The role of the bone marrow microenvironment in the pathogenesis of multiple myeloma
Artur Jurczyszyn 1 , Joanna Gdula-Argasińska 2 , Agata Kosmaczewska 3 , Aleksander B. Skotnicki 1Abstract
Multiple myeloma (MM) is one of the most common hematologic malignancies. It remains an incurable disease, so far. The mainstay of treatment for decades was pointless therapy with cytostatic agents and immunosuppressant’s. Because myeloma is most common in the elderly population, vulnerable to aggressive therapy, non-specific treatment approaches led to poor patient survival. Intensive study of MM, allowed identification of the molecular interactions between myeloma cells and bone marrow tumour microenvironment, responsible for the development of the disease and associated complications, such as osteolytic bone lesions. Understanding the molecular mechanisms of action of adhesion molecules, cytokines and signalling pathways involved in the development of myeloma, has led to develop of novel, targeted therapies to improve the quality of patients life and significantly prolong the median survival time. This paper discusses the current state of knowledge of signalling pathways involved in the progression of cancer and the destruction of bone tissue, with particular emphasis on interactions with the bone marrow microenvironment of the tumour.
References
- 1. Abe M.: Targeting the interplay between myeloma cells and thebone marrow microenvironment in myeloma. Int. J. Hematol., 2011;94: 334-343
Google Scholar - 2. Abe M., Hiura K., Wilde J., Shioyasono A., Moriyama K., HashimotoT., Kido S., Oshima T., Shibata H., Ozaki S., Inoue D., Matsumoto T.:Osteoclasts enhance myeloma cell growth and survival via cell-cellcontact: a vicious cycle between bone destruction and myelomaexpansion. Blood, 2004; 104: 2484-2491
Google Scholar - 3. Adams G.B., Scadden D.T.: The hematopoietic stem cell in its place.Nat. Immunol., 2006; 7: 333-337
Google Scholar - 4. Ahsmann E.J., Lokhorst H.M., Dekker A.W., Bloem A.C.: Lymphocytefunction-associated antigen-1 expression on plasma cells correlateswith tumor growth in multiple myeloma. Blood, 1992; 79: 2068-2075
Google Scholar - 5. Ara Y., DeClerck Y.A.: Interleukin-6 in bone metastasis and cancerprogression. Eur. J. Cancer, 2010; 46: 1223-1231
Google Scholar - 6. Arai F., Hirao A., Ohmura M., Sato H., Matsuoka S., Takubo K., ItoK., Koh G.Y., Suda T.: Tie2/angiopoietin-1 signaling regulates hematopoieticstem cell quiescence in the bone marrow niche. Cell,2004; 118: 149-161
Google Scholar - 7. Arden N., Betenbaugh M.J.: Life and death in mammalian cell culture:strategies for apoptosis inhibition. Trends Biotechnol., 2004;22: 174-180
Google Scholar - 8. Asou Y., Rittling S.R., Yoshitake H., Tsuji K., Shinomiya K., NifujiA., Denhardt D.T., Noda M.: Osteopontin facilitates angiogenesis,accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology,2001; 142: 1325-1332
Google Scholar - 9. Bataille R., Chappard D., Marcelli C., Dessauw P., Sany J., BaldetP., Alexandre C.: Mechanisms of bone destruction in multiple myeloma:the importance of an unbalanced process in determiningthe severity of lytic bone disease. J. Clin. Oncol., 1989; 7: 1909-1914
Google Scholar - 10. Bataille R., Jourdan M., Zhang X., Klein B.: Serum levels of interleukin6, a potent myeloma cell growth factor, as a reflect of diseaseseverity in plasma cell dyscrasias. J. Clin. Invest., 1989; 84: 2008-2011
Google Scholar - 11. Börset M., Hjorth-Hansen H., Seidel C., Sundan A., Waage A.: Hepatocytegrowth factor and its receptor c-met in multiple myeloma.Blood, 1996; 88: 3998-4004
