The Safety of a Vegan Diet During Pregnancy

REVIEW ARTICLE

The Safety of a Vegan Diet During Pregnancy

Miłosz Miedziaszczyk 1 , Patrycja Ciabach 1 , Edmund Grześkowiak 2 , Edyta Szałek 2

1. Student’s Scientific Circle of Clinical Pharmacy of Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland,
2. Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland,

Published: 2021-06-16
DOI: 10.5604/01.3001.0014.9343
GICID: 01.3001.0014.9343
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 417-425

 

Abstract

There is an increasing number of people who go vegetarian. Some young parents also switch to this diet. The safety of vegetarian diets, especially vegan diets, is very important, especially during pregnancy. Unfortunately, reference publications do not provide coherent data on the safety of vegetarian diets during pregnancy. On the one hand, the vegan diet has advantages because it reduces the risk of heart disease and gestational diabetes. On the other hand, vegetarians/vegans should be aware of potential deficiencies of some nutrients (iron, zinc, vitamin B12, vitamin D, omega-3 fatty acids, calcium, iodine) and the clinical consequences for the fetus. For example, iron deficiency may affect cognitive abilities, behavior, intelligence and increase the risk of preterm birth and low birth weight of infants. Plant food contains non-haem iron with variable absorption. Therefore, the vegan diet should include nutrients increasing the bioavailability of iron, e.g. ascorbic acid, carotene and retinol. Due to the fact that animal food is the main source of vitamin B12, vegans are at a very high risk of vitamin B12 deficiency, which will affect the infant’s weight at birth. Low level of vitamin D, which is prevalent in animal food, is the most common deficiency among vegans and lacto-ovo vegetarians. This vitamin prevents gestational diabetes, reduces insulin resistance and guarantees normal function of the musculoskeletal system. Zinc deficiency during pregnancy may lead to preterm birth, neural tube defects or even miscarriage. In view of the clinical consequences of potential deficiencies of nutrients, the vegetarian/vegan diet should be well balanced.

