The role of trophic factors and inflammatory processes in physical activity-induced neuroprotection in Parkinson’s disease

COMMENTARY ON THE LAW

The role of trophic factors and inflammatory processes in physical activity-induced neuroprotection in Parkinson’s disease

Ewelina Pałasz 1 , Agnieszka Bąk 1 , Anna Gąsiorowska 2 , Grażyna Niewiadomska 1

1. Instytut Biologii Doświadczalnej im. M. Nenckiego Polskiej Akademii Nauk w Warszawie
2. Instytut Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego Polskiej Akademii Nauk w Warszawie

Published: 2017-01-04
DOI: 10.5604/01.3001.0010.3850
GICID: 01.3001.0010.3850
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 713-726

 

Abstract

Glial cells and neurotrophins play an important role in maintaining homeostasis of the CNS. Disturbances of their function can lead to a number of nervous system diseases, including Parkinson’s disease (PD). Current clinical studies provide evidence that moderate physical activity adapted to the health status of PD patients can support pharmacological treatment, slow down the onset of motor impairments, and extend the patients period of independence. Physical activity, by stimulating the production and release of endogenous trophic factors, prevents the neurodegeneration of dopaminergic neurons via inhibition of inflammatory processes and the reduction of oxidative stress. The aim of this study is to present the current state of knowledge for the anti-inflammatory and neuroprotective properties of physical activity as a supportive therapy in Parkinson’s disease.

References

  • 1. Afzalpour M.E., Chadorneshin H.T., Foadoddini M., Eivari H.A.:Comparing interval and continuous exercise training regimens onneurotrophic factors in rat brain. Physiol. Behav., 2015; 147: 78-83
    Google Scholar
  • 2. Airavaara M., Chiocco M.J., Howard D.B., Zuchowski K.L., PeränenJ., Liu C., Fang S., Hoffer B.J., Wang Y., Harvey B.K.: Widespread corticalexpression of MANF by AAV serotype 7: localization and protectionagainst ischemic brain injury. Exp. Neurol., 2010; 225: 104-113
    Google Scholar
  • 3. Barcia C.: Glial-mediated inflammation underlying parkinsonism.Scientifica, 2013; 2013: 357805
    Google Scholar
  • 4. Bath K.G., Lee F.S.: Neurotrophic factor control of adult SVZ neurogenesis.Dev. Neurobiol., 2010; 70: 339-349
    Google Scholar
  • 5. Beavers K.M., Hsu F.C., Isom S., Kritchevsky S.B., Church T., GoodpasterB., Pahor M., Nicklas B.J.: Long-term physical activity andinflammatory biomarkers in older adults. Med. Sci. Sports Exerc.,2010; 42: 2189-2196
    Google Scholar
  • 6. Berchtold N.C., Chinn G., Chou M., Kesslak J.P., Cotman C.W.:Exercise primes a molecular memory for brain-derived neurotrophicfactor protein induction in the rat hippocampus. Neuroscience,2005; 133: 853-861
    Google Scholar
  • 7. Boger H.A., Middaugh L.D., Huang P., Zaman V., Smith A.C., HofferB.J., Tomac A.C., Granholm A.C.: A partial GDNF depletion leadsto earlier age-related deterioration of motor function and tyrosinehydroxylase expression in the substantia nigra. Exp. Neurol., 2006;202: 336-347
    Google Scholar
  • 8. Brizard M., Carcenac C., Bemelmans A.P., Feuerstein C., Mallet J.,Savasta M.: Functional reinnervation from remaining DA terminalsinduced by GDNF lentivirus in a rat model of early Parkinson’s disease.Neurobiol. Dis., 2006; 21: 90-101
    Google Scholar
  • 9. Brooks S.V., Vasilaki A., Larkin L.M., McArdle A., Jackson M.J.:Repeated bouts of aerobic exercise lead to reductions in skeletalmuscle free radical generation and nuclear factor κB activation. J.Physiol., 2008; 586: 3979-3990