Google Scholar - 12. Børset M., Seidel C., Hjorth-Hansen H., Waage A., Sundan A.: Therole of hepatocyte growth factor and its receptor c-met in multiplemyeloma and other blood malignancies. Leuk. Lymphoma, 1999;32: 249-256
Google Scholar - 13. Brady H.J.: Apoptosis methods and protocols. London: Springer, 2004:169-177
Google Scholar - 14. Bucay N., Sarosi I., Dunstan C.R., Morony S., Tarpley J., CapparelliC., Scully S., Tan H.L., Xu W., Lacey D.L., Boyle W.J., Simonet W.S.:Osteoprotegerin-deficient mice develop early onset osteoporosis andarterial calcification. Genes Dev.,1998; 12: 1260-1268
Google Scholar - 15. Cackowski F.C., Anderson J.L., Patrene K.D., Choksi R.J., ShapiroS.D., Windle J.J., Windle J.J, Blair H.C., Roodman G.D.: Osteoclasts arePiśmiennictwoimportant for bone angiogenesis. Blood, 2009; 115: 140-149
Google Scholar - 16. Cancer Research UK. Myeloma incidence statistics. www.cancerresearchuk.org/cancer-info/cancerstats/types/myeloma/incidence/(12.12.2014)
Google Scholar - 17. Cancer Research UK. Myeloma survival statistics. www.cancerresearchuk.org/cancer-info/cancerstats/rypes/myeloma/survival/#l_5_10_3rr_survival(12.12.2014)
Google Scholar - 18. Carlesso N., Cardoso A.A.: Stem cell regulatory niches and theirrole in normal and malignant hematopoiesis. Curr. Opin. Hematol.,2010; 17: 281-286
Google Scholar - 19. Catlett-Falcone R., Landowski T.H., Oshiro M.M., Turkson J., LevitzkiA., Savino R., Ciliberto G., Moscinski L., Fernández-Luna J.L.,Nuñez G., Dalton W.S., Jove R.: Constitutive activation of Stat3 signalingconfers resistance to apoptosis in human U266 myeloma cells.Immunity, 1999; 10: 105-115
Google Scholar - 20. Chatterjee M., Honemann D., Lentzsch S., Bommert K., Sers C.,Herrmann P., Mathas S., Dörken B., Bargou R.C.: In the presence ofbone marrow stromal cells human multiple myeloma cells becomeindependent of the IL-6/gpl30/STAT3 pathway. Blood, 2002; 100:3311-3318
Google Scholar - 21. Chen H., Campbell R.A., Chang Y., Li M., Wang C.S., Li J., SanchezE., Share M., Steinberg J., Berenson A., Shalitin D., Zeng Z., Gui D.,Perez-Pinera P., Berenson R.J., Said J., Bonavida B., Deuel T.F., BerensonJ.R.: Pleiotrophin produced by multiple myeloma inducestransdifferentiation of monocytes into vascular endothelial cells:a novel mechanism of tumor-induced vasculogenesis. Blood, 2009;113: 1992-2002
Google Scholar - 22. Choi S.J., Cruz J.C., Craig F., Chung H., Devlin R.D., RoodmanG.D., Alsina M.: Macrophage inflammatory protein 1-alpha is a potentialosteoclast stimulatory factor in multiple myeloma. Blood,2000; 96: 671-675
Google Scholar - 23. Cirri P., Chiarugi P.: Cancer-associated fibroblasts and tumorcells: a diabolic liaison driving cancer progression. Cancer MetastasisRev., 2012; 31: 195-208
Google Scholar - 24. Coluccia A.M.L., Cirulli T., Neri P., Mangieri D., Colanardi M.C.,Gnoni A., Di Renzo N., Dammacco F., Tassone P., Ribatti D., Gambacorti-PasseriniC., Vacca A.: Validation of PDGFR β and c-Src tyrosinekinases as tumor/vessel targets in patients with multiple myeloma:preclinical efficacy of the novel, orally available inhibitor dasatinib.Blood, 2008; 112: 1346-1356
Google Scholar - 25. Corre J., Mahtouk K., Attal M., Gadelorge M., Huynh A., Fleury-CappellessoS., Danho C., Laharrague P., Klein B., Rème T., Bourin P.: Bonemarrow mesenchymal stem cells are abnormal in multiple myeloma.Leukemia, 2007; 21: 1079-1088
Google Scholar - 26. Cozzolino F., Torcia M., Aldinucci D., Rubartelli A., Miliani A., ShawA.R., Lansdorp P.M., Di Guglielmo R.: Production of interleukin-1 bybone marrow myeloma cells. Blood, 1989; 74: 380-387
Google Scholar - 27. Croucher P.I., De Hendrik R., Perry M.J., Hijzen A., Shipman C.M.,Lippitt J., Green J., Van Marck E., Van Camp B., Vanderkerken K.: Zoledronic acid treatment of 5T2MM-bearing mice inhibits the developmentof myeloma bone disease: evidence for decreased osteolysis,tumor burden and angiogenesis and increased survival. J. BoneMiner. Res., 2003; 18: 482-492