References

  • 1. Agnoli C., Baroni L., Bertini I., Ciappellano S., Fabbri A.,Papa M., Pellegrini N., Sbarbati R., Scarino M.L., Siani V.,Sieri S.: Position paper on vegetarian diets from the workinggroup of the Italian Society of Human Nutrition. Nutr.Metab. Cardiovasc. Dis., 2017; 27: 1037–1052
    Google Scholar
  • 2. Baroni L., Goggi S., Battaglino R., Berveglieri M., FasanI., Filippin D., Griffith P., Rizzo G., Tomasini C., Tosatti M.A.,Battino M.A.: Vegan nutrition for mothers and children:Practical tools for healthcare providers. Nutrients, 2018;11: 5
    Google Scholar
  • 3. Bartalena L., Bogazzi F., Braverman L.E., Martino E.: Effectsof amiodarone administration during pregnancy onneonatal thyroid function and subsequent neurodevelopment.J. Endocrinol. Invest., 2001; 24: 116–130
    Google Scholar
  • 4. Berhe K., Gebrearegay F., Gebremariam H.: Prevalenceand associated factors of zinc deficiency among pregnantwomen and children in Ethiopia: A systematic review andmeta-analysis. BMC Public Health., 2019; 19: 1663
    Google Scholar
  • 5. Bettinelli M.E., Bezze E., Morasca L., Plevani L., SorrentinoG., Morniroli D., Giannì M.L., Mosca F.: Knowledge ofhealth professionals regarding vegetarian diets from pregnancyto adolescence: An observational study. Nutrients,2019; 11: 1149
    Google Scholar
  • 6. Blanchard D.S.: Omega-3 fatty acid supplementation inperinatal settings. MCN Am. J. Matern. Child Nurs., 2006;31: 250–256
    Google Scholar
  • 7. Bomba-Opoń D., Hirnle L., Kalinka J., Seremak-MrozikiewiczA.: Folate supplementation during the preconceptionperiod, pregnancy and puerperium. Polish Society ofGynecologists and Obstetricians Guidelines. Ginekol. Pol.,2017; 88: 633–636
    Google Scholar
  • 8. Borak J.: Neonatal hypothyroidism due to maternal vegandiet. J. Pediatr. Endocrinol. Metab., 2005; 18: 621
    Google Scholar
  • 9. Candia V., Ríos-Castillo I., Carrera-Gil F., Vizcarra B., OlivaresM., Chaniotakis S., Pizarro F.: Effect of various calciumsalts on non-heme iron bioavailability in fasted women ofchildbearing age. J. Trace Elem. Med. Biol., 2018; 49: 8–12
    Google Scholar
  • 10. Castaño E., Piñuñuri R., Hirsch S., Ronco A.M.: Folateand pregnancy, current concepts: It is required folic acidsupplementation? Rev. Chil. Pediatr., 2017; 88: 199–206
    Google Scholar
  • 11. Çelikel Ö.Ö., Doğan Ö., Aksoy N.: A multilateral investigationof the effects of zinc level on pregnancy. J. Clin. Lab.Anal., 2018; 32: e22398
    Google Scholar
  • 12. Craig W.J., Mangels A.R., American Dietetic Association:Position of the American Dietetic Association: Vegetariandiets. J. Am. Diet. Assoc., 2009; 109: 1266–1282
    Google Scholar
  • 13. Degerud E.M., Manger M.S., Strand T.A., Dierkes J.: Bioavailabilityof iron, vitamin A, zinc, and folic acid whenadded to condiments and seasonings. Ann. N. Y. Acad. Sci.,2015; 1357: 29–42
    Google Scholar
  • 14. Del Bo’ C., Riso P., Gardana C., Brusamolino A., BattezzatiA., Ciappellano S.: Effect of two different sublingual dosages of vitamin B12 on cobalamin nutritional statusin vegans and vegetarians with a marginal deficiency: Arandomized controlled trial. Clin. Nutr., 2019; 38: 575–583
    Google Scholar
  • 15. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic,Boron, Chromium, Copper, Iodine, Iron, Manganese,Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Instituteof Medicine (US) Panel on Micronutrients. A Report of thePanel on Micronutrients, Subcommittees on Upper ReferenceLevels of Nutrients and of Interpretation and Uses ofDietary Reference Intakes, and the Standing Committeeon the Scientific Evaluation of Dietary Reference Intakes.Food and Nutrition Board. Institute of Medicine. NationalAcademy Press, Washington, D.C. 2001
    Google Scholar
  • 16. Egeland G.M., Skurtveit S., Sakshaug S., Daltveit A.K.,Vikse B.E., Haugen M.: Low calcium intake in midpregnancyis associated with hypertension development within 10years after pregnancy: The Norwegian Mother and ChildCohort Study. J. Nutr., 2017; 147: 1757–1763
    Google Scholar
  • 17. Fernández-Lázaro D., Mielgo-Ayuso J., Córdova MartínezA., Seco-Calvo J.: Iron and physical activity: Bioavailabilityenhancers, properties of black pepper (Bioperine®)and potential applications. Nutrients, 2020; 12: 1886