    Google Scholar
  • 10. Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G., Tufik S.,Meeusen R., de Mello M.T.: Spatial memory is improved by aerobicand resistance exercise through divergent molecular mechanisms.Neuroscience, 2012; 202: 309-317
    Google Scholar
  • 11. Cerbai F., Lana D., Nosi D., Petkova-Kirova P., Zecchi S., BrothersH.M., Wenk G.L., Giovannini M.G.: The neuron-astrocyte-microgliatriad in normal brain ageing and in a model of neuroinflammationin the rat hippocampus. PLoS One, 2012: 7: e45250
    Google Scholar
  • 12. Chauhan N.B., Siegel G.J., Lee J.M.: Depletion of glial cell line-derivedneurotrophic factor in substantia nigra neurons of Parkinson’sdisease brain. J. Chem. Neuroanat., 2001; 21: 277-288
    Google Scholar
  • 13. Chen H., O›Reilly E.J., Schwarzschild M.A., Ascherio A.: Peripheral inflammatory biomarkers and risk of Parkinson›s disease. Am. J.Epidemiol., 2008; 167: 90-95
    Google Scholar
  • 14. Cheng F.C., Ni D.R., Wu M.C., Kuo J.S., Chia L.G.: Glial cell line-derivedneurotrophic factor protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced neurotoxicity inC57BL/6 mice. Neurosci. Lett., 1998; 252: 87-90
    Google Scholar
  • 15. Choi-Lundberg D.L., Lin Q., Chang Y.N., Chiang Y.L., Hay C.M.,Mohajeri H., Davidson B.L., Bohn M.C.: Dopaminergic neurons protectedfrom degeneration by GDNF gene therapy. Science, 1997;275: 838-841
    Google Scholar
  • 16. Chung Y.C., Kim S.R., Jin B.K.: Paroxetine prevents loss of nigrostriataldopaminergic neurons by inhibiting brain inflammation andoxidative stress in an experimental model of Parkinson›s disease. J.Immunol., 2010; 185: 1230-1237
    Google Scholar
  • 17. Cohen A.D., Tillerson J.L., Smith A.D., Schallert T., Zigmond M.J.:Neuroprotective effects of prior limb use in 6-hydroxydopamine–treated rats: possible role of GDNF. J. Neurochem., 2003; 85: 299-305 18 Cotman C.W., Berchtold N.C., Christie L.A.: Exercise builds brainhealth: key roles of growth factor cascades and inflammation. TrendsNeurosci., 2007; 30: 464-472
    Google Scholar
  • 18. (Suppl. 1): S207-S209
    Google Scholar
  • 19. Dexter D.T., Jenner D.: Parkinson disease: from pathology to moleculardisease mechanisms. Free Radic. Biol. Med., 2013; 62: 132-144
    Google Scholar
  • 20. Emerich D.F., Plone M., Francis J., Frydel B.R., Winn S.R., LindnerM.D.: Alleviation of behavioral deficits in aged rodents followingimplantation of encapsulated GDNF-producing fibroblasts. BrainRes., 1996; 736: 99-110
    Google Scholar
  • 21. Febbraio M.A., Pedersen B.K.: Muscle-derived interleukin-6:mechanisms for activation and possible biological roles. FASEB J.,2002; 16: 1335-1347
    Google Scholar
  • 22. Fellner L., Irschick R., Schanda K., Reindl M., Klimaschewski L.,Poewe W., Wenning G.K., Stefanova N.: Toll-like receptor 4 is requiredfor α-synuclein dependent activation of microglia and astroglia.Glia, 2013; 61: 349-360
    Google Scholar
  • 23. Friedman A.: Choroba Parkinsona, mechanizmy, rozpoznawanie,leczenie. Czelej, Lublin 2005
    Google Scholar
  • 24. Gash D.M., Zhang Z., Ovadia A., Cass W.A., Yi A., Simmerman L.,Russell D., Martin D., Lapchak P.A., Collins F., Hoffer B.J., GerhardG.A.: Functional recovery in parkinsonian monkeys treated withGDNF. Nature, 1996; 380: 252-255
    Google Scholar
  • 25. Geffken D.F., Cushman M., Burke G.L., Polak J.F., Sakkinen P.A.,Tracy R.P.: Association between physical activity and markers ofinflammation in a healthy elderly population. Am. J. Epidemiol.,2001; 153: 242-250
