The role of medicaments, exosomes and miRNA molecules in modulation of macrophage immune activity

COMMENTARY ON THE LAW

The role of medicaments, exosomes and miRNA molecules in modulation of macrophage immune activity

Katarzyna Nazimek 1 , Iwona Filipczak-Bryniarska 2 , Krzysztof Bryniarski 1

1. Katedra Immunologii, Uniwersytet Jagielloński Collegium Medicum
2. Klinika Leczenia Bólu i Opieki Paliatywnej, Katedra Chorób Wewnętrznych i Gerontologii, Uniwersytet Jagielloński Collegium Medicum

Published: 2015-01-02
GICID: 01.3001.0009.6581
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1114-1129

 

Abstract

Macrophages play an important role in innate immunity, in induction and orchestration of acquired immune response as well as in the maintenance of tissue homeostasis. Macrophages as antigen presenting cells induce or inhibit the development of immune response and as effector cells play an important role in innate immunity to infectious agents and in delayed–type hypersensitivity as well. Thus, either up- or down-regulation of their activity leads to the impairment of different biological processes. This often results in the development of immunological diseases or inflammatory response associated with metabolic, cardiovascular or neuroendocrine disorders. Therefore, the possibility of modulation of macrophage function should allow for elaboration of new effective therapeutic strategies. Noteworthy, interaction of medicaments with macrophages may directly mediate their therapeutic activity or is an additional beneficial effect increasing efficacy of treatment. Further, macrophage differentiation is regulated by miRNA-223, while expression of miRNA-146 and miRNA-155 may modulate and/or be a result of the current cell phenotype. Present review is focused on the current knowledge about the action of medicaments, microRNA molecules, exosomes and related vesicles on macrophages leading to modulation of their biological activity.

References

  • 1. Advani M.J., Siddiqui I., Sharma P., Reddy H.: Activity of trifluoperazineagainst replicating, non-replicating and drug resistant M.tuberculosis. PLoS One, 2012; 7: e44245
    Google Scholar
  • 2. Akao Y., Iio A., Itoh T., Noguchi S., Itoh Y., Ohtsuki Y., Naoe T.:Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages.Mol. Ther., 2011; 19: 395-399
    Google Scholar
  • 3. Aouadi M., Tesz G.J., Nicoloro S.M., Wang M., Chouinard M., SotoE., Ostroff G.R., Czech M.P.: Orally delivered siRNA targeting macrophageMap4k4 suppresses systemic inflammation. Nature, 2009;458: 1180-1184
    Google Scholar
  • 4. Arner E., Mejhert N., Kulyte A., Balwierz P.J., Pachkov M., CormontM., Lorente-Cebrian S., Ehrlund A., Laurencikiene J., Heden P.,Dahlman-Wright K., Tanti J.F., Hayashizaki Y., Ryden M., DahlmanI., van Nimwegen E., Daub C.O., Arner P.: Adipose tissue microRNAsas regulators of CCL2 production in human obesity. Diabetes, 2012;61: 1986-1993
    Google Scholar
  • 5. Atay S., Gercel-Taylor C., Suttles J., Mor G., Taylor D.D.: Trophoblast-derivedexosomes mediate monocyte recruitment and differentiation.Am. J. Reprod. Immunol., 2011; 65: 65-77
    Google Scholar
  • 6. Atay S., Gercel-Taylor C., Taylor D.D.: Human trophoblast-derivedexosomal fibronectin induces pro-inflammatory IL-1β productionby macrophages. Am. J. Reprod. Immunol., 2011; 66: 259-269
    Google Scholar
  • 7. Baeck C., Wehr A., Karlmark K.R., Heymann F., Vucur M., GasslerN., Huss S., Klussmann S., Eulberg D., Luedde T., Trautwein C., TackeF.: Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishesliver macrophage infiltration and steatohepatitis in chronichepatic injury. Gut, 2012; 61: 416-426
    Google Scholar
  • 8. Bahr I.N., Tretter P., Kruger J., Stark R.G., Schimkus J., Unger T.,Kappert K., Scholze J., Parhofer K.G., Kintscher U.: High-dose treatmentwith telmisartan induces monocytic peroxisome proliferator–activated receptor-γ target genes in patients with the metabolicsyndrome. Hypertension, 2011; 58: 725-732
    Google Scholar
  • 9. Baj-Krzyworzeka M., Szatanek R., Weglarczyk K., Baran J., ZembalaM.: Tumour-derived microvesicles modulate biological activity ofhuman monocytes. Immunol. Lett., 2007; 113: 76-82
    Google Scholar
  • 10. Banerjee S., Xie N., Cui H., Tan Z., Yang S., Icyuz M., AbrahamE., Liu G.: MicroRNA let-7c regulates macrophage polarization. J.Immunol., 2013; 190: 6542-6549
    Google Scholar
