google Scholar
  • 81. Zhou L., Chong M, Littman D.: Plasticity of CD4+ T cell lineagedifferentiation. Immunity, 2009; 30: 646-655
    Google Scholar
  • 82. Zhu J., Yamane H., Paul W.E.: Differentiation of effector CD4 Tcell populations. Annu. Rev. Immunol., 2010; 28: 445-489
    Google Scholar

Full text

Skip to content