    Google Scholar
  • 26. Gerecke K.M., Jiao Y., Pagala V., Smeyne R.J.: Exercise does notprotect against MPTP-induced neurotoxicity in BDNF happloinsufficientmice. PLoS One, 2012; 7: e43250
    Google Scholar
  • 27. Gill S.S., Patel N.K., Hotton G.R., O›Sullivan K., McCarter R., BunnageM., Brooks D.J., Svendsen C.N., Heywood P.: Direct brain infusionof glial cell line-derived neurotrophic factor in Parkinson disease.Nat. Med., 2003; 9: 589-595
    Google Scholar
  • 28. Goes A.T., Souza L.C., Filho C.B., Del Fabbro L., De Gomes M.G.,Boeira S.P., Jesse C.R.: Neuroprotective effects of swimming trainingin a mouse model of Parkinson›s disease induced by 6-hydroxydopamine.Neuroscience, 2014; 256: 61-71
    Google Scholar
  • 29. Goldhammer E., Tanchilevitch A., Maor I., Beniamini Y., RosenscheinU., Sagiv M.: Exercise training modulates cytokines activityin coronary heart disease patients. Int. J. Cardiol., 2005; 100: 93-99
    Google Scholar
  • 30. Griffin E.W., Mullally S., Foley C., Warmington S.A., O›Mara S.M.,Kelly A.M.: Aerobic exercise improves hippocampal function andincreases BDNF in the serum of young adult males. Physiol. Behav.,2011; 104: 934-941
    Google Scholar
  • 31. Gu Y., Nieves J.W., Stern Y., Luchsinger J.A., Scarmeas N.: Food combination and Alzheimer disease risk: a protective diet. Arch.Neurol., 2010; 67: 699-706
    Google Scholar
  • 32. Gyorkos A.M., McCullough M.J., Spitsbergen J.M.: Glial cell line–derived neurotrophic factor (GDNF) expression and NMJ plasticityin skeletal muscle following endurance exercise. Neuroscience,2014; 257: 111-118
    Google Scholar
  • 33. Han Q., Xiang J., Zhang Y., Qiao H., Shen Y., Zhang C.: Enhancedneuroprotection and improved motor function in traumatized ratspinal cords by rAAV2-mediated glial-derived neurotrophic factorcombined with early rehabilitation training. Chin. Med. J., 2014;127: 4220-4225
    Google Scholar
  • 34. Hennigan A., O’Callaghan R.M., Kelly A.M.: Neurotrophins andtheir receptors: roles in plasticity, neurodegeneration and neuroprotection.Biochem. Soc. Trans., 2007; 35: 424-427
    Google Scholar
  • 35. Hirsch M.A., Farley B.G.: Exercise and neuroplasticity in personsliving with Parkinson’s disease. Eur. J. Phys. Rehabil. Med.,2009; 45: 215-229
    Google Scholar
  • 36. Hoffer B.J., Hoffman A., Bowenkamp K., Huettl P., Hudson J.,Martin D., Lin L.F., Gerhardt G.A.: Glial cell line-derived neurotrophicfactor reverses toxin-induced injury to midbrain dopaminergicneurons in vivo. Neurosci. Lett., 1994; 182: 107-111
    Google Scholar
  • 37. Huang E.J., Reichardt L.F.: Trk receptors: roles in neuronal signaltransduction. Annu. Rev. Biochem., 2003; 72: 609-642
    Google Scholar
  • 38. Kearns C.M., Cass W.A., Smoot K., Kryscio R., Gash D.M.: GDNFprotection against 6-OHDA: time dependence and requirement forprotein synthesis. J. Neurosci., 1997; 17: 7111-7118
    Google Scholar
  • 39. Kearns C.M., Gash D.M.: GDNF protects nigral dopamine neuronsagainst 6-hydroxydopamine in vivo. Brain Res., 1995; 672: 104-111
    Google Scholar
  • 40. Kohut M.L., McCann D.A., Russell D.W., Konopka D.N., CunnickJ.E., Franke W.D., Castillo M.C., Reighard A.E., Vanderah E.: Aerobicexercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocialfactors in older adults. Brain Behav. Immun., 2006; 20: 201-209
    Google Scholar
  • 41. Kramer B.C., Goldman A.D., Mytilineou C.: Glial cell line derivedneurotrophic factor promotes the recovery of dopamine neurons damagedby 6-hydroxydopamine in vitro. Brain Res., 1999; 851: 221-227
