The role of thiamine in neurodegenerative diseases

COMMENTARY ON THE LAW

The role of thiamine in neurodegenerative diseases

Irena Bubko 1 , Beata M. Gruber 1 , Elżbieta L. Anuszewska 2

1. Narodowy Instytut Leków, Zakład Biochemii i Biofarmaceutyków w Warszawie
2. Anuszewska

Published: 2015-09-21
GICID: 01.3001.0009.6579
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1096-1106

 

Abstract

Vitamin B1 (thiamine) plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of “reassurance of the spirit”. Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson’s disease, Alzheimer’s disease, Wernicke’s encephalopathy or Wernicke-Korsakoff syndrome and Huntington’s disease.

References

  • 1. Alexi T., Borlongan C.V., Faull R.L., Williams C.E., Clark R.G., GluckmanP.D., Hughes P.E.: Neuroprotective strategies for basal gangliadegeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol.,2000; 60: 409-470
    Google Scholar
  • 2. Anisimova E.L., Danilov A.B.: Benfothiamine efficacy in alcoholicpolyneuropathy therapy. Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova,2001; 101: 32-36
    Google Scholar
  • 3. Anuszewska E.L.: Przeciwzapalna aktywność benfotiaminy – moż-liwości zastosowania w schorzeniach układu oddechowego. Alergia,2013; 2: 49-52
    Google Scholar
  • 4. Anuszewska E.L., Gruber B.M.: Witaminy grupy B – niewykorzystanypotencjał w profilaktyce i terapii. Leki Współ. Ter., 2009;2: 62-66
    Google Scholar
  • 5. Bâ A.: Metabolic and structural role of thiamine in nervous tissues.Cell. Mol. Neurobiol., 2008; 28: 923-931
    Google Scholar
  • 6. Bubko I., Gruber B.M., Anuszewska E.L.: The role of the proteasomefor therapy of incurable diseases. Postępy Hig. Med. Dośw.,2010; 64: 314-325
    Google Scholar
  • 7. Castellani R.J., Rolston R.K., Smith M.A.: Alzheimer disease. Dis.Mon., 2010; 56: 484-546
    Google Scholar
  • 8. Clarke R.: B-vitamins and prevention of dementia. Proc. Nutr.Soc., 2008; 67: 75-81
    Google Scholar
  • 9. Coskun P.E., Busciglio J.: Oxidative stress and mitochondrial dysfunctionin Down’s syndrome: relevance to aging and dementia. Curr.Gerontol. Geriatr. Res., 2012; 2012: 383170
    Google Scholar
  • 10. Costantini A., Pala M.I., Compagnoni L., Colangeli M.: High-dosethiamine as initial treatment for Parkinson’s disease. BMJ Case Rep.,2013: bcr2013009289
    Google Scholar
  • 11. Dror V., Eliash S., Rehavi M., Assaf Y., Biton I.E., Fattal-ValevskiA.: Neurodegeneration in thiamine deficient rats-A longitudinal MRIstudy. Brain Res., 2010; 1308: 176-184
    Google Scholar
  • 12. Eliash S., Dror V., Cohen S., Rehavi M.: Neuroprotection by rasagilinein thiamine deficient rats. Brain Res., 2009; 1256: 138-148
    Google Scholar
  • 13. Emerit J., Edeas M., Bricaire F.: Neurodegenerative diseases andoxidative stress. Biomed. Pharmacother., 2004; 58: 39-46
    Google Scholar
  • 14. Fattal-Valevski A.: Thiamine (vitamin B1). J. Evid. Based ComplementaryAltern. Med., 2011; 16: 12-20
    Google Scholar
  • 15. Federico A., Cardaioli E., Da Pozzo P., Formichi P., Gallus G.N.,Radi E.: Mitochondria, oxidative stress and neurodegeneration. J.Neurol. Sci., 2012; 322: 254-262
    Google Scholar
  • 16. Gangolf M., Czerniecki J., Radermecker M., Detry O., Nisolle M.,Jouan C., Martin D., Chantraine F., Lakaye B., Wins P., Grisar T., BettendorffL.: Thiamine status in humans and content of phosphorylated thiaminederivatives in biopsies and cultured cells. PLoS One, 2010; 5: e13616
    Google Scholar
  • 17. Gibson G.E., Hirsch J.A., Cirio R.T., Jordan B.D., Fonzetti P., ElderJ.: Abnormal thiamine-dependent processes in Alzheimer’s Disease.Lessons from diabetes. Mol. Cell. Neurosci., 2013; 55: 17-25
