The role of SRSF1 in cancer
Elżbieta Sokół 1 , Joanna Bogusławska 1 , Agnieszka Piekiełko-Witkowska 1Abstract
SRSF1 jest wielofunkcyjnym białkiem biorącym udział w procesach związanych z metabolizmem RNA. Następstwem zaburzeń ekspresji SRSF1, obserwowanych w wielu typach nowotworów, są nieprawidłowości w składaniu pre-mRNA, zmiany stabilności transkryptów i poziomu translacji onkogenów oraz genów supresorowych. Regulując różnicowe składanie transkryptów genów CCND1, RAC1, KLF6, BCL2L1, MCL1 oraz CASP9, SRSF1 indukuje zmiany w cyklu komórkowym, proliferacji i apoptozie. Czynnik SRSF1 wpływa także na angiogenezę nowotworową i przerzutowanie, m.in. promując powstawanie proangiogennych wariantów VEGF oraz wariantu splicingowego genu RON, który aktywuje proces przejścia nabłonkowo-mezenchymalnego. Ze względu na istotną rolę SRSF1 w rozwoju i progresji nowotworów, białko to jest obiecującym celem terapii przeciwnowotworowych wykorzystujących związki hamujące jego aktywność.W artykule przedstawiono najnowsze informacje o wpływie SRSF1 na nowotworzenie oraz jego potencjalne znaczenie w opracowaniu nowych strategii w leczeniu chorych z nowotworami.
References
- 1. Amin E.M., Oltean S., Hua J., Gammons M.V., Hamdollah-ZadehM., Welsh G.I., Cheung M.K., Ni L., Kase S., Rennel E.S., Symonds K.E.,Nowak D.G., Royer-Pokora B., Saleem M.A., Hagiwara M., SchumacherV.A., Harper S.J., Hinton D.R., Bates D.O., Ladomery M.R.: WT1mutants reveal SRPK1 to be a downstream angiogenesis target byaltering VEGF splicing. Cancer Cell, 2011; 20: 768-780
Google Scholar - 2. Anczuków O., Rosenberg A.Z., Akerman M., Das S., Zhan L., KarniR., Muthuswamy S.K., Krainer A.R.: The splicing factor SRSF1 regulatesapoptosis and proliferation to promote mammary epithelialcell transformation. Nat. Struct. Mol. Biol., 2012; 19: 220-228
Google Scholar - 3. Bates D.O., Cui T.G., Doughty J.M., Winkler M., Sugiono M., ShieldsJ.D., Peat D., Gillatt D., Harper S.J.: VEGF165b, an inhibitory splicevariant of vascular endothelial growth factor, is down-regulated inrenal cell carcinoma. Cancer Res., 2002; 62: 4123-4131
Google Scholar - 4. Das S., Anczuków O., Akerman M., Krainer A.R.: Oncogenic splicingfactor SRSF1 is a critical transcriptional target of MYC. Cell Rep.,2012; 1: 110-117
Google Scholar - 5. Das S., Fregoso O.I., Krainer A.R.: A new path to oncogene-inducedsenescence: at the crossroads of splicing and translation. Cell Cycle,2013; 12: 1477-1479
Google Scholar - 6. Das S., Krainer A.R.: Emerging functions of SRSF1, splicing factorand oncoprotein, in RNA metabolism and cancer. Mol. CancerRes., 2014; 12: 1195-1204
Google Scholar - 7. Ezponda T., Pajares M.J., Agorreta J., Echeveste J.I., López-PicazoJ.M., Torre W., Pio R., Montuenga L.M.: The oncoprotein SF2/ASFpromotes non–small cell lung cancer survival by enhancing survivinexpression. Clin. Cancer Res., 2010; 16: 4113-4125
Google Scholar - 8. Fregoso O.I., Das S., Akerman M., Krainer A.R.: Splicing-factoroncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence.Mol. Cell, 2013; 50: 56-66
Google Scholar - 9. Gammons M.V., Lucas R., Dean R., Coupland S.E., Oltean S, BatesD.O.: Targeting SRPK1 to control VEGF-mediated tumour angiogenesisin metastatic melanoma. Br. J. Cancer., 2014; 111: 477-485
