The role of vitamin C in epigenetic regulation

COMMENTARY ON THE LAW

The role of vitamin C in epigenetic regulation

Jolanta Guz 1 , Ryszard Oliński 1

1. Katedra Biochemii Klinicznej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu

Published: 2017-08-24
DOI: 10.5604/01.3001.0010.3853
GICID: 01.3001.0010.3853
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 747-760

 

Abstract

Vitamin C (L-ascorbic acid) is a micronutrient best known for its anti-scurvy activity in humans. Vitamin C is involved in many biological processes involving enzymatic reactions that are catalyzed by members of dioxygenases which use Fe(II) and 2-oxoglutarate as a co-substrate.The article reviews recent data that suggest the involvement of ascorbate in dioxygenases catalyzed chromatin and DNA modifications which thereby contribute to epigenetic regulation. Concerning chromatin modification, the dioxygenases are involved in distinct demethylation reactions with varying specificity for the position of the lysine on the target histone. TET hydroxylases catalyse the oxidation of methyl groups in the 5 position of cytosine in DNA yielding 5-hydroxymethylcytosine, while further iterative oxidation reactions results in the formation of 5-formylcytosine and 5-carboxylcytosine. A few previous studies demonstrated that ascorbate may enhance generation of 5-hydroxymethylcytosine in cultured cells, probably acting as a cofactor of TETs during hydroxylation of 5-methylcytosine. Physiological concentrations of ascorbate in human serum (10-100 μM) may guarantee stable level of 5-hydroxymethylcytosine, a modification necessary for epigenetic function of the cell. 5-Hydroxymethylcytosine level is substantially decreased in almost all investigated cancers, what may be linked with cancer development. Therefore, it is possible that supplementation with ascorbate could contribute to better management of individual cancer patient. This issue is also discussed in our paper.