    Google Scholar
  • 42. Krygowska-Wajs A., Fiszer U.: Znaczenie aktywności fizycznejw chorobie Parkinsona. Pol. Przegl. Neurol., 2014; 10: 66-70
    Google Scholar
  • 43. Lakka T.A., Lakka H.M., Rankinen T., Leon A.S., Rao D.C., SkinnerJ.S., Wilmore J.H., Bouchard C.: Effect of exercise training on plasmalevels of C-reactive protein in healthy adults: the HERITAGE FamilyStudy. Eur. Heart J., 2005; 26: 2018-2025
    Google Scholar
  • 44. Lang A.E., Gill S., Patel N.K., Lozano A., Nutt J.G., Penn R., BrooksD.J., Hotton G., Moro E., Heywood P., Brodsky M.A., Burchiel K.,Kelly P., Dalvi A., Scott B. i wsp.: Randomized controlled trial of intraputamenalglial cell line-derived neurotrophic factor infusion inParkinson disease. Ann. Neurol., 2006; 59: 459-466
    Google Scholar
  • 45. Lau Y.S., Patki G., Das-Panja K., Le W.D., Ahmad S.O.: Neuroprotectiveeffects and mechanisms of exercise in a chronic mouse modelof Parkinson’s disease with moderate neurodegeneration. Eur.J. Neurosci., 2011; 33: 1264-1274
    Google Scholar
  • 46. Lee I.H., Seo E.J., Lim I.S.: Effects of aquatic exercise and CEStreatment on the changes of cognitive function, BDNF, IGF-1, andVEGF of persons with intellectual disabilities. J. Exerc. NutritionBiochem., 2014; 18: 19-24
    Google Scholar
  • 47. Lindholm P., Saarma M.: Novel CDNF/MANF family of neurotrophicfactors. Dev. Neurobiol., 2010; 70: 360-371
    Google Scholar
  • 48. Lindholm P., Voutilainen M.H., Laurén J., Peränen J., LeppänenV.M., Andressoo J.O., Lindahl M., Janhunen S., Kalkkinen N., TimmuskT., Tuominen R.K., Saarma M.: Novel neurotrophic factor CDNFprotects and rescues midbrain dopamine neurons in vivo. Nature,2007; 448: 73-77
    Google Scholar
  • 49. Lindvall O., Wahlberg L.U.: Encapsulated cell biodelivery ofGDNF: A novel clinical strategy for neuroprotection and neuroregenerationin Parkinson’s disease? Exp. Neurol., 2008; 209: 82-88
    Google Scholar
  • 50. Liu B.: Modulation of microglial pro-inflammatory and neurotoxicactivity for the treatment of Parkinson’s disease. AAPS J.,2006; 8: E606-E621
    Google Scholar
  • 51. Łabuzek K., Skrudlik E., Gabryel B., Okopień B.: Przeciwzapalnafunkcja komórek mikrogleju w świetle najnowszych badań naukowych.Ann. Acad. Med. Siles., 2015; 69: 99-110
    Google Scholar
  • 52. Mach A., Mirowska-Guzel D., Członkowski A., Członkowska A.:Czynniki neurotroficzne w chorobach neurodegeneracyjnych. Farmakoter.Psychiatr. Neurol., 2007; 4: 173-180
    Google Scholar
  • 53. Machaliński B., Łażewski-Banaszak P., Dąbkowska E., PaczkowskaE., Gołąb-Janowska M., Nowacki P.: Rola czynników neurotroficznychw procesach regeneracji układu nerwowego. Neurol. Neurochir. Pol.,2012; 46: 579-590
    Google Scholar
  • 54. Maragakis N.J., Rothstein J.D.: Mechanisms of disease: astrocytesin neurodegenerative disease. Nat. Clin. Pract., Neurology,2006; 2: 679-689
    Google Scholar
  • 55. Mattson M.P.: Glutamate and neurotrophic factors in neuronalplasticity and disease. Ann. NY Acad. Sci., 2008; 1144: 97-112
    Google Scholar
  • 56. McGeer P.L., McGeer E.G.: Glial reactions in Parkinson’s disease.Mov. Disord., 2008; 23: 474-483
    Google Scholar
  • 57. Monteiro-Junior R.S., Cevada T., Oliveira B.R., Lattari E., PortugalE.M., Carvalho A., Deslandes A.C.: We need to move more: neurobiologicalhypotheses of physical exercise as a treatment for Parkinson’sdisease. Med. Hypotheses, 2015; 85: 537-541
    Google Scholar