Google Scholar - 10. Gautrey H.L., Tyson-Capper A.J.: Regulation of Mcl-1 by SRSF1and SRSF5 in cancer cells. PLoS One, 2012; 7: e51497
Google Scholar - 11. Ghigna C., De Toledo M., Bonomi S., Valacca C., Gallo S., ApicellaM., Eperon I., Tazi J., Biamonti G.: Pro-metastatic splicing of Ron protooncogenemRNA can be reversed: therapeutic potential of bifunctionaloligonucleotides and indole derivatives. RNA Biol., 2010; 7: 495-503
Google Scholar - 12. Ghigna C., Giordano S., Shen H., Benvenuto F., Castiglioni F.,Comoglio P.M., Green M.R., Riva S., Biamonti G.: Cell motility is controlledby SF2/ASF through alternative splicing of the Ron protooncogene.Mol. Cell, 2005; 20: 881-890
Google Scholar - 13. Goncalves V., Henriques A., Pereira J.F., Neves Costa A., MoyerM.P., Moita L.F., Gama-Carvalho M., Matos P., Jordan P.: Phosphorylationof SRSF1 by SRPK1 regulates alternative splicing of tumorrelatedRac1b in colorectal cells. RNA, 2014; 20: 474-482
Google Scholar - 14. Goncalves V., Jordan P.: Posttranscriptional regulation of splicingfactor SRSF1 and its role in cancer cell biology. Biomed. Res.Int., 2015; 2015: 287048
Google Scholar - 15. Goncalves V., Matos P., Jordan P.: Antagonistic SR proteins regulatealternative splicing of tumor-related Rac1b downstream of thePI3-kinase and Wnt pathways. Hum. Mol. Genet., 2009; 18: 3696-3707
Google Scholar - 16. Gout S., Brambilla E., Boudria A., Drissi R., Lantuejoul S., GazzeriS., Eymin B.: Abnormal expression of the pre-mRNA splicing regulatorsSRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma.PLoS One, 2012; 7: e46539
Google Scholar - 17. Guo R., Li Y., Ning J., Sun D., Lin L., Liu X.: HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3and affect immunomodulatory functions in human non-small celllung cancer cells. PLoS One, 2013; 8: e62729
Google Scholar - 18. Hanahan D., Weinberg R.A.: Hallmarks of cancer. Cell, 2000;100: 57-70
Google Scholar - 19. Hanahan D., Weinberg R.A.: Hallmarks of cancer: the next generation.Cell, 2011; 144: 646-674
Google Scholar - 20. Jordan P., Brazåo R., Boavida M.G., Gespach C., Chastre E.: Cloningof a novel human Rac1b splice variant with increased expressionin colorectal tumors. Oncogene, 1999; 18: 6835-6839
Google Scholar - 21. Jumaa H., Nielsen P.J.: The splicing factor SRp20 modifies splicingof its own mRNA and ASF/SF2 antagonizes this regulation. EMBOJ., 1997; 16: 5077-5085
Google Scholar - 22. Kanehiro Y., Todo K., Negishi M., Fukuoka J., Gan W., HikasaT., Kaga Y., Takemoto M., Magari M., Li X., Manley J.L., Ohmori H.,Kanayana N.: Activation-induced cytidine deaminase (AID)-dependentsomatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proc. Natl. Acad. Sci. USA, 2012;109: 1216-1221
Google Scholar - 23. Karni R., de Stanchina E., Lowe S.W., Sinha R., Mu D., Krainer A.R.:The gene encoding the splicing factor SF2/ASF is a proto-oncogene.Nat. Struct. Mol. Biol., 2007; 14: 185-193
Google Scholar - 24. Kim C.J., Nishi K., Isono T., Okuyama Y., Tambe Y., Okada Y., InoueH.: Cyclin D1b variant promotes cell invasiveness independentof binding to CDK4 in human bladder cancer cells. Mol. Carcinog.,2009; 48: 953-964
Google Scholar - 25. Kowalska-Loth B., Girstun A., Trzcińska A.M., Piekiełko Witkowska A., Staroń K.: SF2/ASF protein binds to the cap regionof human topoisomerase I through two RRM domains. Biochem.Biophys. Res. Commun., 2005, 331: 398-403