References

  • 1. Bánhegyi G., Benedetti A., Margittai E., Marcolongo P., Fulceri R.,Nemeth C.E., Szarka A.: Subcellular compartmentation of ascorbateand its variation in disease states. Biochim. Biophys. Acta, 2014;1843: 1909-1916
    Google Scholar
  • 2. Bian E.B., Zong G., Xie Y.S., Meng X.M., Huang C., Li J., Zhao B.:TET family proteins: new players in gliomas. J. Neurooncol., 2014;116: 429-435
    Google Scholar
  • 3. Blaschke K., Ebata K.T., Karimi M.M., Zepeda-Martinez J.A., GoyalP., Mahapatra S., Tam A., Laird D.J., Hirst M., Rao A., Lorincz M.C., Ramalho-SantosM.: Vitamin C induces Tet-dependent DNA demethylationand a blastocyst-like state in ES cells. Nature, 2013; 500: 222-226
    Google Scholar
  • 4. Branco M.R., Ficz G., Reik W.: Uncovering the role of 5-hydroxymethylcytosinein the epigenome. Nat. Rev. Genet., 2011; 13: 7-13
    Google Scholar
  • 5. Cadet J., Wagner J.R.: TET enzymatic oxidation of 5-methylcytosine,5-hydroxymethylcytosine and 5-formylcytosine. Mutat. Res.Genet. Toxicol. Environ. Mutagen., 2014; 764-765: 18-35
    Google Scholar
  • 6. Camarena V., Wang G.: The epigenetic role of vitamin C in healthand disease. Cell Mol. Life Sci. 2016; 73: 1645-1658
    Google Scholar
  • 7. Chen J., Guo L., Zhang L., Wu H., Yang J., Liu H., Wang X., Hu X.,Gu T., Zhou Z., Liu J., Liu J., Wu H., Mao S.Q., Mo K. i wsp.: Vitamin Cmodulates TET1 function during somatic cell reprogramming. Nat.Genet., 2013; 45, 1504-1509
    Google Scholar
  • 8. Chen J., Liu H., Liu J., Qi J., Wei B., Yang J., Liang H., Chen Y., ChenJ., Wu Y., Guo L., Zhu J., Zhao X., Peng T., Zhang Y. i wsp.: H3K9 methylationis a barrier during somatic cell reprogramming into iPSCs.Nat. Genet., 2013; 45: 34-42
    Google Scholar
  • 9. Chung T.L., Brena R.M., Kolle G., Grimmond S.M., Berman B.P.,Laird P.W., Pera M.F., Wolvetang E.J.: Vitamin C promotes widespreadyet specific DNA demethylation of the epigenome in human embryonicstem cells. Stem Cells, 2010; 28: 1848-1855
    Google Scholar
  • 10. Ciesielski P., Jóźwiak P., Krześlak A.: Białka TET a modyfikacjeepigenetyczne w nowotworach. Postępy Hig. Med. Dośw., 2015; 69:1371-1383
    Google Scholar
  • 11. Dang L., White D.W., Gross S., Bennett B.D., Bittinger M.A., DriggersE.M., Fantin V.R., Jang H.G., Jin S., Keenan M.C., Marks K.M., PrinsR.M., Ward P.S., Yen K.E., Liau L.M. i wsp.: Cancer-associated IDH1mutations produce 2-hydroxyglutarate. Nature, 2009; 462: 739-744
    Google Scholar
  • 12. Dickson K.M., Gustafson C.B., Young J.I., Züchner S., Wang G.:Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffectedby varying levels of iron and 2-oxoglutarate. Biochem. Biophys.Res.Commun., 2013; 439: 522-527
    Google Scholar
  • 13. Du J., Cullen J.J., Buettner G.R.: Ascorbic acid: chemistry, biologyand the treatment of cancer. Biochim. Biophys. Acta, 2012;1826: 443-457
    Google Scholar
  • 14. Eid W., Abdel-Rehim W.: Vitamin C promotes pluripotency ofhuman induced pluripotent stem cells via the histone demethylaseJARID1A. Biol. Chem., 2016; 397: 1205-1213
    Google Scholar
  • 15. Erichsen H.C., Engel S.A., Eck P.K., Welch R., Yeager M., LevineM., Siega-Riz A.M., Olshan A.F., Chanock S.J.: Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2and risk for preterm delivery. Am. J. Epidemiol., 2006; 163: 245-254
    Google Scholar
  • 16. Erichsen H.C., Peters U., Eck P., Welch R., Schoen R.E., YeagerM., Levine M., Hayes R.B., Chanock S.: Genetic variation in sodiumdependentvitamin C transporters SLC23A1 and SLC23A2 and riskof advanced colorectal adenoma. Nutr. Cancer, 2008; 60: 652-659
    Google Scholar
  • 17. Esteban M.A., Pei D.: Vitamin C improves the quality of somaticcell reprogramming. Nat. Genet., 2012; 44: 366-367
    Google Scholar
  • 18. Esteban M.A., Wang T., Qin B., Yang J., Qin D., Cai J., Li W., WengZ., Chen J., Ni S., Chen K., Li Y., Liu X., Xu J., Zhang S. i wsp.: VitaminC enhances the generation of mouse and human induced pluripotentstem cells. Cell Stem Cell, 2010; 6: 71-79
    Google Scholar