  • 11. Barres C., Blanc L., Bette-Bobillo P., Andre S., Mamoun R., GabiusH.J., Vidal M.: Galectin-5 is bound onto the surface of rat reticulocyteexosomes and modulates vesicle uptake by macrophages.Blood, 2010; 115: 696-705
    Google Scholar
  • 12. Bettencourt P., Marion S., Pires D., Santos L.F., Lastrucci C.,Carmo N., Blake J., Benes V., Griffiths G., Neyrolles O., Lugo-VillarinoG., Anes E.: Actin-binding protein regulation by microRNAsas a novel microbial strategy to modulate phagocytosis by hostcells: the case of N-Wasp and miR-142-3p. Front. Cell. Infect. Microbiol.,2013; 3: 1-17
    Google Scholar
  • 13. Bhatnagar S., Shinagawa K., Castellino F.J., Schorey J.S.: Exosomesreleased from macrophages infected with intracellular pathogensstimulate a proinflammatory response in vitro and in vivo.Blood, 2007; 110: 3234-3244
    Google Scholar
  • 14. Bosco M.C., Rapisarda A., Massazza S., Melillo G., Young H., VaresioL.: The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1α and -1β inmacrophages. J. Immunol., 2000; 164: 3283-3291
    Google Scholar
  • 15. Bryniarski K.: The influence of cyclophosphamide on immunefunction of murine macrophages. W: Pharmacology. Red.: L. Gallelli.InTech, Rijeka 2012, 143-160
    Google Scholar
  • 16. Bryniarski K., Ptak W., Jayakumar A., Püllmann K., Caplan M.,Chairoungdua A., Lu J., Adams B., Sikora E., Nazimek K., Marquez S.,Kleinstein S.H., Sangwung P., Iwakiri Y.,Delgato E., Redegeld F., BlokhuisB.R., Wojcikowski J., Daniel A.W., Groot Kormelink T., AskenaseP.W.: Antigen specific, antibody coated, exosome-like nanovesiclesdeliver suppressor T-cell miRNA-150 to effector T cells to inhibitcontact sensitivity. J. Allergy Clin. Immunol., 2013; 132: 170-181
    Google Scholar
  • 17. Bryniarski K., Szczepanik M., Ptak M., Zemelka M., Ptak W.: Influenceof cyclophosphamide and its metabolic products on the activityof peritoneal macrophages in mice. Pharmacol. Rep., 2009; 61: 550-557
    Google Scholar
  • 18. Buhtoiarov I.N., Sondel P.M., Wigginton J.M., Buhtoiarova T.N.,Yanke E.M., Mahvi D.A., Rakhmilevich A.L.: Anti-tumour synergyof cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapythrough repolarization of tumour-associated macrophages.Immunology, 2011; 132: 226-239
    Google Scholar
  • 19. Butchar J.P., Mehta P., Justiniano S.E., Guenterberg K.D., KondadasulaS., Mo X., Chemudupati M., Kanneganti T., Amer A., MuthusamyN., Jarjoura D., Marsh C.B., Carson W.E., Byrd J.C., TridandapaniS.: Reciprocal regulation of activating and inhibitory Fcγ receptorsby TLR7/8 activation: implications for tumor immunotherapy. Clin.Cancer Res., 2010; 16: 2065-2075
    Google Scholar
  • 20. Cashman J.R., Ghirmai S., Abel K.J., Fiala M.: Immune defects inAlzheimer’s disease: new medications development. BMC Neurosci.,2008; 9 (Suppl. 2): S13
    Google Scholar
  • 21. Chawla A., Nguyen K.D., Goh Y.P.: Macrophage-mediated inflammationin metabolic disease. Nat. Rev. Immunol., 2011; 11: 738-749
    Google Scholar
  • 22. Chen Q., Massague J.: Molecular pathways: VCAM-1 as a potentialtherapeutic target in metastasis. Clin. Cancer Res., 2012; 18: 5520-5525
    Google Scholar
  • 23. Chen Q., Zhang X.H., Massague J.: Macrophage binding to receptorVCAM-1 transmits survival signals in breast cancer cells thatinvade the lungs. Cancer Cell, 2011; 20: 538-549
    Google Scholar
  • 24. Chen Y., Liu W., Sun T., Huang Y., Wang Y., Deb D.K., Yoon D.,Kong J., Thadhani R., Li Y.C.: 1,25-dihydroxyvitamin D promotes negativefeedback regulation of TLR signaling via targeting microRNA-155-SOCS1in macrophages. J. Immunol., 2013; 190: 3687-3695
    Google Scholar
  • 25. Cheng X.W., Song H., Sasaki T., Hu L., Inoue A., Bando Y.K., ShiG-P., Kuzuya M., Okumura K., Murohara T.: Angiotensin type 1 receptorblocker reduces intimal neovascularization and plaque growthin apolipoprotein E-deficient mice. Hypertension, 2011; 57: 981-989
    Google Scholar
  • 26. Covelli V., Maffione A.B., Nacci C., Tato E., Jirillo E.: Stress, neuropsychiatricdisorders and immunological effects exerted by benzodiazepines.Immunopharmacol. Immunotoxicol., 1998; 20: 199-209
    Google Scholar
  • 27. Dave R.S., Khalili K.: Morphine-treatment of human monocyte-derivedmacrophages induces differential miRNA and proteinexpression: impact on inflammation and oxidative stress in the centralnervous system. J. Cell. Biochem., 2010; 110: 834-845
    Google Scholar
  • 28. Davi G., Santilli F., Vazzana N.: Thromboxane receptors antagonistsand/or synthase inhibitors. W: Antiplatelet Agents, Handbookof Experimental Pharmacology. Red.: P. Gresele. Springer-Verlag,Berlin Heidelberg 2012; 210: 261-286