Google Scholar - 26. Lee Y.H., Tokunaga T., Oshika Y., Suto R., Yanagisawa K., TomisawaM., Fukuda H., Nakano H., Abe S., Tateishi A., Kijima H., YamazakiH., Tamaoki N., Ueyama Y., Nakamura M.: Cell-retained isoformsof vascular endothelial growth factor (VEGF) are correlated withpoor prognosis in osteosarcoma. Eur. J. Cancer, 1999; 35: 1089-1093
Google Scholar - 27. Lejeune F., Cavaloc Y., Stevenin J.: Alternative splicing of intron 3of the serine/arginine-rich protein 9G8 gene. Identification of flankingexonic splicing enhancers and involvement of 9G8 as a transactingfactor. J. Biol. Chem., 2001; 276; 7850-7858
Google Scholar - 28. Lopez-Mejia I.C., De Toledo M., Della Seta F., Fafet P., RebouissouC., Deleuze V., Blanchard J.M., Jorgensen C., Tazi J., VignaisM.L.: Tissue-specific and SRSF1-dependent splicing of fibronectin,a matrix protein that controls host cell invasion. Mol. Biol. Cell,2013; 24: 3164-3176
Google Scholar - 29. Maslon M.M., Heras S.R., Bellora N., Eyras E., Cáceres J.F.: Thetranslational landscape of the splicing factor SRSF1 and its role inmitosis. Elife, 2014; 3: e02028
Google Scholar - 30. Matos P., Collard J.G., Jordan P.: Tumor-related alternativelyspliced Rac1b is not regulated by Rho-GDP dissociation inhibitorsand exhibits selective downstream signaling. J. Biol. Chem., 2003;278: 50442-50448
Google Scholar - 31. Mavrou A., Brakspear K., Hamdollah-Zadeh M., Damodaran G.,Babaei-Jadidi R., Oxley J., Gillatt D.A., Ladomery M.R., Harper S.J.,Bates D.O., Oltean S.: Serine-arginine protein kinase1 (SRPK1) inhibitionas a potential novel targeted therapeutic strategy in prostatecancer. Oncogene, 2015; 34: 4311-4319
Google Scholar - 32. Meseguer S., Mudduluru G., Escamilla J.M., Allgayer H., BarettinoD.: MicroRNAs-10a and -10b contribute to retinoic acid-induceddifferentiation of neuroblastoma cells and target the alternativesplicing regulatory factor SFRS1 (SF2/ASF). J. Biol. Chem., 2011;286: 4150-4164
Google Scholar - 33. Michlewski G., Sanford J.R., Cáceres J.F.: The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylationof 4E-BP1. Mol. Cell, 2008; 30: 179-189
Google Scholar - 34. Moore M.J., Wang Q., Kennedy C.J., Silver P.A.: An alternativesplicing network links cell-cycle control to apoptosis. Cell, 2010;142: 625-636
Google Scholar - 35. Muñoz Ú., Puche J.E., Hannivoort R., Lang U.E., Cohen-NaftalyM., Friedman S.L.: Hepatocyte growth factor enhances alternativesplicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promotegrowth through SRSF1. Mol. Cancer Res., 2012; 10: 1216-1227
Google Scholar - 36. Nowak D.G., Amin E.M., Rennel E.S., Hoareau-Aveilla C., GammonsM., Damodoran G., Hagiwara M., Harper S.J., Woolard J., LadomeryM.R., Bates D.O.: Regulation of vascular endothelial growth factor(VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms:a novel therapeutic strategy for angiogenesis. J. Biol. Chem., 2010;285: 5532-5540
Google Scholar - 37. Olshavsky N.A., Comstock C.E., Schiewer M.J., Augello M.A.,Hyslop T., Sette C., Zhang J., Parysek L.M., Knudsen K.E.: Identificationof ASF/SF2 as a critical, allele-specific effector of the cyclin D1boncogene. Cancer Res., 2010; 70: 3975-3984
Google Scholar - 38. Oltean S., Gammons M., Hulse R., Hamdollah-Zadeh M., MavrouA., Donaldson L., Salmon A.H., Harper S.J., Ladomery M.R.,Bates D.O.: SRPK1 inhibition in vivo: modulation of VEGF splicingand potential treatment for multiple diseases. Biochem. Soc. Trans.,2012; 40: 831-835