  • 58. Neeper S.A., Gómez-Pinilla F., Choi J., Cotman C.W.: Physicalactivity increases mRNA for brain-derived neurotrophic factor andnerve growth factor in rat brain. Brain Res., 1996; 726: 49-56
    Google Scholar
  • 59. Nicklas B.J., Hsu F.C., Brinkley T.J., Church T., Goodpaster B.H.,Kritchevsky S.B., Pahor M.: Exercise training and plasma C-reactiveprotein and interleukin-6 in elderly people. J. Am. Geriatr. Soc.,2008; 56: 2045-2052
    Google Scholar
  • 60. Nutt J.G., Burchiel K.J., Comella C.L., Jankovic J., Lang A.E., LawsE.R.Jr., Lozano A.M., Penn R.D., Simpson R.K., Stacy M., Wooten G.F.:Randomized, double-blind trial of glial cell line-derived neurotrophicfactor (GDNF) in PD. Neurology, 2003; 60: 69-73
    Google Scholar
  • 61. Paillard T., Rolland Y., de Souto Barreto P.: Protective effects ofphysical exercise in Alzheimer’s disease and Parkinson’s disease:a narrative review. J. Clin. Neurol., 2015; 11: 212-219
    Google Scholar
  • 62. Parain K., Murer M.G., Yan Q., Faucheux B., Agid Y., Hirsch E.,Raisman-Vozari R.: Reduced expression of brain-derived neurotrophicfactor protein in Parkinson’s disease substantia nigra. Neuroreport,1999; 10: 557-561
    Google Scholar
  • 63. Pedersen M., Bruunsgaard H., Weis N., Hendel H.W., AndreassenB.U., Eldrup E., Dela F., Pedersen B.K.: Circulating levels of TNF-alphaand IL-6-relation to truncal fat mass and muscle mass in healthy elderlyindividuals and in patients with type-2 diabetes. Mech. AgeingDev., 2003; 124: 495-502
    Google Scholar
  • 64. Perry V.H.: The influence of systemic inflammation on inflammationin the brain: implications for chronic neurodegenerativedisease. Brain, Behav. Immun., 2004; 18: 407-413
    Google Scholar
  • 65. Phani S., Loike J.D., Przedborski S.: Neurodegeneration and inflammationin Parkinson’s disease. Parkinsonism Relat. Disord., 2012;
    Google Scholar
  • 66. Porritt M.J., Batchelor P.E., Howells D.W.: Inhibiting BDNFexpression by antisense oligonucleotide infusion causes loss of nigraldopaminergic neurons. Exp. Neurol., 2005; 192: 226-234
    Google Scholar
  • 67. Rahe J., Becker J., Fink G.R., Kessler J., Kukolja J., Rahn A., RosenJ.B., Szabados F.,Wirth B., Kalbe E.: Cognitive training with and withoutadditional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of trainingsuccess. Front. Aging Neurosci., 2015; 7: 187
    Google Scholar
  • 68. Rangasamy S.B., Soderstrom K., Bakay R.A., Kordower J.H.: Neurotrophicfactor therapy for Parkinson’s disease. W: Recent Advancesin Parkinson’s Disease: Translational and Clinical Research, red.: A.Björklund, M.A. Cenci. Prog. Brain Res., 2010; 184: 237-264
    Google Scholar
  • 69. Schäbitz W.R., Steigleder T., Cooper-Kuhn C.M., Schwab S., SommerC., Schneider A., Kuhn H.G.: Intravenous brain-derived neurotrophicfactor enhances poststroke sensorimotor recovery andstimulates neurogenesis. Stroke, 2007; 38: 2165-2172
    Google Scholar
  • 70. Scheele C., Nielsen S., Pedersen B.K.: ROS and myokines promotemuscle adaptation to exercise. Trends Endocrinol. Metabol.,2009; 20: 95-99
    Google Scholar
  • 71. Sconce M.D., Churchill M.J., Greene R.E., Meshul C.K.: Interventionwith exercise restores motor deficits but not nigrostriatal lossin a progressive MPTP mouse model of Parkinson’s disease. Neuroscience,2015; 299: 156-174
    Google Scholar
  • 72. Sehm B., Taubert M., Conde V., Weise D., Classen J., Dukart J.,Draganski B., Villringer A., Ragert P.: Structural brain plasticity inParkinson’s disease induced by balance training. Neurobiol. Aging,2014; 35: 232-239