    Google Scholar
  • 29. Deng Z., Poliakov A., Hardy R.W., Clements R., Liu C., Liu Y.,Wang J., Xiang X., Zhang S., Zhuang X., Shah S.V., Sun D., MichalekS., Grizzle W.E., Garvey T., Mobley J., Zhang H.: Adipose tissue exosome-likevesicles mediate activation of macrophage-induced insulinresistance. Diabetes, 2009; 58: 2498-2505
    Google Scholar
  • 30. Donnelly L.E., Tudhope S.J., Fenwick P.S., Barnes P.J.: Effects offormoterol and salmeterol on cytokine release from monocyte-derivedmacrophages. Eur. Res. J., 2010; 36: 178-186
    Google Scholar
  • 31. Esser J., Gehrmann U., D’Alexandri F.L., Hidalgo-Estevez A.M.,Wheelock C.E., Scheynius A., Gabrielsson S., Radmark O.: Exosomesfrom human macrophages and dendritic cells contain enzymes forleukotriene biosynthesis and promote granulocyte migration. J. AllergyClin. Immunol., 2010; 126: 1032-1040
    Google Scholar
  • 32. Etzerodt A., Moestrup S.K.: CD163 and inflammation: biological,diagnostic and therapeutic aspects. Antioxid. Redox Signal., 2013;18: 2352-2363
    Google Scholar
  • 33. Fiala M., Liu P.T., Espinosa-Jeffrey A., Rosenthal M.J., Bernard G.,Ringman J.M., Sayre J., Zhang L., Zaghi J., Dejbakhsh S., Chiang B., HuiJ., Mahanian M., Baghaee A., Hong P., Cashman J.: Innate immunityand transcription of MGAT-III and Toll-like receptors in Alzheimer’sdisease patients are improved by bisdemethoxycurcumin. Proc.Natl. Acad. Sci. USA, 2007; 104: 12849-12854
    Google Scholar
  • 34. Filipczak-Bryniarska I., Nowak B., Sikora E., Nazimek K., WorońJ., Wordliczek J., Bryniarski K.: The influence of opioids on thehumoral and cell-mediated immune responses in mice. The role ofmacrophages. Pharmacol. Rep., 2012; 64: 1200-1215
    Google Scholar
  • 35. Foley N.H., O’Neill L.A.: miR-107: a Toll-like receptor-regulatedmiRNA dysregulated in obesity and type II diabetes. J. Leukoc. Biol.,2012; 92: 521-527
    Google Scholar
  • 36. Fontana L., Pelosi E., Greco P., Racanicchi S., Testa U., Liuzzi F.,Croce C.M., Brunetti E., Grignani F., Peschle C.: MicroRNAs 17-5p-20a–106a control monocytopoiesis through AML1 targeting and M-CSFreceptor upregulation. Nat. Cell Biol., 2007; 9: 775-787
    Google Scholar
  • 37. Fujisaka S., Usui I., Kanatani Y., Ikutani M., Takasaki I., TsuneyamaK., Tabuchi Y., Bukhari A., Yamazaki Y., Suzuki H., SendaS., Aminuddin A., Nagai Y., Takatsu K., Kobayashi M., Tobe K.: Telmisartanimproves insulin resistance and modulates adipose tissuemacrophage polarization in high-fat-fed mice. Endocrinology, 2011;152: 1789-1799
    Google Scholar
  • 38. Gantier M.P., Sadler A.J., Williams B.R.: Fine-tuning of the innateimmune response by microRNAs. Immunol. Cell Biol., 2007;85: 458-462
    Google Scholar
  • 39. Gantke T., Sriskantharajah S., Ley S.C.: Regulation and functionof TPL-2, an IκB kinase-regulated MAP kinase kinase kinase. CellRes., 2011; 21: 131-145
    Google Scholar
  • 40. Garratty G.: Drug-induced immune hemolytic anemia. Hematology,2009; 2009: 73-79
    Google Scholar
  • 41. Gaskill P.J., Carvallo L., Eugenin E.A., Berman J.W.: Characterizationand function of the human macrophage dopaminergic system:implications for CNS disease and drug abuse. J. Neuroinflammation,2012; 9: 203-218
    Google Scholar
  • 42. Graff J.W., Dickson A.M., Clay G., McCaffrey A.P., Wilson M.E.:Identifying functional microRNAs in macrophages with polarizedphenotypes. J. Biol. Chem., 2012; 287: 21816-21825
    Google Scholar
  • 43. Haneklaus M., Gerlic M., Kurowska-Stolarska M., Rainey A.,Pich D., McInnes I.B., Hammerschmidt W., O’Neill L.A., Masters S.L.:Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasomeand IL-1β production. J. Immunol., 2012; 189: 3795-3799
    Google Scholar
  • 44. Haney M.J., Zhao Y., Harrison E.B., Mahajan V., Ahmed S., He Z.,Suresh P., Hingtgen S.D., Klyachko N.L., Mosley R.L., Gendelman H.E.,Kabanov A.V., Batrakova E.V.: Specific transfection of inflamed brainby macrophages: a new therapeutic strategy for neurodegenerativediseases. PLoS One, 2013; 8: e61852
    Google Scholar
  • 45. Honda T., Takahashi N., Miyauchi S., Yamazaki K.: Porphyromonasgingivalis lipopolysaccharide induces miR-146a without alteringthe production of inflammatory cytokines. Biochem. Biophys. Res.Commun., 2012; 420: 918-925
    Google Scholar
  • 46. Hotchi J., Hoshiga M., Takeda Y., Yuki T., Fujisaka T., IshiharaT., Hanafusa T.: Plaque-stabilizing effect of angiotensin-convertingenzyme inhibitor and/or angiotensin receptor blocker in a rabbitplaque model. J. Atheroscler. Thromb., 2012; 20: 257-266