  • 19. Fedeles B.I., Singh V., Delaney J.C., Li D., Essigmann J.M.: TheAlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairingnucleic acid alkylation damage and beyond. J. Biol. Chem.,2015; 290: 20734-20742
    Google Scholar
  • 20. Furney S.J., Pedersen M., Gentien D., Dumont A.G., Rapinat A.,Desjardins L., Turajlic S., Piperno-Neumann S., de la Grange P., Roman-RomanS., Stern M.H., Marais R.: SF3B1 mutations are associatedwith alternative splicing in uveal melanoma. Cancer Discov.,2013; 3: 1122-1129
    Google Scholar
  • 21. Gao Y., Han Z., Li Q., Wu Y., Shi X., Ai Z., Du J., Li W., Guo Z., ZhangY.: Vitamin C induces a pluripotent state in mouse embryonic stemcells by modulating microRNA expression. FEBS J., 2015; 282: 685-699
    Google Scholar
  • 22. Gaspar-Maia A., Alajem A., Meshorer E., Ramalho-Santos M.:Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol.Cell Biol., 2011; 12: 36-47
    Google Scholar
  • 23. Guey L.T., Garcia-Closas M., Murta-Nascimento C., LloretaJ., Palencia L., Kogevinas M., Rothman N., Vellalta G., Calle M.L.,Marenne G., Tardón A., Carrato A., Garcia-Closas R., Serra C., SilvermanD.T. i wsp.: Genetic susceptibility to distinct bladder cancersubphenotypes. Eur. Urol., 2010; 57: 283-292
    Google Scholar
  • 24. Gustafson C.B., Yang C., Dickson K.M., Shao H., Van Booven D.,Harbour J.W., Liu Z.J., Wang G.: Epigenetic reprogramming of melanomacells by vitamin C treatment. Clin. Epigenetics., 2015; 7: 51
    Google Scholar
  • 25. Hsu C.H., Peng K.L., Kang M.L., Chen Y.R., Yang Y.C., Tsai C.H., ChuC.S., Jeng Y.M., Chen Y.T., Lin F.M., Huang H.D., Lu Y.Y., Teng Y.C., LinS.T., Lin R.K. i wsp.: TET1 suppresses cancer invasion by activatingthe tissue inhibitors of metalloproteinases. Cell Rep., 2012; 2: 568-579
    Google Scholar
  • 26. Huang Y., Rao A.: Connections between TET proteins and aberrantDNA modification in cancer. Trends Genet., 2014; 30: 464-474
    Google Scholar
  • 27. Ito S., D›Alessio A.C., Taranova O.V., Hong K., Sowers L.C., ZhangY.: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewaland inner cell mass specification. Nature, 2010; 466: 1129-1133
    Google Scholar
  • 28. Johansson C., Tumber A., Che K., Cain P., Nowak R., Gileadi C.,Oppermann U.: The roles of Jumonji-type oxygenases in humandisease. Epigenomics, 2014; 6: 89-120
    Google Scholar
  • 29. Klose R.J., Yamane K., Bae Y., Zhang D., Erdjument-Bromage H.,Tempst P., Wong J., Zhang Y.: The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature,2006; 442: 312-316
    Google Scholar
  • 30. Ko M., Huang Y., Jankowska A.M., Pape U.J., Tahiliani M., BandukwalaH.S., An J., Lamperti E.D., Koh K.P., Ganetzky R., Liu X.S.,Aravind L., Agarwal S., Maciejewski J.P., Rao A.: Impaired hydroxylationof 5-methylcytosine in myeloid cancers with mutant TET2.Nature, 2010; 468: 839-843
    Google Scholar
  • 31. Kohli R.M., Zhang Y.: TET enzymes, TDG and the dynamics ofDNA demethylation. Nature, 2013; 502: 472-479
    Google Scholar
  • 32. Kroeze L.I., van der Reijden B.A., Jansen J.H.: 5-Hydroxymethylcytosine:an epigenetic mark frequently deregulated in cancer.Biochim. Biophys. Acta, 2015; 1855: 144-154
    Google Scholar
  • 33. Kuiper C., Vissers M.C.: Ascorbate as a co-factor for Fe – and2-oxoglutarate dependent dioxygenases: physiological activity intumor growth and progression. Front Oncol., 2014; 4: 359
    Google Scholar
  • 34. Li R., Liang J., Ni S., Zhou T., Qing X., Li H., He W., Chen J., Li F.,Zhuang Q., Qin B., Xu J., Li W., Yang J., Gan Y. i wsp.: A mesenchymal-to-epithelialtransition initiates and is required for the nuclearreprogramming of mouse fibroblasts. Cell Stem Cell, 2010; 7: 51-63
    Google Scholar
  • 35. Lian C.G., Xu Y., Ceol C., Wu F., Larson A., Dresser K., Xu W., TanL., Hu Y., Zhan Q., Lee C.W., Hu D., Lian B.Q., Kleffel S., Yang Y. i wsp.:Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.Cell, 2012; 150: 1135-1146
    Google Scholar
  • 36. Linster C.L., Van Schaftingen E.: Vitamin C. Biosynthesis, recyclingand degradation in mammals. FEBS J., 2007; 274: 1-22
    Google Scholar
