The role of SIRT1 in the pathogenesis of insulin resistance in skeletal muscle

COMMENTARY ON THE LAW

The role of SIRT1 in the pathogenesis of insulin resistance in skeletal muscle

Magdalena Stefanowicz 1 , Marek Strączkowski 2 , Monika Karczewska-Kupczewska 2

1. Zakład Chorób Metabolicznych, Uniwersytet Medyczny w Białymstoku
2. Zakład Chorób Metabolicznych, Uniwersytet Medyczny w Białymstoku; Zakład Profilaktyki Chorób Metabolicznych, Instytut Rozrodu Zwierząt i Badań Żywności Polskiej Akademii Nauk w Olsztynie

Published: 2015-01-16
DOI: 10.5604/17322693.1136379
GICID: 01.3001.0009.6479
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 63-68

 

Abstract

Skeletal muscle insulin resistance manifests as a decreased ability of insulin to stimulate glucose uptake in consequence of an impairment in its intracellular signaling. Sirtuin 1 (SIRT1), which belongs to the family of sirtuins (Sir2; silent information regulator 2 protein) participates in the regulation of skeletal muscle glucose and lipid metabolism. Experimental studies indicate that SIRT1 may play a role in the pathogenesis of skeletal muscle insulin resistance. SIRT1 directly influences insulin signal transduction pathway. It increases insulin-dependent IRS2 phosphorylation and Akt activation. Moreover, SIRT1 interacts with PGC1α and AMPK to stimulate muscle glucose uptake and fatty acid oxidation and thus it can prevent insulin resistance. SIRT1 activators might be useful in the treatment of insulin resistance-related diseases.