    Google Scholar
  • 47. Hulsmans M., Van Dooren E., Mathieu C., Holvoet P.: Decreaseof miR-146b-5p in monocytes during obesity is associated with lossof the anti-inflammatory but not insulin signaling action of adiponectin.PLoS One, 2012; 7: e32794
    Google Scholar
  • 48. Ismail N., Wang Y., Dakhlallah D., Moldovan L., Agarwal K., BatteK., Shah P., Wisler J., Eubank T.D., Tridandapani S., Paulaitis M.E.,Piper M.G., Marsh C.B.: Macrophage microvesicles induce macrophagedifferentiation and miR-223 transfer. Blood, 2013; 121: 984-995
    Google Scholar
  • 49. Jensen L.B., Griger J., Naeye B., Varkouhi A.K., Raemdonck K.,Schiffelers R., Lammers T., Storm G., de Smedt S.C., Sproat B.S., NielsenH.M., Foged C.: Comparison of polymeric siRNA nanocarriersin a murine LPS-activated macrophage cell line: gene silencing, toxicityand off-target gene expression. Pharm. Res., 2012; 29: 669-682
    Google Scholar
  • 50. Jiang P., Liu R., Zheng Y., Liu X., Chang L., Xiong S., Chu Y.: MiR–34a inhibits lipopolysaccharide-induced inflammatory responsethrough targeting Notch1 in murine macrophages. Exp. Cell Res.,2012; 318: 1175-1184
    Google Scholar
  • 51. Johansen P., Weiss A., Bunter A., Waeckerle-Men Y., FettelschossA., Odermatt B., Kundig T.M.: Clemastine causes immune suppressionthrough inhibition of extracellular signal-regulated kinase–dependent proinflammatory cytokines. J. Allergy Clin. Immunol.,2011; 128: 1286-1294
    Google Scholar
  • 52. Johnson E., Buhtoiarov I.N., Baldeshwiler M.J., Felder M.A., vanRooijen N., Sondel P.M., Rakhmilevich A.L.: Enhanced T cell-independentantitumor effect of cyclophosphamide combined with anti–CD40 mAb and CpG in mice. J. Immunother., 2011; 34: 76-84
    Google Scholar
  • 53. Kappert K., Tsuprykov O., Kaufmann J., Fritzsche J., Ott I., GoebelM., Bahr I.N., Hassle P-L., Gust R., Fleck E., Unger T., Stawowy P.,Kintscher U.: Chronic treatment with losartan results in sufficientserum levels of the metabolite EXP3179 for PPARγ activation. Hypertension,2009; 54: 738-743
    Google Scholar
  • 54. Koch M., Mollenkopf H-J., Klemm U., Meyer T.F.: Induction ofmicroRNA-155 is TLR- and type IV secretion system-dependent inmacrophages and inhibits DNA-damage induced apoptosis. Proc.Natl. Acad. Sci. USA, 2012; 109: E1153-E1162
    Google Scholar
  • 55. Kojima C., Ino J., Ishii H., Nitta K., Yoshida M.: MMP-9 inhibitionby ACE inhibitor reduces oxidized LDL-mediated foam-cell formation.J. Atheroscler. Thromb., 2010; 17: 97-105
    Google Scholar
  • 56. Kraaij M.D., van der Kooij S.W., Reinders M.E., Koekkoek K., RabelinkT.J., van Kooten C., Gelderman K.A.: Dexamethasone increasesROS production and T cell suppressive capacity by anti-inflammatorymacrophages. Mol. Immunol., 2011; 49: 549-557
    Google Scholar
  • 57. Krishnamoorthy S., Recchiuti A., Chiang N., Fredman G., SerhanC.N.: Resolvin D1 receptor stereoselectivity and regulation ofinflammation and proresolving MicroRNAs. Am. J. Pathol., 2012;180: 2018-2027
    Google Scholar
  • 58. Kulshreshtha A., Ahmad T., Agrawal A., Ghosh B.: Proinflammatoryrole of epithelial cell-derived exosomes in allergic airwayinflammation. J. Allergy Clin. Immunol., 2013; 131: 1194-1203
    Google Scholar
  • 59. Kumar R., Halder P., Sahu S.K., Kumar M., Kumari M., Jana K.,Ghosh Z., Sharma P., Kundu M., Basu J.: Identification of a novelrole of ESAT-6-dependent miR-155 induction during infection ofmacrophages with Mycobacterium tuberculosis. Cell. Microbiol., 2012;14: 1620-1631
    Google Scholar
  • 60. Kwok S.K., Cho M.L., Park M.K., Oh H.J., Park J.S., Her Y.M., LeeS.Y., Youn J., Ju J.H., Park K.S., Kim S.I., Kim H.Y., Park S.H.: Interleukin-21promotes osteoclastogenesis in humans with rheumatoidarthritis and in mice with collagen-induced arthritis. ArthritisRheum., 2012; 64: 740-751
    Google Scholar
  • 61. Lagrange B., Martin R.Z., Droin N., Aucagne R., Paggetti J., LargeotA., Itzykson R., Solary E., Delva L., Bastie J.N.: A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiationinto macrophages. Biochim. Biophys. Acta, 2013; 1833: 1936-1946
    Google Scholar
  • 62. Lai L., Song Y., Liu Y., Chen Q., Han Q., Chen W., Pan T., Zhang Y.,Cao X., Wang Q.: MicroRNA-92a negatively regulates TLR-triggeredinflammatory response in macrophages by targeting MKK4 kinase.J. Biol. Chem., 2013; 288: 7956-7967
    Google Scholar
  • 63. Larrayoz I.M., Pang T., Benicky J., Pavel J., Sanchez-Lemus E., SaavedraJ.M.: Candesartan reduces the innate immune response to lipopolysaccharidein human monocytes. J. Hypertens., 2009; 27: 2365-2376