  • 37. Manning J., Mitchell B., Appadurai D.A., Shakya A., Pierce L.J.,Wang H., Nganga V., Swanson P.C., May J.M., Tantin D., SpangrudeG.J.: Vitamin C promotes maturation of T-cells. Antioxid. Redox.Signal., 2013; 19: 2054-2067
    Google Scholar
  • 38. Markolovic S., Wilkins S.E., Schofield C.J.: Protein hydroxylationcatalyzed by 2-oxoglutarate-dependent oxygenases. J. Biol. Chem.,2015; 290: 20712-20722
    Google Scholar
  • 39. May J.M.: The SLC23 family of ascorbate transporters: ensuringthat you get and keep your daily dose of vitamin C. Br. J. Pharmacol.,2011; 164: 1793-1801
    Google Scholar
  • 40. McDonough M.A., Loenarz C., Chowdhury R., Clifton I.J., SchofieldC.J.: Structural studies on human 2-oxoglutarate dependentoxygenases. Curr. Opin. Struct. Biol., 2010; 20: 659-672
    Google Scholar
  • 41. Minor E.A., Court B.L, Young J.I., Wang G.: Ascorbate inducesten-eleven translocation (Tet) methylcytosine dioxygenase-mediatedgeneration of 5-hydroxymethylcytosine. J. Biol. Chem., 2013;288: 13669-13674
    Google Scholar
  • 42. Modrzejewska M., Gawronski M., Skonieczna M., Zarakowska E.,Starczak M., Foksinski M., Rzeszowska-Wolny J., Gackowski D., OlinskiR.: Vitamin C enhances substantially formation of 5-hydroxymethyluracilin cellular DNA. Free Radic. Biol. Med., 2016; 101: 378-383
    Google Scholar
  • 43. Monfort A., Wutz A.: Breathing-in epigenetic change with vitaminC. EMBO Rep., 2013; 14: 337-346
    Google Scholar
  • 44. Nabel C.S., Jia H., Ye Y., Shen L., Goldschmidt H.L., Stivers J.T.,Zhang Y., Kohli R.M.: AID/APOBEC deaminases disfavor modifiedcytosines implicated in DNA demethylation. Nat. Chem. Biol., 2012;8: 751-758
    Google Scholar
  • 45. Ougland R., Lando D., Jonson I., Dahl J.A., Moen M.N., NordstrandL.M., Rognes T., Lee J.T., Klungland A., Kouzarides T., Larsen E.: ALKBH1is a histone H2A dioxygenase involved in neural differentiation.Stem Cells, 2012; 30: 2672-2682
    Google Scholar
  • 46. Padayatty S.J., Levine M.: Vitamin C: the known, the unknown,and Goldilocks. Oral Dis. 2016; 22: 463-93
    Google Scholar
  • 47. Pan Z., Sikandar S., Witherspoon M., Dizon D., Nguyen T., BenirschkeK., Wiley C., Vrana P., Lipkin S.M.: Impaired placental trophoblastlineage differentiation in Alkbh1-/-mice. Dev. Dyn., 2008;237: 316-327
    Google Scholar
  • 48. Pfaffeneder T., Spada F., Wagner M., Brandmayr C., Laube S.K.,Eisen D., Truss M., Steinbacher J., Hackner B., Kotljarova O., SchuermannD., Michalakis S., Kosmatchev O., Schiesser S., SteigenbergerB. i wsp.: Tet oxidizes thymine to 5-hydroxymethyluracil in mouseembryonic stem cell DNA. Nat. Chem. Biol., 2014; 10: 574-581
    Google Scholar
  • 49. Ponnaluri V.K., Maciejewski J.P., Mukherji M.: A mechanisticoverview of TET-mediated 5-methylcytosine oxidation. Biochem.Biophys. Res.Commun., 2013; 436: 115-120
    Google Scholar
  • 50. Quesada V., Conde L., Villamor N., Ordóñez G.R., Jares P., BassaganyasL., Ramsay A.J., Beá S., Pinyol M., Martinez-Trillos A., LópezGuerraM., Colomer D., Navarro A., Baumann T., Aymerich M. i wsp.:Exome sequencing identifies recurrent mutations of the splicingfactor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet.,2012; 44: 47-52
    Google Scholar
  • 51. Rose N.R., McDonough M.A., King O.N., Kawamura A., SchofieldC.J.: Inhibition of 2-oxoglutarate dependent oxygenases. Chem. Soc.Rev., 2011; 40; 4364-4397
    Google Scholar
  • 52. Salminen A., Kauppinen A., Hiltunen M., Kaarniranta K.: Krebscycle intermediates regulate DNA and histone methylation: epigeneticimpact on the aging process. Ageing Res. Rev., 2014; 16: 45-65
    Google Scholar
  • 53. Sasidharan Nair V., Song M.H., Oh K.I.: Vitamin C facilitates demethylationof the Foxp3 enhancer in a Tet-dependent manner. J.Immunol., 2016; 196: 2119-2131
    Google Scholar
  • 54. Schjoldager J.G., Tveden-Nyborg P., Lykkesfeldt J.: Prolongedmaternal vitamin C deficiency overrides preferential fetal ascorbatetransport but does not influence perinatal survival in guinea pigs.Br. J. Nutr., 2013; 110: 1573-1579