References

  • 1. Amat R., Planavila A., Chen S.L., Iglesias R., Giralt M., Villarroya F.:SIRT1 controls the transcription of the peroxisome proliferator-activatedreceptor-γ co-activator-1α (PGC-1α) gene in skeletal musclethrough the PGC-1α autoregulatory loop and interaction with MyoD.J. Biol. Chem., 2009; 284: 21872-21880
    Google Scholar
  • 2. Blot V., McGraw T.E.: Molecular mechanisms controlling GLUT4intracellular retention. Mol. Biol. Cell, 2008; 19: 3477-3487
    Google Scholar
  • 3. Cantó C., Gerhart-Hines Z., Feige J.N., Lagouge M., Noriega L., Milne J.C.,Elliott P.J., Puigserver P., Auwerx J.: AMPK regulates energy expenditure bymodulating NAD+ metabolism and SIRT1 activity. Nature, 2009; 458: 1056-1060
    Google Scholar
  • 4. Chan M.C., Arany Z.: The many roles of PGC-1α in muscle – recentdevelopments. Metabolism, 2014; 63: 441-451
    Google Scholar
  • 5. Chung S., Yao H., Caito S., Hwang J.W., Arunachalam G., RahmanI.: Regulation of SIRT1 in cellular functions: role of polyphenols.Arch. Biochem. Biophys., 2010; 501: 79-90
    Google Scholar
  • 6. Crujeiras A.B., Parra D., Goyenechea E., Martínez J.A.: Sirtuin geneexpression in human mononuclear cells is modulated by caloric restriction.Eur. J. Clin. Invest., 2008; 38: 672-678
    Google Scholar
  • 7. de Kreutzenberg S.V., Ceolotto G., Papparella I., Bortoluzzi A.,Semplicini A., Dalla Man C., Cobelli C., Fadini G.P., Avogaro A.: Downregulationof the longevity-associated protein sirtuin 1 in insulinresistance and metabolic syndrome: potential biochemical mechanisms.Diabetes, 2010; 59: 1006-1015
    Google Scholar
  • 8. DeFronzo R.A.: Pathogenesis of type 2 diabetes: metabolic andmolecular implications for identifying diabetes gennes. DiabetesRev., 1997; 5: 177-269
    Google Scholar
  • 9. Deng X.Q., Chen L.L., Li N.X.: The expression of SIRT1 in nonalcoholicfatty liver disease induced by high-fat diet in rats. LiverInt., 2007; 27: 708-715
    Google Scholar
  • 10. Finkel T., Deng C.X., Mostoslavsky R.: Recent progress in the biologyand physiology of sirtuins. Nature, 2009; 460, 587-591Piśmiennictwo
    Google Scholar
  • 11. Fulco M., Schiltz R.L., Iezzi S., King M.T., Zhao P., Kashiwaya Y.,Hoffman E., Veech R.L., Sartorelli V.: Sir2 regulates skeletal muscledifferentiation as a potential sensor of the redox state. Mol. Cell,2003; 12: 51-62
    Google Scholar
  • 12. Gerhart-Hines Z., Rodgers J.T., Bare O., Lerin C., Kim S.H., MostoslavskyR., Alt F.W., Wu Z., Puigserver P.: Metabolic control ofmuscle mitochondrial function and fatty acid oxidation throughSIRT1/PGC1-α. EMBO J., 2007; 26: 1913-1923
    Google Scholar
  • 13. Hardie D.G.: Sensing of energy and nutrients by AMP-activatedprotein kinase. Am. J. Clin. Nutr., 2011; 93: 891S-896S
    Google Scholar
  • 14. Hou X., Xu S., Maitland-Toolan K.A., Sato K., Jiang B., IdoY., Lan F., Walsh K., Wierzbicki M., Verbeuren T.J., Cohen R.A.,Zang M.: SIRT1 regulates hepatocyte lipid metabolism throughactivating AMP-activated protein kinase. J. Biol. Chem., 2008;283: 20015-20026
    Google Scholar
  • 15. Kaeberlein M., McVey M., Guarente L.: The SIR2/3/4 complexand SIR2 alone promote longevity in Saccharomyces cerevisiae by twodifferent mechanisms. Genes Dev., 1999; 13: 2570-2580
    Google Scholar
  • 16. Kelley D.E., Goodpaster B., Wing R.R., Simoneau J.A.: Skeletalmuscle fatty acid metabolism in association with insulin resistance,obesity, and weight loss. Am. J. Physiol., 1999; 277: E1130-E1141
    Google Scholar
  • 17. Kelley D.E., He J., Menshikova E.V., Ritov V.B.: Dysfunction ofmitochondria in human skeletal muscle in type 2 diabetes. Diabetes,2002; 51: 2944-2950
    Google Scholar
  • 18. Kelley D.E., Mandarino L.J.: Fuel selection in human skeletal musclein insulin resistance: a reexamination. Diabetes, 2000; 49: 677-683
    Google Scholar
  • 19. Lan F., Cacicedo J.M., Ruderman N., Ido Y.: SIRT1 modulation ofthe acetylation status, cytosolic localization, and activity of LKB1.Possible role in AMP-activated protein kinase activation. J. Biol.Chem., 2008; 283: 27628-27635
    Google Scholar
  • 20. Lee W.J., Kim M., Park H.S., Kim H.S., Jeon M.J., Oh K.S., KohE.H., Won J.C., Kim M.S., Oh G.T., Yoon M., Lee K.U., Park J.Y.: AMPK activation increases fatty acid oxidation in skeletal muscle by activatingPPARα and PGC-1. Biochem. Biophys. Res. Commun., 2006;340: 291-295