    Google Scholar
  • 64. Lasser C., Alikhani V.S., Ekstrom K., Eldh M., Paredes P.T., BossiosA., Sjostrand M., Gabrielsson S., Lotvall J., Valadi H.: Human saliva,plasma and breast milk exosomes contain RNA: uptake by macrophages.J. Transl. Med., 2011; 9: 9-17
    Google Scholar
  • 65. Lee J.H., Jin H., Shim H.E., Kim H.N., Ha H., Lee Z.H.: Epigallocatechin-3-gallateinhibits osteoclastogenesis by down-regulating c–Fos expression and suppressing the nuclear factor-κB signal. Mol.Pharmacol., 2010; 77: 17-25
    Google Scholar
  • 66. Lee J.Y., Lee M.S., Choi H.J., Choi J.W., Shin T., Woo H.C., Kim J.I.,Kim H.R.: Hexane fraction from Laminaria japonica exerts anti-inflammatoryeffect on lipopolysaccharide-stimulated RAW 264.7 macrophagesvia inhibiting NF-κB pathway. Eur. J. Nutr., 2013; 52: 409-421
    Google Scholar
  • 67. Leonard B.E.: The immune system, depression and the actionof antidepressants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry,2001; 25: 767-780
    Google Scholar
  • 68. Li Y., Fan X., He X., Sun H., Zou Z., Yuan H., Xu H., Wang C.,Shi X.: MicroRNA-466I inhibits antiviral innate immune responseby targeting interferon-alpha. Cell. Mol. Immunol., 2012; 9: 497-502
    Google Scholar
  • 69. Lieb J.: The immunostimulating and antimicrobial properties oflithium and antidepressants. J. Infect., 2004; 49: 88-93
    Google Scholar
  • 70. Lis M., Obmińska-Mrukowicz B.: Effects of bestatin on phagocyticcells in cyclophosphamide-treated mice. Pharmacol. Rep., 2011;63: 1481-1490
    Google Scholar
  • 71. Liu G., Friggeri A., Yang Y., Park Y.J., Tsuruta Y., Abraham E.: miR-147, a microRNA that is induced upon Toll-like receptor stimulation,regulates murine macrophage inflammatory responses. Proc. Natl.Acad. Sci. USA, 2009; 106: 15819-15824
    Google Scholar
  • 72. Lojek A., Ciz M., Pekarova M., Ambrozova G., Vasicek O., MoravcovaJ., Kubala L., Drabikova K., Jancinova V., Perecko T., Pecivova J.,Macickova T., Nosal R.: Modulation of metabolic activity of phagocytesby antihistamines. Interdiscip. Toxicol., 2011; 4: 15-19
    Google Scholar
  • 73. Lu X., Mu E., Wei Y., Riethdorf S., Yang Q., Yuan M., Yan J., Hua Y.,Tiede B.J., Lu X., Haffty B.G., Pantel K., Massague J., Kang Y.: VCAM- 1 promotes osteolytic expansion of indolent bone micrometastasisof breast cancer by engaging α4β1-positive osteoclast progenitors.Cancer Cell, 2011; 20: 701-714
    Google Scholar
  • 74. Marcinkiewicz J., Bryniarski K., Ptak W.: Cyclophosphamideuncovers two separate macrophage subpopulations with oppositeimmunogenic potential and different patterns of monokine production.Cytokine, 1994; 6: 472-477
    Google Scholar
  • 75. Monk C.E., Hutvagner G., Arthur J.S.: Regulation of miRNA transcriptionin macrophages in response to Candida albicans. PLoS One,2010; 5: e13669
    Google Scholar
  • 76. Murray P.J., Wynn T.A.: Obstacles and opportunities for understandingmacrophage polarization. J. Leukoc. Biol., 2011; 89: 557-563
    Google Scholar
  • 77. Murray P.J., Wynn T.A.: Protective and pathogenic functions ofmacrophage subsets. Nat. Rev. Immunol., 2011; 11: 723-737
    Google Scholar
  • 78. Nahid M.A., Satoh M., Chan E.K.: MicroRNA in TLR signaling andendotoxin tolerance. Cell. Mol. Immunol., 2011; 8: 388-403
    Google Scholar
  • 79. Nahid M.A., Yao B., Dominguez-Gutierrez P.R., Kesavalu L., SatohM., Chan E.K.: Regulation of TLR2-mediated tolerance and cross–tolerance through IRAK4 modulation by miR-132 and miR-212. J.Immunol., 2013; 190: 1250-1263
    Google Scholar
  • 80. Nazari-Jahantigh M., Wei Y., Noels H., Akhtar S., Zhou Z., KoenenR.R., Heyll K., Gremse F., Kiessling F., Grommes J., Weber C., Schober A.: MicroRNA-155 promotes atherosclerosis by repressing Bcl6 inmacrophages. J. Clin. Invest., 2012; 122: 4190-4202
    Google Scholar
  • 81. Nazimek K., Bryniarski K.: The biological activity of macrophagesin health and disease. Postępy Hig. Med. Dośw., 2012; 66: 507-520
    Google Scholar
  • 82. Nazimek K., Nowak B., Ptak W., Bryniarski K.: Exosomal T cellsuppressor factor inhibits the generation of reactive oxygen intermediatesin murine peritoneal macrophages. Immunology, 2012; 137 (Suppl. 1): 693
    Google Scholar
  • 83. Nguyen D.G., Booth A., Gould S.J., Hildreth J.E.: Evidence thatHIV budding in primary macrophages occurs through the exosomerelease pathway. J. Biol. Chem., 2003; 278: 52347-52354
    Google Scholar