    Google Scholar
  • 73. Slevin J.T., Gash D.M., Smith C.D., Gerhardt G.A., Kryscio R.,Chebrolu H., Walton A., Wagner R., Young A.B.: Unilateral intraputamenalglial cell line-derived neurotrophic factor in patients withParkinson disease: response to 1 year of treatment and 1 year ofwithdrawal. J. Neurosurg., 2007; 106: 614-620
    Google Scholar
  • 74. Starkie R., Ostrowski S.R., Jauffred S., Febbraio M., PedersenB.K.: Exercise and IL-6 infusion inhibit endotoxin-induced TNF-αproduction in humans. FASEB J., 2003; 17: 884-886
    Google Scholar
  • 75. Stępień K., Dzierżęga-Lęcznar A., Tam I.: Rola neuromelaninyw chorobie Parkinsona – nowe koncepcje. Wiad. Lek., 2007; 60:563-569
    Google Scholar
  • 76. Sullivan A.M., Toulouse A.: The potential of neurotrophic factorsfor the treatment of Parkinson’s disease.W: Towards New Therapiesfor Parkinson’s Disease, red.: D.I. Finkelstein, 2011
    Google Scholar
  • 77. Sun Z.P., Gong L., Huang S.H., Geng Z., Cheng L., Chen Z.Y.: Intracellulartrafficking and secretion of cerebral dopamine neurotrophicfactor in neurosecretory cells. J. Neurochem., 2011; 117: 121-132
    Google Scholar
  • 78. Tajiri N., Yasuhara T., Shingo T., Kondo A., Yuan W., Kadota T.,Wang F., Baba T., Tayra J.T., Morimoto T., Jing M., Kikuchi Y., KuramotoS., Agari T., Miyoshi Y. i wsp.: Exercise exerts neuroprotectiveeffects on Parkinson’s disease model of rats. Brain Res., 2010; 1310:200-207
    Google Scholar
  • 79. Tansey M.G., Goldberg M.S.: Neuroinflammation in Parkinson’sdisease: Its role in neuronal death and implications for therapeuticintervention. Neurobiol. Dis., 2010; 37: 510-518
    Google Scholar
  • 80. Tomac A., Lindqvist E., Lin L.F., Ögren S.O., Young D., Hoffer B.J.,Olson L.: Protection and repair of the nigrostriatal dopaminergicsystem by GDNF in vivo. Nature, 1995; 373: 335-339
    Google Scholar
  • 81. Trejo J.L., Carro E., Torres-Alemán I.: Circulating insulin-likegrowth factor I mediates exercise-induced increases in the numberof new neurons in the adult hippocampus. J. Neurosci., 2001;21: 1628-1634
    Google Scholar
  • 82. Tuon T., Souza P.S., Santos M.F., Pereira F.T., Pedroso G.S., LucianoT.F., De Souza C.T., Dutra R.C., Silveira P.C., Pinho R.A.: Physicaltraining regulates mitochondrial parameters and neuroinflammatorymechanisms in an experimental model of Parkinson’s disease.Oxid. Med. Cell. Longev., 2015; 2015: 261809
    Google Scholar
  • 83. Tuon T., Valvassori S.S., Dal Pont G.C., Paganini C.S., Pozzi B.G.,Luciano T.F., Souza P.S., Quevedo J., Souza C.T., Pinho R.A.: Physicaltraining prevents depressive symptoms and a decrease in brain-derivedneurotrophic factor in Parkinson’s disease. Brain Res. Bull.,2014; 108: 106-112
    Google Scholar
  • 84. Uhrbrand A., Stenager E., Pedersen M.S., Dalgas U.: Parkinson’sdisease and intensive exercise therapy – a systematic reviewand meta-analysis of randomized controlled trials. J. Neurol. Sci.,2015; 353: 9-19
    Google Scholar
  • 85. Vaynman S., Ying Z., Gomez-Pinilla F.: Hippocampal BDNF mediatesthe efficacy of exercise on synaptic plasticity and cognition.Eur. J. Neurosci., 2004; 20: 2580-2590
    Google Scholar
  • 86. Vaynman S., Ying Z., Gomez-Pinilla F.: Interplay between brain–derived neurotrophic factor and signal transduction modulators inthe regulation of the effects of exercise on synaptic-plasticity. Neuroscience,2003; 122: 647-657
    Google Scholar