    Google Scholar
  • 21. Liang F., Kume S., Koya D.: SIRT1 and insulin resistance. Nat.Rev. Endocrinol., 2009; 5: 367-373
    Google Scholar
  • 22. Lomb D.J., Laurent G., Haigis M.C.: Sirtuins regulate key aspectsof lipid metabolism. Biochim. Biophys. Acta, 2010; 1804: 1652-1657
    Google Scholar
  • 23. Michael L.F., Wu Z., Cheatham R.B., Puigserver P., AdelmantG., Lehman J.J., Kelly D.P., Spiegelman B.M.: Restoration of insulinsensitiveglucose transporter (GLUT4) gene expression in musclecells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci.USA, 2001; 98: 3820-3825
    Google Scholar
  • 24. Mikłosz A., Konstantynowicz K., Stepek T., Chabowski A.: Rolabiałka AS160/TBC1D4 w transporcie glukozy do wnętrza miocytów.Postępy Hig. Med. Dośw., 2011; 65: 270-276
    Google Scholar
  • 25. Milne J.C., Lambert P.D., Schenk S., Carney D.P., Smith J.J., GagneD.J., Jin L., Boss O., Perni R.B., Vu C.B., Bemis J.E., Xie R., Disch J.S., NgP.Y., Nunes J.J. i wsp.: Small molecule activators of SIRT1 as therapeuticsfor the treatment of type 2 diabetes. Nature, 2007; 450: 712-716
    Google Scholar
  • 26. Misra P., Chakrabarti R.: The role of AMP kinase in diabetes.Indian J. Med. Res., 2007; 125: 389-398
    Google Scholar
  • 27. Moynihan K.A., Grimm A.A., Plueger M.M., Bernal-Mizrachi E.,Ford E., Cras-Meneur C., Permutt M.A., Imai S.: Increased dosage ofmammalian Sir2 in pancreatic β cells enhances glucose-stimulatedinsulin secretion in mice. Cell Metab., 2005; 2: 105-117
    Google Scholar
  • 28. Petersen K.F., Dufour S., Befroy D., Garcia R., Shulman G.I.: Impairedmitochondrial activity in the insulin-resistant offspring ofpatients with type 2 diabetes. N. Engl. J. Med., 2004; 350: 664-671
    Google Scholar
  • 29. Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T.,Machado De Oliveira R., Leid M., McBurney M.W., Guarente L.: Sirt1promotes fat mobilization in white adipocytes by repressing PPAR-γ.Nature, 2004; 429: 771-776
    Google Scholar
  • 30. Rodgers J.T., Lerin C., Gerhart-Hines Z., Puigserver P.: Metabolicadaptations through the PGC-1α and SIRT1 pathways. FEBSLett., 2008; 582: 46-53
    Google Scholar
  • 31. Ruderman N.B., Saha A.K.: Metabolic syndrome: adenosine monophosphate-activatedprotein kinase and malonyl coenzyme A.Obesity, 2006; 14 (Suppl. 1): 25S-33S
    Google Scholar
  • 32. Ruderman N.B., Xu X.J., Nelson L., Cacicedo J.M., Saha A.K., LanF., Ido Y.: AMPK and SIRT1: a long-standing partnership? Am. J. Physiol.Endocrinol. Metab., 2010; 298: E751-E760
    Google Scholar
  • 33. Shoba B., Lwin Z.M., Ling L.S., Bay B.H., Yip G.W., Kumar S.D.:Function of sirtuins in biological tissues. Anat. Rec., 2009; 292: 536-543
    Google Scholar
  • 34. Silva J.P., Wahlestedt C.: Role of Sirtuin 1 in metabolic regulation.Drug Discov. Today, 2010; 15: 781-791
    Google Scholar
  • 35. Storlien L., Oakes N.D., Kelley D.E.: Metabolic flexibility. Proc.Nutr. Soc., 2004; 63: 363-368
    Google Scholar
  • 36. Sun C., Zhang F., Ge X., Yan T., Chen X., Shi X., Zhai Q.: SIRT1improves insulin sensitivity under insulin-resistant conditions byrepressing PTP1B. Cell Metab., 2007; 6: 307-319
    Google Scholar
  • 37. Suwa M., Nakano H., Kumagai S.: Effects of chronic AICAR treatmenton fiber composition, enzyme activity, UCP3, and PGC-1 inrat muscles. J. Appl. Physiol., 2003; 95: 960-968
    Google Scholar
  • 38. Towler M.C., Hardie D.G.: AMP-activated protein kinase in metaboliccontrol and insulin signaling. Circ. Res., 2007; 100: 328-341
    Google Scholar
  • 39. Wang Y., Liang Y., Vanhoutte P.M.: SIRT1 and AMPK in regulatingmammalian senescence: a critical review and a working model.FEBS Lett., 2011; 585: 986-994
    Google Scholar
  • 40. Zabolotny J.M., Kim Y.B.: Silencing insulin resistance throughSIRT1. Cell Metab., 2007; 6: 247-249
    Google Scholar
  • 41. Zhang B.B., Zhou G., Li C.: AMPK: an emerging drug target fordiabetes and the metabolic syndrome. Cell Metab., 2009; 9: 407-416
    Google Scholar
  • 42. Zorzano A., Hernández-Alvarez M.I., Palacín M., Mingrone G.: Alterationsin the mitochondrial regulatory pathways constituted by thenuclear co-factors PGC-1α or PGC-1β and mitofusin 2 in skeletal musclein type 2 diabetes. Biochim. Biophys. Acta, 2010; 1797: 1028-1033
    Google Scholar

Full text

Skip to content