  • 84. Nilsson S., Moller C., Jirstrom K., Lee A., Busch S., Lamb R., LandbergG.: Downregulation of miR-92a is associated with aggressivebreast cancer features and increased tumour macrophage infiltration.PLoS One, 2012; 7: e36051
    Google Scholar
  • 85. Palma A., Sainaghi P.P, Amoruso A., Fresu L.G., Avanzi G., PirisiM., Brunelleschi S.: Peroxisome proliferator-activated receptor–gamma expression in monocytes/macrophages from rheumatoidarthritis patients: relation to disease activity and therapy efficacy– a pilot study. Rheumatology, 2012; 51: 1942-1952
    Google Scholar
  • 86. Pang T., Benicky J., Wang J., Orecna M., Sanchez-Lemus E., SaavedraJ.M.: Telmisartan ameliorates lipopolysaccharide-induced innateimmune response through peroxisome proliferator-activated receptor-γactivation in human monocytes. J. Hypertens., 2012; 30: 87-96
    Google Scholar
  • 87. Ponomarev E.D., Veremeyko T., Weiner H.L.: MicroRNAs areuniversal regulators of differentiation, activation, and polarizationof microglia and macrophages in normal and diseased CNS. Glia,2013; 61: 91-103
    Google Scholar
  • 88. Purohit V., Rapaka R.S., Rutter J., Shurtleff D.: Do opioids activatelatent HIV-1 by down-regulating anti-HIV microRNAs? J. NeuroimmunePharmacol., 2012; 7: 519-523
    Google Scholar
  • 89. Qu Y., Franchi L., Nunez G., Dubyak G.R.: Nonclassical IL-1β secretionstimulated by P2X7 receptors is dependent on inflammasomeactivation and correlated with exosome release in murine macrophages.J. Immunol., 2007; 179: 1913-1925
    Google Scholar
  • 90. Qu Y., Ramachandra L., Mohr S., Franchi L., Harding C.V., NunezG., Dubyak G.R.: P2X7 receptor-stimulated secretion of MHC class–II-containing exosomes requires the ASC/NLPR3 inflammasomebut is independent of caspase-1. J. Immunol., 2009; 182: 5052-5062
    Google Scholar
  • 91. Qureshi A.A., Guan X.Q., Reis J.C., Papasian C.J., Jabre S., MorrisonD.C., Qureshi N.: Inhibition of nitric oxide and inflammatorycytokines in LPS-stimulated murine macrophages by resveratrol,a potent proteasome inhibitor. Lipids Health Dis., 2012; 11: 76-92
    Google Scholar
  • 92. Ramirez C.M., Rotllan N., Vlassov A.V., Davalos A., Li M., GoedekeL., Aranda J.F., Cirera-Salinas D., Araldi E., Salerno A., Wanschel A.,Zavadil J., Castrillo A., Kim J., Suarez Y., Fernandez-Hernando C.: Controlof cholesterol metabolizm and plasma high-density lipoproteinlevels by microRNA-144. Circ. Res., 2013; 112: 1592-1601
    Google Scholar
  • 93. Rapisarda A., Pastorino S., Massazza S., Varesio L., Bosco M.C.:Antagonistic effect of picolinic acid and interferon-γ on macrophageinflammatory protein-1α/β production. Cell. Immunol., 2002;220: 70-80
    Google Scholar
  • 94. Ruckerl D., Jenkins S.J., Laqtom N.N., Gallagher I.J., SutherlandT.E., Duncan S., Buck A.H., Allen J.E.: Induction of IL-4Rα-dependentmicroRNAs identifies PI3K/Akt signaling as essential for IL-4-drivenmurine macrophage proliferation in vivo. Blood, 2012; 120: 2307-2316
    Google Scholar
  • 95. Sadeghi-Hashjin G., Nijkamp F.P., Henricks P.A., Folkerts G.: Sodiumcromoglycate and doxantrazole are oxygen radical scavengers.Eur. Respir. J., 2002; 20: 867-872
    Google Scholar
  • 96. Schnitger A.K., Machova A., Mueller R.U., Androulidaki A., SchermerB., Pasparakis M., Kronke M., Papadopoulou N.: Listeria monocytogenesinfection in macrophages induces vacuolar-dependent hostmiRNA response. PLoS One, 2011; 6: e27435
    Google Scholar
  • 97. Shibuya H., Nakasa T., Adachi N., Nagata Y., Ishikawa M., Deie M.,Suzuki O., Ochi M.: Overexpression of microRNA-223 in rheumatoidarthritis synovium controls osteoclast differentiation. Mod. Rheumatol.,2013; 23: 674-685
    Google Scholar
  • 98. Shimada K., Hirano E., Kimura T., Fujita M., Kishimoto C.: Carvedilolreduces the severity of atherosclerosis in apolipoprotein E–deficient mice via reducing superoxide production. Exp. Biol. Med.,2012; 237: 1039-1044
    Google Scholar
  • 99. Shimada K., Murayama T., Yokode M., Kita T., Fujita M., KishimotoC.: Olmesartan, a novel angiotensin II type 1 receptor antagonist,reduces severity of atherosclerosis in apolipoprotein E deficientmice associated with reducing superoxide production. Nutr. Metab.Cardiovasc. Dis., 2011; 21: 672-678
    Google Scholar
  • 100. Shimada K., Murayama T., Yokode M., Kita T., Uzui H., UedaT., Lee J.D., Kishimoto C.: N-acetylcysteine reduces the severity ofatherosclerosis in apolipoprotein E-deficient mice by reducing superoxideproduction. Circ. J., 2009; 73: 1337-1341
    Google Scholar