    Google Scholar
  • 18. Gibson G.E., Zhang H.: Interactions of oxidative stress with thiaminehomeostasis promote neurodegeneration. Neurochem. Int.,2002; 40: 493-504
    Google Scholar
  • 19. Gonsette R.E.: Neurodegeneration in multiple sclerosis: the roleof oxidative stress and excitotoxicity. J. Neurol. Sci., 2008; 274: 48-53
    Google Scholar
  • 20. Gruber B.M.: Epigenetics and etiology of neurodegenerativediseases. Postępy Hig. Med. Dośw., 2011; 65: 542-551
    Google Scholar
  • 21. Gruber B.M.: Suplementacja megadawkami witamin = megazdrowie?Farm. Pol., 2013; 69: 363-369
    Google Scholar
  • 22. Gruber B.M., Anuszewska E.L.: Choroba Huntingtona – znaczeniediety we wspomaganiu terapii. Farm. Pol., 2010; 66: 792-803
    Google Scholar
  • 23. Guenther I., Kędzierska-Mieszkowska S.: System kontroli jakościbiałek w cytoplazmie – rola białek opiekuńczych w biologii choróbneurodegeneracyjnych. Postępy Biochem., 2011; 57: 274-282
    Google Scholar
  • 24. Guerrini I., Mundt-Leach R.: Preventing long-term brain damagein alcohol-dependent patients. Nurs. Stand., 2013; 27: 43-46
    Google Scholar
  • 25. Gutowicz M.: Wpływ reaktywnych form tlenu na ośrodkowyukład nerwowy. Postępy Hig. Med. Dośw., 2011; 65: 104-113
    Google Scholar
  • 26. Hampel H., Prvulovic D., Teipel S., Jessen F., Luckhaus C., FrölichL., Riepe M.W., Dodel R., Leyhe T., Bertram L., Hoffmann W., Faltraco F.,German Task Force on Alzheimer’s Disease (GTF-AD): The future of Alzheimer’sdisease: the next 10 years. Prog. Neurobiol., 2011; 95: 718-728
    Google Scholar
  • 27. Hazell A.S.: Astrocytes are a major target in thiamine deficiencyand Wernicke’s encephalopathy. Neurochem. Int., 2009; 55: 129-135
    Google Scholar
  • 28. Hazell A.S., Butterworth R.F.: Update of cell damage mechanismsin thiamine deficiency: focus on oxidative stress, excitotoxicity andinflammation. Alcohol Alcohol., 2009; 44: 141-147
    Google Scholar
  • 29. Hazell A.S, Faim S., Wertheimer G., Silva V.R., Marques C.S.: Theimpact of oxidative stress in thiamine deficiency: a multifactorialtargeting issue. Neurochem. Int., 2013; 62: 796-802
    Google Scholar
  • 30. Head K.A.: Peripheral neuropathy: pathogenic mechanisms andalternative therapies. Altern. Med. Rev., 2006; 11: 294-329
    Google Scholar
  • 31. Heneka M.T., Rodriguez J.J., Verkhratsky A.: Neuroglia in neurodegeneration.Brain Res. Rev., 2010; 63: 189-211
    Google Scholar
  • 32. Jarosz M., Bułhak-Jachymczyk B.: Normy żywienia człowieka.Podstawy prewencji otyłości i chorób niezakaźnych. PZWL, Warszawa2008
    Google Scholar
  • 33. Jhala S.S., Hazell A.S.: Modeling neurodegenerative diseasepathophysiology in thiamine deficiency: consequences of impairedoxidative metabolism. Neurochem. Int., 2011; 58: 248-260
    Google Scholar
  • 34. Jhala S.S., Wang D., Hazell A.S.: Loss of the glutamate transportersplice-variant GLT-1b in inferior colliculus and its prevention by ceftriaxonein thiamine deficiency. Neurochem. Int., 2011; 58: 558-563
    Google Scholar
  • 35. Jomova K., Vondrakova D., Lawson M., Valko M.: Metals, oxidativestress and neurodegenerative disorders. Mol. Cell. Biochem.,2010; 345: 91-104
    Google Scholar
  • 36. Kretschmar C., Kaumeier S., Haase W.: Medicamentous therapyof alcoholic polyneuropathy. Randomized double-blind studycomparing 2 vitamin B preparations and a nucleotide preparation.Fortschr. Med., 1996; 114: 439-443
    Google Scholar
  • 37. Krzysztoń-Russjan J., Zielonka D., Jackiewicz J., Kuśmirek S.,Bubko I., Klimberg A., Marcinkowski JT., Anuszewska E.L.: A studyof molecular changes relating to energy metabolism and cellularstress in people with Huntington’s disease: looking for biomarkers.J. Bioenerg Biomembr., 2013; 45: 71-85