Google Scholar - 28. Damiano J.S., Cress A.E., Hazlehurst L.A., Shtil A.A., Dalton W.S.:Cell adhesion mediated drug resistance (CAM-DR): role of integrinsand resistance to apoptosis in human myeloma cell lines. Blood,1999; 93: 1658-1667
Google Scholar - 29. Dankbar B., Padro T., Leo R., Feldmann B., Kropff M., MestersR.M., Serve H., Berdel W.E., Kienast J.: Vascular endothelial growthfactor and interleukin-6 in paracrine tumor stromal cell interactionsin multiple myeloma. Blood, 2000; 95: 2630-2636
Google Scholar - 30. Davidson J., Rotondo D., Rizzo M.T., Leaver H.A.: Therapeuticimplications of disorders of cell death signaling membranes, micro-environment,and eicosanoid and docosanoid metabolism. Br.J. Pharmacol. 2012; 166: 1193-1210
Google Scholar - 31. Davies F.E., Rollinson S.J., Rawstron A.C., Roman E., Richards S.,Drayson M., Child J.A., Morgan G.J.: High-producer haplotypes oftumor necrosis factor alpha and lymphotoxin alpha are associatedwith an increased risk of myeloma and have an improved progression-freesurvival after treatment. J. Clin. Oncol., 2000; 18: 2843-2851
Google Scholar - 32. Dib I.E., Gressier M., Salle V., Mentaverri R., Brazier M., Kamel S.:Multiple myeloma cells directly stimulate bone resorption in vitroby down-regulating mature osteoclast apoptosis. Leuk. Res., 2008;32: 1279-1287
Google Scholar - 33. Di Raimondo F., Azzaro M.P., Palumbo G.A., Bagnato S., GiustolisiG., Floridia P., Sortino G., Giustolisi R.: Angiogenic factors in multiplemyeloma: higher levels in bone marrow than in peripheral blood.Haematologica, 2000; 85: 800-805
Google Scholar - 34. Edwards C.M., Edwards J.R., Lwin S.T., Esparza J., Oyajobi B.O.,McCluskey B., Munoz S., Grubbs B., Mundy G.R.: Increasing Wnt signallingin the bone marrow microenvironment inhibits the developmentof myeloma bone disease and reduces tumour burden in bonein vivo. Blood, 2008; 111: 2833-2842
Google Scholar - 35. Ehrlich L.A., Chung H.Y., Ghobrial I., Choi S.J., Morandi F., CollaS., Rizzoli V., Roodman G.D., Giuliani N.: IL-3 is a potential inhibitorof osteoblast differentiation in multiple myeloma. Blood, 2005;106: 1407-1414
Google Scholar - 36. Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., CoeberghJ.W., Comber H., Forman D., Bray F.: Cancer incidence andmortality patterns in Europe: estimates for 40 countries in 2012.Eur. J. Cancer, 2013; 49: 1374-1403
Google Scholar - 37. Ferlin M., Noraz N., Hertogh C., Brochier J., Taylor N., Klein B.:Insulin-like growth factor induces the survival and proliferation ofmyeloma cells through an interleukin-6 independent transductionpathway. Br. J. Haematol., 2000; 111: 626-634
Google Scholar - 38. Frassanito M.A., Rao L., Moschetta M., Ria R., Di Marzo L., DeLuisi A., Racanelli V., Catacchio I., Berardi S., Basile A., Menu E., RuggieriS., Nico B., Ribatti D., Fumarulo R., Dammacco F., VanderkerkenK., Vacca A.: Bone marrow fibroblasts parallel multiple myelomaprogression in patients and mice: in vitro and in vivo studies. Leukemia,2014; 28: 904-916
Google Scholar - 39. Fritschi L., Ambrosini G.L., Kliewer E.V., Johnson K.C., CanadianCancer Registries Epidemiologic Research Group: Dietary fishintake and risk of leukaemia, multiple myeloma, and non-hodgkinlymphoma. Cancer Epidemiol. Biomarkers Prev., 2004; 13: 532-537
Google Scholar - 40. Gahrton G.: New therapeutic targets in multiple myeloma. Lancet,2004; 364: 1648-1649
Google Scholar - 41. Gdula-Argasińska J., Garbacik A., Tyszka-Czochara M., WoźniakiewiczM., Paśko P., Czepiel J.: Identification of lipid derivatives inHep G2 cells. Acta Biochim. Pol., 2013; 60, 811-815