  • 101. Shin J.S., Baek S.R., Sohn S., Cho Y., Lee K.T.: Anti-inflammatoryeffect of pelubiprofen, 2-[4-(oxocyclohexylidenemethyl)-phenyl]propionic acid, mediated by dual suppression of COX activity andLPS-induced inflammatory gene expression via NF-κB inactivation.J. Cell. Biochem., 2011; 112: 3594-3603
    Google Scholar
  • 102. Shukla A.K., Patra S., Dubey V.K.: Nanospheres encapsulatinganti-leishmanial drugs for their specific macrophage targeting, reducedtoxicity, and deliberate intracellular release. Vector BorneZoonotic Dis., 2012; 12: 953-960
    Google Scholar
  • 103. Sikora E., Ptak W., Bryniarski K.: Immunoregulacja poprzez interferencyjnyRNA – mechanizmy, rola, perspektywy. Postępy Hig.Med. Dośw., 2011; 65: 482-495
    Google Scholar
  • 104. Silva R.C., Landgraf M.A., Hiyane M.I., Pacheco-Silva A., CamaraN.O., Landgraf R.G.: Leukotrienes produced in allergic lunginflammation activate alveolar macrophages. Cell. Physiol. Biochem.,2010; 26: 319-326
    Google Scholar
  • 105. Silverman J.M., Clos J., de’Oliveira C.C., Shirvani O., Fang Y.,Wang C., Foster L.J., Reiner N.E.: An exosome-based secretion pathwayis responsible for protein export from Leishmania and communicationwith macrophages. J. Cell Sci., 2010; 123: 842-852
    Google Scholar
  • 106. Silverman J., Reiner N.: Exosomes and other microvesicles ininfection biology: organelles with unanticipated phenotypes. Cell.Microbiol., 2011; 13: 1-9
    Google Scholar
  • 107. Singh P.P., Smith V.L., Karakousis P.C., Schorey J.S.: Exosomesisolated from mycobacteria-infected mice or cultured macrophagescan recruit and activate immune cells in vitro and in vivo. J. Immunol.,2012; 189: 777-785
    Google Scholar
  • 108. Sissons J.R., Peschon J.J., Schmitz F., Suen R., Gilchrist M., AderemA.: Cutting edge: microRNA regulation of macrophage fusioninto multinucleated giant cells. J. Immunol., 2012; 189: 23-27
    Google Scholar
  • 109. Sun Y., Cai J., Ma F., Lu P., Huang H., Zhou J.: miR-155 mediatessuppressive effect of progesterone on TLR3, TLR4-triggered immuneresponse. Immunol. Lett., 2012; 146: 25-30
    Google Scholar
  • 110. Suzuki M., Teramoto S., Katayama H., Ohga E., Matsuse T., OuchiY.: Effects of angiotensin-converting enzyme (ACE) inhibitors onoxygen radical production and generation by murine lung alveolarmacrophages. J. Asthma, 1999; 36: 665-670
    Google Scholar
  • 111. Teramoto S., Suzuki M., Matsuse T., Ouchi Y.: Effect of ambroxolon oxygen radical production and generation by bronchoalveolarlavage cells in young and aged guinea pigs. Jpn. J. Pharmacol.,1998; 78: 429-434
    Google Scholar
  • 112. Thulin P., Wei T., Werngren O., Cheung L., Fisher R.M., GranderD., Corcoran M., Ehrenborg E.: MicroRNA-9 regulates the expressionof peroxisome proliferator-activated receptor δ in human monocytesduring the inflammatory response. Int. J. Mol. Med., 2013;31: 1003-1010
    Google Scholar
  • 113. Tuckermann J., Kleiman A., Moriggl R., Spanbroek R., NeumannA., Illing A., Clausen B., Stride B., Förster I., Habenicht A., ReichardtH., Tronche F., Schmid W., Schütz G.: Macrophages and neutrophilsare the targets for immune suppression by glucocorticoids in contactallergy. J. Clin. Invest., 2007; 117: 1381-1390
    Google Scholar
  • 114. Vicentino A.R.R., Carneiro V.C., Amarante A. de M., BenjamimC.F., de Aguiar A.P., Fantappie M.R.: Evaluation of 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazoleas a novel anti-inflammatorydrug candidate. PLoS One, 2012; 7: e39104
    Google Scholar
  • 115. Villalonga N., David M., Bielanska J., Vicente R., Comes N., ValenzuelaC., Felipe A.: Immunomodulation of voltage-dependent K+channels in macrophages: molecular and biophysical consequences.J. Gen. Physiol., 2010; 135: 135-147
    Google Scholar
  • 116. Wang X., Ye L., Hou W., Zhou Y., Wang Y.J., Metzger D.S., Ho W.Z.:Cellular microRNA expression correlates with susceptibility of monocytes/macrophagesto HIV-1 infection. Blood, 2009; 113: 671-674
    Google Scholar
  • 117. Wang X., Ye L., Zhou Y., Liu M.Q., Zhou D.J., Ho W.Z.: Inhibitionof anti-HIV microRNA expression. A mechanism for opioid-mediatedenhancement of HIV infection of monocytes. Am. J. Pathol.,2011; 178: 41-47
    Google Scholar
  • 118. Wei J., Huang X., Zhang Z., Jia W., Zhao Z., Zhang Y., Liu X., XuG.: MyD88 as a target of microRNA-203 in regulation of lipopolysaccharideor Bacille Calmette-Guerin induced inflammatory responseof macrophage RAW264.7 cells. Mol. Immunol., 2013; 55: 303-309
    Google Scholar