    Google Scholar
  • 55. Skibola C.F., Bracci P.M., Halperin E., Nieters A., Hubbard A.,Paynter R.A., Skibola D.R., Agana L., Becker N., Tressler P., ForrestM.S., Sankararaman S., Conde L., Holly E.A., Smith M.T.: Polymorphismsin the estrogen receptor 1 and vitamin C and matrix metalloproteinasegene families are associated with susceptibility tolymphoma. PLoS One, 2008; 3: e2816
    Google Scholar
  • 56. Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W.,Bauer C., Münzel M., Wagner M., Müller M., Khan F., Eberl H.C.,Mensinga A., Brinkman A.B., Lephikov K., Müller U. i wsp.: Dynamicreaders for 5-(hydroxy)methylcytosine and its oxidized derivatives.Cell, 2013; 152: 1146-1159
    Google Scholar
  • 57. Stadtfeld M., Apostolou E., Ferrari F., Choi J., Walsh R.M., ChenT., Ooi S.S., Kim S.Y., Bestor T.H., Shioda T., Park P.J., HochedlingerK.: Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitatesgeneration of all-iPS cell mice from terminally differentiatedB cells. Nat. Genet., 2012; 44: 398-405
    Google Scholar
  • 58. Tan L., Shi Y.G.: Tet family proteins and 5-hydroxymethylcytosinein development and disease. Development, 2012; 139: 1895-1902
    Google Scholar
  • 59. Traber M.G., Stevens J.F.: Vitamins C and E: beneficial effectsfrom a mechanistic perspective. Free Radic. Biol. Med., 2011; 51:1000-1013
    Google Scholar
  • 60. Turcan S., Rohle D., Goenka A., Walsh L.A., Fang F., Yilmaz E.,Campos C., Fabius A.W., Lu C., Ward P.S., Thompson C.B., KaufmanA., Guryanova O., Levine R., Heguy A. i wsp.: IDH1 mutation is sufficientto establish the glioma hypermethylator phenotype. Nature,2012; 483: 479-483
    Google Scholar
  • 61. Vaz F.M., Wanders R.J.: Carnitine biosynthesis in mammals. Biochem.J., 2002; 361: 417-429
    Google Scholar
  • 62. Vissers M.C., Kuiper C., Dachs G.U.: Regulation of the 2-oxoglutarate-dependentdioxygenases and implications for cancer. Biochem.Soc. Trans., 2014; 42: 945-951
    Google Scholar
  • 63. Wang L., Zhang J., Duan J., Gao X., Zhu W., Lu X., Yang L., ZhangJ., Li G., Ci W., Li W., Zhou Q., Aluru N., Tang F., He C., Huang X., LiuJ.: Programming and inheritance of parental DNA methylomes inmammals. Cell, 2014; 157: 979-991
    Google Scholar
  • 64. Wang T., Chen K., Zeng X., Yang J., Wu Y., Shi X., Qin B., Zeng L., Esteban M.A., Pan G., Pei D.: The histone demethylases Jhdm1a/1benhance somatic cell reprogramming in a vitamin-C-dependentmanner. Cell Stem Cell, 2011; 9: 575-587
    Google Scholar
  • 65. Wright M.E., Andreotti G., Lissowska J., Yeager M., ZatonskiW., Chanock S.J., Chow W.H., Hou L.: Genetic variation in sodiumdependentascorbic acid transporters and risk of gastric cancer inPoland. Eur. J. Cancer, 2009; 45: 1824-1830
    Google Scholar
  • 66. Wu H., Zhang Y.: Reversing DNA methylation: mechanisms, genomics,and biological functions. Cell, 2014; 156: 45-68
    Google Scholar
  • 67. Xu W., Yang H., Liu Y., Yang Y., Wang P., Kim S.H., Ito S., YangC., Wang P., Xiao M.T., Liu L.X., Jiang W.Q., Liu J., Zhang J.Y., WangB. i wsp.: Oncometabolite 2-hydroxyglutarate is a competitive inhibitorof α-ketoglutarate-dependent dioxygenases. Cancer Cell,2011; 19: 17-30
    Google Scholar
  • 68. Yin R., Mao S.Q., Zhao B., Chong Z., Yang Y., Zhao C., ZhangD., Huang H., Gao J., Li Z., Jiao Y., Li C., Liu S., Wu D., Gu W. i wsp.:Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidationand promotes DNA demethylation in mammals. J. Am. Chem. Soc.,2013; 135: 10396-10403
    Google Scholar
  • 69. Young J.I., Züchner S., Wang G.: Regulation of the epigenomeby vitamin C. Annu. Rev. Nutr., 2015; 35: 545-564
    Google Scholar
  • 70. Yue X., Trifari S., Äijö T., Tsagaratou A., Pastor W.A., ZepedaMartinezJ.A., Lio C.W., Li X., Huang Y., Vijayanand P., LähdesmäkiH., Rao A.: Control of Foxp3 stability through modulation of TETactivity. J. Exp. Med., 2016; 213: 377-397
    Google Scholar
  • 71. Zhao H., Chen T.: Tet family of 5-methylcytosine dioxygenasesin mammalian development. J. Hum. Genet., 2013; 58: 421-427
    Google Scholar

Full text

Skip to content