Google Scholar - 42. Gilbert L., He X., Farmer P., Boden S., Kozlowski M., Rubin J.,Nanes M.S.: Inhibition of osteoblast differentiation by tumor necrosisfactor-α. Endocrinology, 2000; 141: 3956-3964
Google Scholar - 43. Giuliani N., Colla S., Lazzaretti M., Sala R., Roti G., Mancini C.,Bonomini S., Lunghi P., Hojden M., Genestreti G., Svaldi M., Coser P.,Fattori P.P., Sammarelli G., Gazzola G.C. i wsp.: Proangiogenic propertiesof human myeloma cells: production of angiopoietin-1 andits potential relationship to myeloma-induced angiogenesis. Blood,2003; 102: 638-645
Google Scholar - 44. Giuliani N., Colla S., Morandi F., Lazzaretti M., Sala R., BonominiS., Grano M., Colucci S., Svaldi M., Rizzoli V.: Myeloma cells blockRUNX2/CBFA1 activity in human bone marrow osteoblast progenitorsand inhibit osteoblast formation and differentiation. Blood, 2005;106: 2472-2483
Google Scholar - 45. Greene E.R., Huang S., Serhan C.N., Panigrahy D.: Regulation ofinflammation in cancer by eicosanoids. Prostaglandins Other LipidMediat., 2011; 96: 27-36
Google Scholar - 46. Gupta D., Treon S.P., Shima Y., Hideshima T., Podar K., Tai Y.T.,Lin B., Lentzsch S., Davies F.E., Chauhan D., Schlossman R.L., RichardsonP., Ralph P., Wu L., Payvandi F., Muller G., Stirling D.I., AndersonK.C.: Adherence of multiple myeloma cells to bone marrow stromalcells upregulates vascular endothelial growth factor secretion: therapeuticapplications. Leukemia, 2001; 15: 1950-1961
Google Scholar - 47. Guttridge D.C., Albanese C., Reuther J.Y., Pestell R.G., Baldwin A.S.Jr.:NF-κB controls cell growth and differentiation through transcriptionalregulation of cyclin Dl. Mol. Cell. Biol., 1999; 19: 5785-5799
Google Scholar - 48. Han J., Choi S.J., Kurihara N., Koide M., Oba Y., Roodman G.D.: Macrophageinflammatory protein-1α is an osteoclastogenic factor inmyeloma that is independent of receptor activator of nuclear factorκB ligand. Blood, 2001; 97: 3349-3353
Google Scholar - 49. Hazlehurst L.A., Damiano J.S., Buyuksal I., Pledger W.J., DaltonW.S.: Adhesion to fibronectin via β1 integrin regulates p27kip1 levelsand contributes to cell adhesion mediated drug resistance (CAM-DR).Oncogene, 2000; 19: 4319-4327
Google Scholar - 50. Hazlehurst L.A., Enkemann S.A., Beam C.A., Argilagos R.F., PainterJ., Shain K.H., Saporta S., Boulware D., Moscinski L., Alsina M.,Dalton W.S.: Genotypic and phenotypic comparisons of de novo andacquired melphalan resistance in an isogenic multiple myeloma cellline model. Cancer Res., 2003; 63: 7900-7906
Google Scholar - 51. Hideshima T., Nakamura N., Chauhan D., Anderson H.C.: The roleof tumor necrosis factor α in the pathophysiology of human multiplemyeloma: therapeutic applications. Oncogene, 2001; 20: 4519-4527
Google Scholar - 52. Hideshima T., Podar K., Chauhan D., Anderson K.C.: Cytokinesand signal transduction. Best Pract. Res. Clin. Haematol., 2005; 18:509-524
Google Scholar - 53. Hjorth-Hansen H., Seifert M.F., Borset M., Aarset H., Ostlie A.,Sundan A., Waage A.: Marked osteoblastopenia and reduced boneformation in a model of multiple myeloma bone disease in severecombined immunodeficiency mice. J. Bone Miner. Res.,1999; 14: 256-263
Google Scholar - 54. Hov H., Holt R.U., Rø T.B., Fagerli U.M., Hjorth-Hansen H., BaykovV., Christensen J.G., Waage A., Sundan A., Børset M.: A selective c-metinhibitor blocks an autocrine hepatocyte growth factor growth loopin ANBL-6 cells and prevents migration and adhesion of myelomacells. Clin. Cancer Res., 2004; 10: 6686-6694
Google Scholar - 55. Hu L., Shi Y., Hsu J., Gera J., Van Ness B., Lichtenstein A.: Downstreameffectors of oncogenic ras in multiple myeloma cells. Blood, 2003;101: 3126-3135