    Google Scholar
  • 38. Luong K.V., Nguyên L.T.: Thiamine and Parkinson’s disease. J.Neurol. Sci., 2012; 316: 1-8
    Google Scholar
  • 39. Luong K.V., Nguyen L.T.: The beneficial role of thiamine in Parkinson’sdisease: preliminary report. J. Neurol. Res., 2012; 2: 211-214
    Google Scholar
  • 40. Luong K.V., Nguyen L.T.: The beneficial role of thiamine in Parkinsondisease. CNS Neurosci.Ther., 2013; 19: 461-468
    Google Scholar
  • 41. Małecka S.A., Poprawski K., Bilski B.: Profilaktyczne i terapeutycznezastosowanie tiaminy (witaminy B1) – nowe spojrzenie nastary lek. Wiad. Lek., 2006; 59: 383-387
    Google Scholar
  • 42. Manzardo A.M., He J., Poje A., Penick E.C., Campbell J., ButlerM.G.: Double-blind, randomized placebo-controlled clinical trial ofbenfotiamine for severe alcohol dependence. Drug Alcohol Depend.,2013; 133: 562-570
    Google Scholar
  • 43. Manzetti S., Zhang J., van der Spoel D.: Tiamin function, metabolism,uptake, and transport. Biochemistry, 2014, 53: 821-835
    Google Scholar
  • 44. Moszczyński P., Pyć R.: Biochemia witamin. Część I. Witaminygrupy B i koenzymy. Wydawnictwo Naukowe PWN, Warszawa 1998
    Google Scholar
  • 45. Oliveira F.A., Galan D.T., Ribeiro A.M., Santos Cruz J.: Thiaminedeficiency during pregnancy leads to cerebellar neuronal death inrat offspring: role of voltage-dependent K+ channels. Brain Res.,2007; 1134: 79- 86
    Google Scholar
  • 46. Podlewski J.K., Chwalibogowska-Podlewska A.: Leki WspółczesnejTerapii. Wyd.18. Split Trading, Warszawa 2007
    Google Scholar
  • 47. Rapala-Kozik M., Kowalska E., Ostrowska K.: Modulation of thiaminemetabolism in Zea mays seedlings under conditions of abioticstress. J. Exp. Bot., 2008; 59: 4133-4143
    Google Scholar
  • 48. Smith A.D.: Prevention of dementia: a role for B vitamins? Nutr.Health, 2006; 18: 225-226
    Google Scholar
  • 49. Subramanya S.B., Subramanian V.S., SaidH.M.: Chronic alcoholconsumption and intestinal thiamin absorption: effects on physiologicaland molecular parameters of the uptake process. Am. J.Physiol. Gastrointest. Liver Physiol., 2010; 299: G23-G31
    Google Scholar
  • 50. Szwed A., Miłowska K.: The role of proteins in neurodegenerativedisease. Postępy Hig. Med. Dośw., 2012; 66: 187-195
    Google Scholar
  • 51. Tęgowska E., Wosińska A.: The role of biological sciences inunderstanding the genesis and a new therapeutic approach to Alzheimer’sdisease. Postępy Hig. Med. Dośw., 2011; 65: 73-92
    Google Scholar
  • 52. Tylicki A., Siemieniuk M.: Tiamina i jej pochodne w regulacjimetabolizmu komórek. Postępy Hig. Med. Dośw., 2011; 65: 447-469
    Google Scholar
  • 53. Wang X., Wang B., Fan Z., Shi X., Ke Z.J., Luo J.: Thiamine deficiencyinduces endoplasmic reticulum stress in neurons. Neuroscience,2007; 144: 1045-1056
    Google Scholar
  • 54. Woelk H., Lehrl S., Bitsch R., Kopcke W.: Benfotiamine in treatmentof alcoholic polyneuropathy: an 8-week randomized controlledstudy (BAP I study). Alcohol Alcohol., 1998; 33: 631-638
    Google Scholar
  • 55. Zawidzka I., Bienert A., Grześkowiak E., Ratajczak N.: Rola witaminw prewencji chorób związanych ze starzeniem. Now. Lek.,2009; 78: 168-174
    Google Scholar
  • 56. Zhang G., Ding H., Chen H., Ye X., Li H., Lin X., Ke Z.: Thiaminenutritional status and depressive symptoms are inversely associatedamong older Chinese adults. J. Nutr., 2013; 143: 53-58
    Google Scholar
  • 57. Ziemlański Ś.: Normy żywienia człowieka. Fizjologiczne podstawy.PZWL, Warszawa 2001
    Google Scholar

Full text

Skip to content