  • 87. Vieira V.J., Hu L., Valentine R.J., McAuley E., Evans E.M., BaynardT., Woods J.A.: Reduction in trunk fat predicts cardiovascular exercisetraining-related reductions in C-reactive protein. Brain Behav.Immun., 2009; 23: 485-491
    Google Scholar
  • 88. Voss M.W., Erickson K.I., Prakash R.S., Chaddock L., Kim J.S., AlvesH., Szabo A., Phillips S.M., Wójcicki T.R., Mailey E.L., Olson E.A., GotheN., Vieira-Potter V.J., Martin S.A., Pence B.D., Cook M.D., Woods J.A.,McAuley E., Kramer A.F.: Neurobiological markers of exercise-relatedbrain plasticity in older adults. Brain Behav. Immun., 2013; 28: 90-99
    Google Scholar
  • 89. Voutilainen M.H., Bäck S., Pörsti E., Toppinen L., Lindgren L.,Lindholm P., Peränen J., Saarma M., Tuominen R.K.: Mesencephalicastrocyte-derived neurotrophic factor is neurorestorative in rat modelof Parkinson’s disease. J. Neurosci., 2009; 29: 9651-9659
    Google Scholar
  • 90. Wahl P., Schmidt A., Demarees M., Achtzehn S., Bloch W., MesterJ.: Responses of angiogenic growth factors to exercise, to hypoxiaand to exercise under hypoxic conditions. Int. J. Sports Med.,2013; 34: 95-100
    Google Scholar
  • 91. Wang L., Muramatsu S., Lu Y., Ikeguchi K., Fujimoto K., Okada T.,Mizukami H., Hanazono Y., Kume A., Urano F., Ichinose H., NagatsuT., Nakano I., Ozawa K.: Delayed delivery of AAV-GDNF prevents nigralneurodegeneration and promotes functional recovery in a ratmodel of Parkinson’s disease. Gene Ther., 2002; 9: 381-389
    Google Scholar
  • 92. Wang Q., Liu Y., Zhou J.: Neuroinflammation in Parkinson’s diseaseand its potential as therapeutic target. Transl. Neurodegener.,2015; 4: 1-9
    Google Scholar
  • 93. Wannamethee S.G., Lowe G.D., Whincup P.H., Rumley A., WalkerM., Lennon L.: Physical activity and hemostatic and inflammatoryvariables in elderly men. Circulation, 2002; 105: 1785-1790
    Google Scholar
  • 94. Watson M.B., Richter F., Lee S.K., Gabby L., Wu J., Masliah E., EffrosR.B., Chesselet M.F.: Regionally-specific microglial activation inyoung mice over-expressing human wildtype alpha-synuclein. Exp.Neurol., 2012; 237: 318-334
    Google Scholar
  • 95. Woods J.A., Wilund K.R., Martin S.A., Kistler B.M.: Exercise, inflammationand aging. Aging Dis., 2012; 3: 130-140
    Google Scholar
  • 96. Wu S.Y., Wang T.F., Yu L., Jen C.J., Chuang J.I., Wu F.S., Wu C.W.,Kuo Y.M.: Running exercise protects the substantia nigra dopaminergicneurons against inflammation-induced degeneration via theactivation of BDNF signaling pathway. Brain Behav. Immun., 2011;25: 135-146
    Google Scholar
  • 97. Wysokiński A., Gruszczyński W.: Neurotrofiny – aktualny stanwiedzy. Post. Psychiat. Neurol., 2008; 17: 385-390
    Google Scholar
  • 98. Xu H., Barnes G.T., Yang Q., Tan G., Yang D., Chou C.J., Sole J.,Nichols A., Ross J.S., Tartaglia L.A., Chen H.: Chronic inflammation infat plays a crucial role in the development of obesity-related insulinresistance. J. Clin. Invest., 2003; 112: 1821-1830
    Google Scholar
  • 99. Yarrow J.F., White L.J., McCoy S.C., Borst S.E.: Training augmentsresistance exercise induced elevation of circulating brain derivedneurotrophic factor (BDNF). Neurosci. Lett., 2010; 479: 161-165
    Google Scholar
  • 100. Yasuhara T., Shingo T., Date I.: Glial cell line-derived neurotrophicfactor (GDNF) therapy for Parkinson’s disease. Acta Med.Okayama, 2007; 61: 51-56
    Google Scholar
  • 101. Young D., Lawlor P.A., Leone P., Dragunow M., During M.J.:Environmental enrichment inhibits spontaneous apoptosis, preventsseizures and is neuroprotective. Nat. Med., 1999; 5: 448-453
    Google Scholar

Full text

Skip to content