Google Scholar - 56. Huang S., Pettaway C.A., Uehara H., Bucana C.D., Fidler I.J.: Blockadeof NF-κB activity in human prostate cancer cells is associatedwith suppression of angiogenesis, invasion, and metastasis. Oncogene,2001; 20: 4188-4197
Google Scholar - 57. Hyeon S., Lee H., Yang Y., Jeong W.: Nrf2 deficiency inducesoxidative stress and promotes RANKL-induced osteoclast differentiation.Free Radic. Biol. Med., 2013; 65: 789-799
Google Scholar - 58. Jiang W., Hiscox S., Matsumoto K., Nakamura T.: Hepatocytegrowth factor/scatter factor, its molecular, cellular and clinical implicationsin cancer. Crit. Rev. Oncol. Hematol., 1999; 29: 209-248
Google Scholar - 59. Jurczyszyn A., Czepiel J., Biesiada G., Gdula-Argasińska J., CiborD., Owczarek D., Perucki W., Skotnicki A.B.: HGF, sIL-6R and TGF-β1play a significant role in the progression of multiple myeloma. J.Cancer, 2014; 5: 518-524
Google Scholar - 60. Jurczyszyn A., Czepiel J., Gdula-Argasińska J., Czapkiewicz A.,Biesiada G., Dróżdż M., Perucki W., Castillo J.J.: Erythrocyte membranefatty acids in multiple myeloma patients. Leuk. Res., 2014;38: 1260-1265
Google Scholar - 61. Jurczyszyn A., Czepiel J., Gdula-Argasińska J., Pasko P., CzapkiewiczA., Librowski T., Perucki W., Butrym A., Castillo J.J., SkotnickiA.B.: Plasma fatty acids profile in multiple myeloma patients. Leuk.Res., 2014, 39: 400-405
Google Scholar - 62. Jurczyszyn A., Wolska Smoleń T., Skotnicki A.B.: Mechanizmypatogenetyczne warunkujące nowe sposoby terapii szpiczaka mnogiego.Znaczenie cytokin. Adv. Clin. Exp. Med., 2005, 14: 137-143
Google Scholar - 63. Jurczyszyn A., Wolska-Smoleń T., Skotnicki A.B.: Czynnik wzrostuhepatocytów: od diagnostyki do zastosowań klinicznych. Przegl.Lek., 2003; 60: 425-434
Google Scholar - 64. Jurczyszyn A., Zebzda A., Czepiel J., Perucki W., Bazan-Socha S.,Cibor D., Owczarek D., Majka M.: Geldanamycin and its derivativesinhibit the growth of myeloma cells and reduce the expression ofthe MET receptor. J. Cancer, 2014; 5: 480-490
Google Scholar - 65. Kaiser M., Mieth M., Liebisch P. Oberländer R., Rademacher J.,Jakob C., Kleeberg L., Fleissner C., Braendle E., Peters M., Stover D.,Sezer O., Heider U.: Serum concentrations of DKK-1 correlate withthe extent of bone disease in patients with multiple myeloma. Eur. J.Haematol., 2008; 80: 490-494
Google Scholar - 66. Karin M., Lin A.: NF-κB at the crossroads of life and death. Nat.Immunol., 2002; 3: 221-227
Google Scholar - 67. Klein B., Zhang X.G., Jourdan M. Content J., Houssiau F., AardenL., Piechaczyk M., Bataille R.: Paracrine rather than autocrine regulationof myeloma-cell growth and differentiation by interleukin-6.Blood, 1989; 73: 517-526
Google Scholar - 68. Kong Y.Y., Yoshida H., Sarosi I., Tan H.L., Timms E., Capparelli C.,Morony S., Oliveira-dos-Santos A.J., Van G., Itie A., Khoo W., WakehamA., Dunstan C.R., Lacey D.L., Mak T.W., Boyle W.J., PenningerJ.M.: OPGL is a key regulator of osteoclastogenesis, lymphocyte developmentand lymph-node organogenesis. Nature, 1999; 397: 315-323
Google Scholar - 69. Koop H.G., Avecilla S.T., Hooper A.T., Rafii S.: The bone marrowvascular niche: home of HSC differentiation and mobilization. Physiology,2005; 20: 349-356
Google Scholar - 70. Krishnan V., Bryant H.U., MacDougald O.A.: Regulation of bonemass by Wnt signaling. J. Clin. Invest., 2006; 116: 1202-1209
Google Scholar - 71. Lee J.W., Chung H.Y., Ehrlich L.A., Jelinek D.F., Callander N.S., RoodmanG.D., Choi S.J.: IL-3 expression by myeloma cells increases bothosteoclast formation and growth of myeloma cells. Blood, 2004; 103:2308-2315