  • 119. Wei Y., Nazari-Jahantigh M., Chan L., Zhu M., Heyll K., Corbalan-CamposJ., Hartmann P., Thiemann A., Weber C., Schober A.:The microRNA-342-5p fosters inflammatory macrophage activationthrough an Akt1- and microRNA-155-dependent pathway duringatherosclerosis. Circulation, 2013; 127: 1609-1619
    Google Scholar
  • 120. Xia W., Hilgenbrink A.R., Matteson E.L., Lockwood M.B., ChengJ.X., Low P.S.: A functional folate receptor is induced during macrophageactivation and can be used to target drugs to activated macrophages.Blood, 2009; 113: 438-446
    Google Scholar
  • 121. Xia Z., Chen C., Chen P., Xie H., Luo X.: MicroRNAs and theirroles in osteoclast differentiation. Front. Med., 2011; 5: 414-419
    Google Scholar
  • 122. Xiao C., Calado D.P., Galler G., Thai T.H., Patterson H.C., WangJ., Rajewsky N., Bender T.P., Rajewsky K.: MiR-150 controls B celldifferentiation by targeting the transcription factor c-Myb. Cell,2007; 131: 146-159
    Google Scholar
  • 123. Yang M., Chen J., Su F., Yu B., Su F., Lin L., Liu Y., Huang J-D., SongE.: Microvesicles secreted by macrophages shuttle invasion-potentiatingmicroRNAs into breast cancer cells. Mol. Cancer, 2011; 10: 117-129
    Google Scholar
  • 124. Yang M., Kumar R.K., Hansbro P.M., Foster P.S.: Emerging rolesof pulmonary macrophages in driving the development of severeasthma. J. Leukoc. Biol., 2012; 91: 557-569
    Google Scholar
  • 125. Zhang J., Xie S., Ma W., Teng Y., Tian Y., Huang X., Zhang Y.:A newly identified miRNA, mmu-miR-7578, functions as a negativeregulator on inflammatory cytokines TNFα and IL6 via targetingEGR1 in vivo. J. Biol. Chem., 2013; 288: 4310-4320
    Google Scholar
  • 126. Zhang Q., Atsuta I., Liu S., Chen C., Shi S., Shi S., Le A.D.: IL–17-mediated M1/M2 macrophage alteration contributes to pathogenesisof bisphosphonate-related osteonecrosis of the jaws. Clin.Cancer Res., 2013; 19: 3176-3188
    Google Scholar
  • 127. Zheng K., Chen D.S., Wu Y.Q., Xu X.J., Zhang H., Chen C.F., ChenH.C., Liu Z.F.: MicroRNA expression profile in RAW246.7 cells in responseto Brucella melitensis infection. Int. J. Biol. Sci., 2012; 8: 1013-1022
    Google Scholar
  • 128. Zheng Y., Yang Y., Li Y., Xu L., Wang Y., Guo Z., Song H., Yang M.,Luo B., Zheng A., Li P., Zhang Y., Ji G., Yu Y.: Ephedrine hydrochlorideinhibits PGN-induced inflammatory responses by promoting IL-10production and decreasing proinflammatory cytokine secretion viathe PI3K/Akt/GSK3β pathway. Cell. Mol. Immunol., 2013; 10: 330-337
    Google Scholar
  • 129. Zhou Y., Wang X., Liu M., Hu Q., Song L., Ye L., Zhou D., Ho W.:A critical function of toll-like receptor-3 in the induction of anti–human immunodeficiency virus activities in macrophages. Immunology,2010; 131: 40-49
    Google Scholar
  • 130. Zhu D., Pan C., Li L., Bian Z., Lv Z., Shi L., Zhang J., Li D., Gu H.,Zhang C.Y., Liu Y., Zen K.: MicroRNA-17/20a/106a modulate macrophageinflammatory responses through targeting signal-regulatoryprotein α. J. Allergy Clin. Immunol., 2013; 132: 426-436.e8
    Google Scholar
  • 131. Zhu J., Chen Q., Xia X., Mo P., Shen Y., Yu C.: Mycoepoxydienesuppresses RANKL-induced osteoclast differentiation and reducesovariectomy-induced bone loss in mice. Appl. Microbiol. Biotechnol.,2013; 97: 767-774
    Google Scholar
  • 132. Zhu X.D., Sun H.C., Xu H.X., Kong L.Q., Chai Z.T., Lu L., ZhangJ.B., Gao D.M., Wang W.Q., Zhang W., Zhuang P.Y., Wu W.Z., Wang L.,Tang Z.Y.: Antiangiogenic therapy promoted metastasis of hepatocellularcarcinoma by suppressing host-derived interleukin-12b inmouse models. Angiogenesis, 2013; 16: 809-820
    Google Scholar
  • 133. Zhuang G., Meng C., Guo X., Cheruku P.S., Shi L., Xu H., Li H.,Wang G., Evans A.R., Safe S., Wu C., Zhou B.: A novel regulator of macrophageactivation: miR-223 in obesity-associated adipose tissueinflammation. Circulation, 2012; 125: 2892-2903
    Google Scholar
  • 134. Zimmermann H.W., Trautwein C., Tacke F.: Functional role ofmonocytes and macrophages for the inflammatory response in acuteliver injury. Front. Physiol., 2012; 3: 1-18
    Google Scholar
  • 135. Zordan P., Sciorati C., Campana L., Cottone L., Clementi E., QueriniP.R., Brunelli S.: The nitric oxide-donor molsidomine modulatesthe innate inflammatory response in a mouse model of musculardystrophy. Eur. J. Pharmacol., 2013; 715: 296-303
    Google Scholar
  • 136. Zorzanelli Rocha V., Folco E.J.: Inflammatory concepts of obesity.Int. J. Inflam., 2011; 2011: ID 529061
    Google Scholar

Full text

Skip to content