Google Scholar - 39. Peiris-Pagès M.: The role of VEGF 165b in pathophysiology. CellAdh. Migr., 2012; 6: 561-568
Google Scholar - 40. Peiris-Pagès M., Harper S.J., Bates D.O., Ramani P.: Balance ofpro- versus anti-angiogenic splice isoforms of vascular endothelial growth factor as a regulator of neuroblastoma growth. J. Pathol.,2010; 222: 138-147
Google Scholar - 41. Piekielko-Witkowska A.: Plejotropowy efekt fosforylacji białekwiążących RNA bogatych w serynę i argininę. Postępy Biochem.,2006; 52: 383-389
Google Scholar - 42. Piekielko-Witkowska A., Kedzierska H., Poplawski P., WojcickaA., Rybicka B., Maksymowicz M., Grajkowska W., Matyja E., MandatT., Bonicki W., Nauman P.: Alternative splicing of iodothyronine deiodinasesin pituitary adenomas. Regulation by oncoprotein SF2/ASF. Biochim. Biophys. Acta, 2013; 1832: 763-772
Google Scholar - 43. Piekielko-Witkowska A., Wiszomirska H., Wojcicka A., PoplawskiP., Boguslawska J., Tanski Z., Nauman A.: Disturbed expression ofsplicing factors in renal cancer affects alternative splicing of apoptosisregulators, oncogenes, and tumor suppressors. PLoS One, 2010;5: e13690
Google Scholar - 44. Pieniążek M, Donizy P, Ziętek M, Szynglarewicz B, MatkowskiR.: Rola szlaków sygnalizacyjnych związanych z TGF-β w patogenezieprzejścia nabłonkowo-mezenchymalnego (EMT) jako głównegoelementu warunkującego progresję choroby nowotworowej. PostępyHig. Med. Dośw., 2012; 66: 583-591
Google Scholar - 45. Pritchard-Jones R.O., Dunn D.B., Qiu Y., Varey A.H., OrlandoA., Rigby H., Harper S.J., Bates D.O.: Expression of VEGF(xxx)b, theinhibitory isoforms of VEGF, in malignant melanoma. Br. J. Cancer,2007; 97: 223-230
Google Scholar - 46. Sanford J.R., Ellis J., Cáceres J.F.: Multiple roles of arginine/serine-richsplicing factors in RNA processing. Biochem. Soc. Trans.,2005; 33: 443-446
Google Scholar - 47. Sanford J.R., Ellis J.D., Cazalla D., Cáceres J.F.: Reversible phosphorylationdifferentially affects nuclear and cytoplasmic functionsof splicing factor 2/alternative splicing factor. Proc. Natl. Acad. Sci.USA, 2005; 102: 15042-15047
Google Scholar - 48. Sato H., Hosoda N., Maquat L.E.: Efficiency of the pioneer roundof translation affects the cellular site of nonsense-mediated mRNAdecay. Mol. Cell, 2008; 29: 255-262
Google Scholar - 49. Schnelzer A., Prechtel D., Knaus U., Dehne K., Gerhard M., GraeffH., Harbeck N., Schmitt M., Lengyel E.: Rac1 in human breast cancer:overexpression, mutation analysis, and characterization of a newisoform, Rac1b. Oncogene, 2000; 19: 3013-3020
Google Scholar - 50. Shepard P.J., Hertel K.J.: The SR protein family. Genome Biol.,2009; 10: 242
Google Scholar - 51. Shultz J.C., Goehe R.W., Murudkar C.S., Wijesinghe D.S., MaytonE.K., Massiello A., Hawkins A.J., Mukerjee P., Pinkerman R.L.,Park M.A., Chalfant C.E.: SRSF1 regulates the alternative splicing ofcaspase 9 via a novel intronic splicing enhancer affecting the chemotherapeuticsensitivity of non-small cell lung cancer cells. Mol.Cancer Res., 2011; 9: 889-900
Google Scholar - 52. Silva A.L., Carmo F., Bugalho M.J.: RAC1b overexpression in papillarythyroid carcinoma: a role to unravel. Eur. J. Endocrinol., 2013;168: 795-804