Google Scholar - 72. Lentzsch S., Gries M., Janz M., Bargou R., Dorken B., Mapara M.Y.:Macrophage inflammatory protein 1-alpha (MIP-1α) triggers migrationand signaling cascades mediating survival and proliferation inmultiple myeloma (MM) cells. Blood, 2003; 101: 3568-3573
Google Scholar - 73. Lesko E., Majka M.: The biological role of HGF-MET axis in tumorgrowth and development of metastasis. Front. Biosci., 2008;13: 1271-1280
Google Scholar - 74. Liang J., Slingerland J.M.: Multiple roles of P13K/PKB (AKt) pathwayin cell cycle progression. Cell Cycle, 2003; 2: 339-345
Google Scholar - 75. Lichtenstein A., Berenson J., Norman D., Chang M.P., Carlile A.:Production of cytokines by bone marrow cells obtained from patientswith multiple myeloma. Blood, 1989; 74: 1266-1273
Google Scholar - 76. Miao Z., Jin J., Chen L., Zhu J., Huang W., Zhao J., Qian H., ZhangX.: Isolation of mesenchymal stem cells from human placenta: comparisonwith human bone marrow mesenchymal stem cells. Cell Biol.Int., 2006; 30: 681-687
Google Scholar - 77. Michigami T., Shimizu N., Williams P.J., Niewolna M., Dallas S.L.,Mundy G.R., Yoneda T.: Cell-cell contact between marrow stromalcells and myeloma cells via VCAM-1 and α4β1-integrin enhances productionof osteoclast-stimulating activity. Blood, 2000; 96: 1953-1960
Google Scholar - 78. Mitsiades C.S., Mitsiades N.S., Munshi N.C., Richardson P.G., AndersonK.C.: The role of the bone microenvironment in the pathophysiologyand therapeutic management of multiple myeloma: interplayof growth factors, their receptors and stromal interactions.Eur. J. Cancer, 2006; 42: 1564-1573
Google Scholar - 79. Mizuno A., Amizuka N., Irie K., Murakami A., Fujise N., Kanno T.,Sato Y., Nakagawa N., Yasuda H., Mochizuki S., Gomibuchi T., YanoK., Shima N., Washida N., Tsuda E., Morinaga T., Higashio K., OzawaH.: Severe osteoporosis in mice lacking osteoclastogenesis inhibitoryfactor/osteoprotegerin. Biochem. Biophys. Res. Commun., 1998;247: 610-615
Google Scholar - 80. Nakamizo A., Marini F., Amano T., Khan A., Studeny M., Gumin J.,Chen J., Hentschel S., Vecil G., Dembinski J., Andreeff M., Lang F.F.:Human bone marrow derived mesenchymal stem cells in the treatmentof gliomas. Cancer Res., 2005; 65: 3307-3318
Google Scholar - 81. Naveiras O., Nardi V., Wenzel P.L., Hauschka P.V., Fahey F., DaleyG.Q.: Bone-marrow adipocytes as negative regulators of the haematopoieticmicroenvironment. Nature, 2009; 460: 259-263
Google Scholar - 82. Ni H., Ergin M., Huang Q., Qin J.Z., Amin H.M., Martinez R.L.,Saeed S., Barton K., Alkan S.: Analysis of expression of nuclear factorκB (NF-κB) in multiple myeloma: down-regulation of NF-κB inducesapoptosis. Br. J. Haematol., 2001; 115: 279-286
Google Scholar - 83. Nico B., Mangieri D., Crivellato E., Vacca A., Ribatti D.: Mast cellscontribute to vasculogenic mimicry in multiple myeloma. Stem CellsDev., 2008; 17: 19-22
Google Scholar - 84. Ogata A., Chauhan D., Teoh G., Treon S.P., Urashima M., SchlossmanR.L., Anderson K.C.: IL-6 triggers cell growth via the ras-dependentmitogen-activated protein kinase cascade. J. Immunol., 1997;159: 2212-2221
Google Scholar - 85. Osaki M., Oshimura M., Ito H.: PI3K-Akt pathway: its functions andalterations in human cancer. Apoptosis, 2004; 9: 667-676
Google Scholar - 86. Park C.K, Lee Y., Kim K.H., Lee Z.H., Joo M, Kim H.H.: Nrf2 isa novel regulator of bone acquisition. Bone, 2014; 63: 36-46
Google Scholar - 87. Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M.,Oz M.C., Hicklin D.J., Witte L., Moore M.A., Rafii S.: Expression of VEGFR-2and AC133 by circulating human CD34+ cells identifies a populationof functional endothelial precursors. Blood, 2000; 95: 952-958
