The role of oxidative stress in female infertility and in vitro fertilization

COMMENTARY ON THE LAW

The role of oxidative stress in female infertility and in vitro fertilization

Joanna Wojsiat 1 , Jerzy Korczyński 2 , Marta Borowiecka 3 , Halina Małgorzata Żbikowska 3

1. Pracownia Badań Przedklinicznych o Podwyższonym Standardzie, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Warszawa
2. Klinika Medycyny Płodu i Ginekologii, I Katedra Ginekologii i Położnictwa, Uniwersytet Medyczny w Łodzi
3. Katedra Biochemii Ogólnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2017-05-09
DOI: 10.5604/01.3001.0010.3820
GICID: 01.3001.0010.3820
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 359-366

 

Abstract

Infertility problem involves many couples of reproductive age. It has been estimated that in Poland 0.7-1.0 million pairs require treatment, while for more than half of them assisted reproduction is the only recommended and effective method. Infertility affects 13 to 15% of the world’s population. A major concern is the age-related decline in female fertility even more that often a decision about pregnancy is taken at later age. Recent studies show that increased production of reactive oxygen species is an important factor in etiopathogenesis of pregnancy and affects female reproduction. It was found that oxidative stress may damage the oocytes and may impair their fertilization capacity. Oxidative stress may also lead to embryo fragmentation and formation of numerous developmental abnormalities, and is regarded to be one of the important reasons of spontaneous and recurrent miscarriage. Moreover, overproduction of reactive oxygen species has a significant impact on the success of in vitro fertilization (IVF).