Google Scholar - 53. Sinclair C.S., Rowley M., Naderi A., Couch F.J.: The 17q23 ampliconand breast cancer. Breast Cancer Res. Treat., 2003; 78: 313-322
Google Scholar - 54. Sinha R., Allemand E., Zhang Z., Karni R., Meyers M.P., KrainerA.R.: Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. Mol. Cell. Biol.,2010; 30: 2762-2774
Google Scholar - 55. Soret J., Bakkour N., Maire S., Durand S., Zekri L., Gabut M., FicW., Divita G., Rivalle C., Dauzonne D., Nguyen C.H., Jeanteur P., TaziJ.: Selective modification of alternative splicing by indole derivativesthat target serine-arginine-rich protein splicing factors. Proc. Natl.Acad. Sci. USA, 2005; 102: 8764-8769
Google Scholar - 56. Stallings-Mann M.L., Waldmann J., Zhang Y., Miller E., GauthierM.L., Visscher D.W., Downey G.P., Radisky E.S., Fields A.P., RadiskyD.C.: Matrix metalloproteinase induction of Rac1b, a key effector oflung cancer progression. Sci. Transl. Med., 2012; 4: 142ra95
Google Scholar - 57. Sun D., Novotny M., Bulek K., Liu C., Li X., Hamilton T.: Treatmentwith IL-17 prolongs the half-life of chemokine CXCL1 mRNAvia the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF).Nat. Immunol., 2011; 12: 853-860
Google Scholar - 58. Sun S., Zhang Z., Sinha R., Karni R., Krainer A.R.: SF2/ASF autoregulationinvolves multiple layers of post-transcriptional andtranslational control. Nat. Struct. Mol. Biol., 2010; 17: 306-312
Google Scholar - 59. Sureau A., Gattoni R., Dooghe Y., Stévenin J., Soret J.: SC35 autoregulatesits expression by promoting splicing events that destabilizeits mRNAs. EMBO J., 2001; 20: 1785-1796
Google Scholar - 60. Twyffels L., Gueydan C., Kruys V.: Shuttling SR proteins: morethan splicing factors. FEBS J., 2011; 278: 3246-3255
Google Scholar - 61. Um H.D.: Bcl-2 family proteins as regulators of cancer cell invasionand metastasis: a review focusing on mitochondrial respirationand reactive oxygen species. Oncotarget, 2016; 7: 5193-5203
Google Scholar - 62. Venables J.P.: Unbalanced alternative splicing and its significancein cancer. Bioessays, 2006; 28: 378-386
Google Scholar - 63. Verduci L., Simili M., Rizzo M., Mercatanti A., Evangelista M.,Mariani L., Rainaldi G., Pitto L.: MicroRNA (miRNA)-mediated interactionbetween leukemia/lymphoma-related factor (LRF) andalternative splicing factor/splicing factor 2 (ASF/SF2) affects mouseembryonic fibroblast senescence and apoptosis. J. Biol. Chem., 2010;285: 39551-39563
Google Scholar - 64. Wiszomirska H., Piekiełko-Witkowska A., Nauman A.: Zaburzeniaróżnicowego składania pierwotnego transkryptu w kancerogenezie.Postępy Biochem., 2011; 57: 257-265
Google Scholar - 65. Wu H., Sun S., Tu K., Gao Y., Xie B., Krainer A.R., Zhu J.: A splicing-independentfunction of SF2/ASF in microRNA processing. Mol.Cell, 2010; 38: 67-77
Google Scholar - 66. Wysokiński D., Błasiak J.: Perspektywy wykorzystania interferencjiRNA w terapii chorób związanych z zaburzeniami alternatywnegoskładania RNA. Postępy Hig. Med. Dośw., 2012, 66: 683-695
Google Scholar - 67. Zhang Z., Krainer A.R.: Involvement of SR proteins in mRNAsurveillance. Mol. Cell, 2004; 16: 597-607
Google Scholar - 68. Zhao S., Cao L., Freeman J.W.: Knockdown of RON receptor kinasedelays but does not prevent tumor progression while enhancingHGF/MET signaling in pancreatic cancer cell lines. Oncogenesis,2013; 2: e76
Google Scholar