Google Scholar - 88. Pellegrino A., Ria R., Di Pietro G., Cirulli T., Surico G., Pennisi A.,Morabito F., Ribatti D., Vacca A.: Bone marrow endothelial cells inmultiple myeloma secrete CXC-chemokines that mediate interactionswith plasma cells. Br. J. Haematol., 2005; 129: 248-256
Google Scholar - 89. Rashid A., Pizer E.S., Moga M., Milgraum L.Z., Zahurak M., PasternackG.R., Kuhajda F.P., Hamilton S.R.: Elevated expression offatty acid synthase and fatty acid synthetic activity in colorectalneoplasia. Am. J. Pathol., 1997; 150, 201-208
Google Scholar - 90. Reagan M.R., Ghobrial I.M.: Multiple myeloma mesenchymalstem cells: characterization, origin and tumor promoting effects. Clin.Cancer Res., 2012; 18: 342-349
Google Scholar - 91. Ria R., Piccoli C., Cirulli T., Falzetti F., Mangialardi G., GuidolinD., Tabilio A., Di Renzo N., Guarini A., Ribatti D., Dammacco F., VaccaA.: Endothelial differentiation of hematopoietic stem and progenitorcells from patients with multiple myeloma. Clin. Cancer Res.,2008; 14: 1678-1685
Google Scholar - 92. Ria R., Roccaro A.M., Merchionne F., Vacca A., Dammacco F., RibattiD.: Vascular endothelial growth factor and its receptors in multiplemyeloma. Leukemia, 2003; 17: 1961-1966
Google Scholar - 93. Ria R., Todoerti K., Berardi S., Coluccia A.M.L., De Luisi A., MattioliM., Ronchetti D., Morabito F., Guarini A., Petrucci M.T., DammaccoF., Ribatti D., Neri A., Vacca A.: Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma.Clin. Cancer Res., 2009; 15: 5369-5378
Google Scholar - 94. Ribatti D.: Bone marrow vascular niche and the control of tumorgrowth in hematological malignancies. Leukemia, 2010; 24:1247-1248
Google Scholar - 95. Ribatti D., Vacca A., Nico B., Quondamatteo F., Ria R., MinischettiM., Marzullo A., Herken R., Roncali L., Dammacco F.: Bone marrowangiogenesis and mast cell density increase simultaneouslywith progression of human multiple myeloma. Br. J. Cancer, 1999;79: 451-455
Google Scholar - 96. Scavelli C., Nico B., Cirulli T., Ria R., Di Pietro G., Mangieri D.,Bacigalupo A., Mangialardi G., Coluccia A.M., Caravita T., Molica S.,Ribatti D., Dammacco F., Vacca A.: Vasculogenic mimicry by bonemarrow macrophages in patients with multiple myeloma. Oncogene,2008; 27: 663-674
Google Scholar - 97. Scheller J., Rose-John S.: Interleukin-6 and its receptor: frombench to bedside. Med. Microbiol. Immunol., 2006; 195: 173-183
Google Scholar - 98. Serhan S.N., Petasis N.A.: Resolvins and protectins in inflammationresolution. Chemical Rev., 2011; 111: 5922-5943
Google Scholar - 99. Silvestris F., Cafforio P., Tucci M., Grinello D., Dammacco F.: Upregulationof osteoblasts apoptosis by malignant plasma cells: a role inmyeloma bone disease. Br. J. Haematol., 2003; 122: 39-52
Google Scholar - 100. Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S.,Lüthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., ShimamotoG., DeRose M., Elliott R., Colombero A., Tan H.L. i wsp.: Osteoprotegerin:a novel secreted protein involved in the regulation of bonedensity. Cell, 1997; 89: 309-319
Google Scholar - 101. Singhal S., Mehta J.: Multiple myeloma. Clin. J. Am. Soc. Nephrol.,2006; 1: 1322-1330
Google Scholar - 102. Standal T., Seidel C., Hjertner O., Plesner T., Sanderson R.D.,Waage A., Borset M., Sundan A.: Osteoprotegerin is bound, internalized,and degraded by multiple myeloma cells. Blood, 2002; 100:3002-3007
Google Scholar - 103. Tanaka Y., Abe M., Hiasa M., Oda A., Amou H., Nakano A., TakeuchiK., Kitazoe K., Kido S., Inoue D., Moriyama K., Hashimoto T.,Ozaki S., Matsumoto T.: Myeloma cell-osteoclasts interaction enhancesangiogenesis together with bone resorption: a role for vascularendothelial cell growth factor and osteopontin. Clin. CancerRes., 2007; 13: 816-823