References

  • 1. Abrao M.S., Muzii L., Marana R.: Anatomical causes of femaleinfertility and their management. Int. J. Gynaecol. Obstet., 2013;123: S18-S24
    Google Scholar
  • 2. Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A., GuptaS.: The effects of oxidative stress on female reproduction: a review.Reprod. Biol. Endocrinol., 2012; 10: 49
    Google Scholar
  • 3. Agarwal A., Gupta S., Sharma R.: Oxidative stress and its implicationsin female infertility – a clinician’s perspective. Reprod. Biomed.Online, 2005; 11: 641-650
    Google Scholar
  • 4. Alvarez J.G., Storey B.T.: Evidence for increased lipid peroxidativedamage and loss of superoxide dismutase activity as a mode ofsublethal cryodamage to human sperm during cryopreservation. J.Androl., 1992; 13: 232-241
    Google Scholar
  • 5. Bilodeau J.F., Chatterjee S., Sirard M.A.: Cryopreservation of bovinesemen decreases antioxidant defenses in spermatozoa. Biol.Reprod., 1999; 60: 102
    Google Scholar
  • 6. Bonizzi G., Piette J., Merville M.P., Bours V.: Cell type-specific rolefor reactive oxygen species in nuclear factor-kappaB activation byinterleukin-1. Biochem. Pharmacol., 2000; 59: 7-11
    Google Scholar
  • 7. Burton G.J., Hempstock J., Jauniaux E.: Oxygen, early embryonicmetabolism and free radical-mediated embryopathies. Reprod. Biomed.Online, 2003; 6: 84-96
    Google Scholar
  • 8. Eppig J.J., Wigglesworth K.: Factors affecting the developmentalcompetence of mouse oocytes grown in vitro: oxygen concentration.:Mol. Reprod. Dev., 1995; 42: 447-456
    Google Scholar
  • 9. Ferro D., Iuliano L., Violi F., Valesini G., Conti F.: Antioxidanttreatment decreases the titer of circulating anticardiolipin antibodies:comment on the article by Sambo et al. Arthritis. Rheum.,2002; 46: 3110-3112
    Google Scholar
  • 10. Goto Y., Noda Y., Mori T., Nakano M.: Increased generation ofreactive oxygen species in embryos cultured in vitro. Free Radic.Biol. Med., 1993; 15: 69-75
    Google Scholar
  • 11. Guérin P., El Mouatassim S., Ménézo Y.: Oxidative stress andprotection against reactive oxygen species in the pre-implantationembryo and its surroundings. Hum. Reprod. Update, 2001; 7: 175-189
    Google Scholar
  • 12. Kitagawa Y., Suzuki K., Yoneda A., Watanabe T.: Effects of oxygenconcentration and antioxidants on the in vitro developmentalability, production of reactive oxygen species (ROS), and DNA fragmentationin porcine embryos. Theriogenology, 2004; 62: 1186-1197
    Google Scholar
  • 13. Kowaltkowski A.J., Vercesi A.E.: Mitochondrial damage inducedby conditions of oxidative stress. Free Radic. Biol. Med., 1999;26: 463-471
    Google Scholar
  • 14. Krasnodębski J., Ćwiklicki J.: Zapłodnienie pozaustrojowe – tematnadal aktualny. Gin. Prakt., 2009; 17: 36-39
    Google Scholar
  • 15. Li N., Karin M.: Is NF-κB the sensor of oxidative stress? FASEBJ., 1999; 13: 1137-1143
    Google Scholar
  • 16. Liu Y., Luo L., Zhao H.: Levels of lipid peroxides and superoxidedismutase in peritoneal fluid of patients with endometriosis. J.Tongji. Med. Univ., 2001; 21: 166-167
    Google Scholar
  • 17. Los M., Drőge W., Stricker K., Baeuerle P.A., Schulze-Osthoff K.:Hydrogen peroxide as a potent activator of T lymphocyte functions.Eur. J. Immunol., 1995; 25: 159-165
    Google Scholar
  • 18. Manes C., Lai N.C.: Nonmitochondrial oxygen utilization byrabbit blastocysts and surface production of superoxide radicals. J.Reprod. Fertil., 1995; 104, 69-75
    Google Scholar
  • 19. Orsi N.M., Leese H.J.: Protection against reactive oxygen speciesduring mouse preimplantation embryo development: role of EDTA,oxygen tension, catalase, superoxide dismutase and pyruvate. Mol.Reprod. Dev., 2001; 59: 44-53
    Google Scholar
  • 20. Polak G., Kozioł-Montewka M., Gogacz M., Błaszkowska I., KotarskiJ.: Total antioxidant status of peritoneal fluid in infertile women.Eur. J. Obstet. Gynecol. Reprod. Biol., 2001; 94: 261-263
    Google Scholar
  • 21. Prabha B., Molykutty J., Swapna A., Rajalekshmi T.N., GangadharanV.P.: Increased expression of interleukin-1 beta is associated withpersistence of the disease and invasion in complete hydatidiformmoles (CHM). Eur. J. Gynaecol. Oncol., 2001; 22: 50-56
    Google Scholar
  • 22. Radwan J.: Epidemiologia niepłodności. W: Radwan J., Wołczyń-ski S. (red.), Niepłodność i rozród wspomagany. Wydawnictwo Termedia,Poznań 2011
    Google Scholar
  • 23. Roberts J.M., Myatt L., Spong C.Y., Thom E.A., Hauth C.J., LevenoK.J., Pearson G.D., Wapner R.J., Varner M.W., Thorp J.M. Jr, MercerB.M., Peaceman A.M., Ramin S.M., Carpenter M.W., Samuels P. i wsp.:Vitamins C and E to prevent complications of pregnancy-associatedhypertension. N. Engl. J. Med., 2010; 362: 1282-1291
    Google Scholar
  • 24. Saleh R.A., Agarwal A., Nada E.A., El-Tonsy M.H., Sharma R.K.,Meyer A., Nelson D.R., Thomas A.J.: Negative effects of increasedsperm DNA damage in relation to seminal oxidative stress in menwith idiopathic and male factor infertility. Fertil. Steril., 2003; 79:1597-1605
    Google Scholar
  • 25. Sikka S.C.: Role of oxidative stress and antioxidants in andrologyand assisted reproductive technology. J. Androl., 2004; 25: 5-18
    Google Scholar
  • 26. Şimşek M., Naziroglu M., Şimşek H., Cay M., Aksakal M., KumruS.: Blood plasma levels of lipoperoxides, glutathione peroxidase,beta carotene, vitamin A and E in women with habitual abortion.Cell Biochem. Funct., 1998; 16: 227-231
    Google Scholar
  • 27. Sugino N., Karube-Harada A., Kashida S., Takiguchi S., Kato H.:Reactive oxygen species stimulate prostaglandyn F2α production ihuman endometrial stromal cells in vitro. Hum. Reprod., 2001; 16:1797-1801
    Google Scholar
  • 28. Tarin J.J., Pérez-Albalá S., Cano A.: Consequences of offspringof abnormal function in ageing gametes. Hum. Reprod. Update,2000; 6: 532-549
    Google Scholar
  • 29. Tatone C., Carbone M.C., Falone S., Aimola P., Giardinelli A.,Caserta D., Pandolfi A., Ragnelli A.M., Amicarelli F.: Age-dependentchanges in the expression of superoxide dismutases and catalase areassociated with ultrastructural modifications in human granulosacells. Mol. Hum. Reprod., 2006; 12: 655-660
    Google Scholar
  • 30. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., TelserJ.: Free radicals and antioxidants in normal physiological functionsand human disease. Int. J. Biochem. Cell Biol., 2007; 39: 44-84
    Google Scholar
  • 31. Vural P., Akgül C., Yildirim A., Canbaz M.: Antioxidant defencein recurrent abortion. Clin. Chim. Acta, 2000; 295: 169-177
    Google Scholar
  • 32. Wołczyński S.: Techniki rozrodu wspomaganego medycznie wleczeniu niepłodności. W: Wołczyński S. (red.), Ginekologia po dyplomie.Medical Tribune Polska; Warszawa 2006
    Google Scholar
  • 33. Zachara B.A., Dobrzyński W., Trafikowska U., Szymański W.:Blood selenium and glutathione peroxidases in miscarriage. BJOG:Int. J. Gynaecol., 2001; 108: 244-247
    Google Scholar

Full text

Skip to content