Google Scholar - 104. Tatsumi T., Shimazaki C., Goto H., Araki S., Sudo Y., YamagataN., Ashihara E., Inaba T., Fujita N., Nakagawa M.: Expression of adhesionmolecules on myeloma cells. Jpn. J.Cancer Res., 1996; 87: 837-842
Google Scholar - 105. Terpos E., Dimopoulos M.A.: Myeloma bone disease: pathophysiologyand management. Ann. Oncol., 2005; 16: 1223-1231
Google Scholar - 106. Terpos E., Politou M., Szydlo R., Goldman J.M., Apperley J.F., RahemtullaA.: Serum levels of macrophage inflammatory protein-1 alpha(MlP-lα) correlate with the extent of bone disease and survival inpatients with multiple myeloma. Br. J. Haematol., 2003; 123: 106-109
Google Scholar - 107. Terpos E., Szydlo R., Apperley J.F., Hatjiharissi E., Politou M., MeletisJ., Viniou N., Yataganas X., Goldman J.M., Rahemtulla A.:Solublereceptor activator of nuclear factor κB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognosticindex. Blood, 2003; 102: 1064-1069
Google Scholar - 108. Terry P.D., Rohan T.E., Wolk A.: Intakes of fish and marine fattyacids and the risks of cancers of the breast and prostate and of otherhormone-related cancers: a review of the epidemiological evidence.Am. J. Clin. Nutr., 2003; 77, 532-543
Google Scholar - 109. Tian E., Zhan F., Walker R., Rasmussen E., Ma Y., Barlogie B.,Shaughnessy J.D. Jr.: The role of the Wnt-signaling antagonist Dkklin the development of osteolytic lesions in multiple myeloma. N.Engl. J. Med., 2003; 349: 2483-2494
Google Scholar - 110. Vacca A., Ria R., Semeraro F., Merchionne F., Coluccia M., BoccarelliA., Scavelli C., Nico B., Gernone A., Battelli F., Tabilio A., GuidolinD., Petrucci M.T., Ribatti D., Dammacco F.: Endothelial cells inthe bone marrow of patients with multiple myeloma. Blood, 2003;102: 3340-3348
Google Scholar - 111. Vacca A., Ribatti D., Presta M., Minischetti M., Iurlaro M., Ria R.,Albini A., Bussolino F., Dammacco F.: Bone marrow neovascularization,plasma cell angiogenic potential, and matrix metalloproteinase-2secretion parallel progression of human multiple myeloma.Blood, 1999; 93: 3064-3073
Google Scholar - 112. van Camp B., Durie B.G., Spier C., De Waele M., Van Riet I., Vela E.,Frutiger Y., Richter L., Grogan T.M.: Plasma cells in multiple myelomaexpress a natural killer cell-associated antigen: CD56 (NKH-l;Leu-19).Blood, 1990; 76: 377-382
Google Scholar - 113. Wallace S.R., Oken M.M., Lunetta K.L., Panoskaltsis-Mortari A.,Masellis A.M.: Abnormalities of bone marrow mesenchymal cells inmultiple myeloma patients. Cancer, 2001; 91: 1219-1230
Google Scholar - 114. Wang L.H., Yang X.Y., Zhang X., Farrar W.L.: Inhibition of adhesiveinteraction between multiple myeloma and bone marrowstromal cells by PPARg cross talk with NF-κB and C/EBPβ. Blood,2007; 110: 4373-4384
Google Scholar - 115. Wendel M., Heller A.R.: Anticancer actions of omega-3 fattyacids – current state and future perspectives. Anticancer AgentsMed. Chem., 2009; 9: 457-470
Google Scholar - 116. Yang H.H., Ma M.H., Vescio R.A., Berenson J.R.: Overcoming drugresistance in multiple myeloma: the emergence of therapeutic approachesto induce apoptosis. J. Clin. Oncol., 2003; 21: 4239-4247
Google Scholar - 117. Yin A.H., Miraglia S., Zanjani E.D., Almeida-Porada G., OgawaM., Leary A.G., Olweus J., Kearney J., Buck D.W.: AC133, a novelmarker for human hematopoietic stem and progenitor cells. Blood,1997; 90: 5002-5012
Google Scholar - 118. Yin T., Li L.: The stem cell niches in bone. J. Clin. Invest. 2006;116: 1195-1201
Google Scholar - 119. Zhang H., Vakil V., Braunstein M., Smith E.L., Maroney J., ChenL., Dai K., Berenson J.R., Hussain M.M., Klueppelberg U., Norin A.J.,Akman H.O., Ozçelik T., Batuman O.A.: Circulating endothelial progenitorcells in multiple myeloma: implications and significance.Blood, 2005; 105: 3286-3294
Google Scholar