    Google Scholar
  • 18. Ferrara P., Sandullo F., Di Ruscio F., Franceschini G.,Peronti B., Blasi V., Bietolini S., Ruggiero A.: The impact oflacto-ovo-/lacto-vegetarian and vegan diets during pregnancyon the birth anthropometric parameters of the newborn.J. Matern. Fetal Neonatal Med., 2020; 33: 3900–3906
    Google Scholar
  • 19. Gallego-Narbón A., Zapatera B., Barrios L., VaqueroM.P.: Vitamin B12 and folate status in Spanish lacto-ovovegetarians and vegans. J. Nutr. Sci., 2019; 8: e7
    Google Scholar
  • 20. Gargari B.P., Razavieh S.V., Mahboob S., Niknafs B.,Kooshavar H.: Effect of retinol on iron bioavailability fromIranian bread in a Caco-2 cell culture model. Nutrition,2006; 22: 638–644
    Google Scholar
  • 21. Georgieff M.K.: Iron deficiency in pregnancy. Am. J.Obstet Gynecol., 2020; 223: 516–524
    Google Scholar
  • 22. Gibson R.S., Raboy V., King J.C.: Implications of phytatein plant-based foods for iron and zinc bioavailability, settingdietary requirements, and formulating programs andpolicies. Nutr. Rev., 2018; 76: 793–804
    Google Scholar
  • 23. Golalipour M.J., Vakili M.A., Mansourian A.R., MobasheriE.: Maternal serum zinc deficiency in cases of neuraltube defect in Gorgan, north Islamic Republic of Iran. East.Mediterr. Health. J., 2009; 15: 337–344
    Google Scholar
  • 24. Guéguen L., Pointillart A.: The bioavailability of dietarycalcium. J. Am. Coll. Nutr., 2000; 19: 119S–136S
    Google Scholar
  • 25. Hurrell R., Egli I.: Iron bioavailability and dietary referencevalues. Am. J. Clin. Nutr., 2010; 91: 1461S–1467S
    Google Scholar
  • 26. Jarosz M., Rychlik E., Stoś K., Wierzejska R., Wojtasik A.,Charzewska J., Mojska H., Szponar L., Sajór I., Kłosiewicz-Latoszek L., Chwojnowska Z., Wajszczyk B., Szostak W.B., CybulskaB., Kunachowicz H., et al.: Normy żywienia dla populacjiPolski. Instytut Żywności i Żywienia, Warszawa, 2017
    Google Scholar
  • 27. Zimmer M., Sieroszewski P., Oszukowski P., Huras H.,Fuchs T., Pawlosek A.: Polish Society of Gynecologists andObstetricians recommendations on supplementation duringpregnancy. Ginekol. Pol., 2020; 91: 644–653
    Google Scholar
  • 28. Koletzko B., Cremer M., Flothkötter M., Graf C., HaunerH., Hellmers C., Kersting M., Krawinkel M., Przyrembel H.,Röbl-Mathieu M., Schiffner U., Vetter K., Weißenborn A.,Wöckel A.: Diet and lifestyle before and during pregnancy– Practical recommendations of the Germany-wide healthystart – young family network. Geburtshilfe Frauenheilkd.,2018; 78: 1262–1282
    Google Scholar
  • 29. Lane D.J., Richardson D.R.: The active role of vitaminC in mammalian iron metabolism: much more than justenhanced iron absorption! Free Radic. Biol. Med., 2014;75: 69–83
    Google Scholar
  • 30. Lemale J., Mas E., Jung C., Bellaiche M., Tounian P.,French-speaking Pediatric Hepatology, Gastroenterologyand Nutrition Group (GFHGNP): Vegan diet in children andadolescents. Recommendations from the French-speakingPediatric Hepatology, Gastroenterology and NutritionGroup (GFHGNP). Arch. Pediatr., 2019; 26: 442–450
    Google Scholar
  • 31. Libinaki R., Gavin P.D.: Changes in bioavailability ofomega-3 (DHA) through alpha-tocopheryl phosphate mixture(TPM) after oral administration in rats. Nutrients,2017; 9: 1042
    Google Scholar
  • 32. Maares M., Haase H.: A guide to human zinc absorption:General overview and recent advances of in vitro intestinalmodels. Nutrients, 2020; 12: 762
    Google Scholar
  • 33. Maki K.C.: Long-chain omega-3 fatty acid bioavailability:Implications for understanding the effects of supplementationon heart disease risk. J. Nutr., 2018; 148: 1701–1703
    Google Scholar
  • 34. Maki K.C., Dicklin M.R.: Strategies to improve bioavailabilityof omega-3 fatty acids from ethyl ester concentrates.Curr. Opin. Clin. Nutr. Metab. Care, 2019; 22: 116–123
    Google Scholar
  • 35. Manta-Vogli P.D., Schulpis K.H., Dotsikas Y., LoukasY.L.: The significant role of amino acids during pregnancy:nutritional support. J. Matern. Fetal Neonatal Med., 2020;33: 334–340
    Google Scholar
  • 36. Manta-Vogli P.D., Schulpis K.H., Dotsikas Y., LoukasY.L.: The significant role of carnitine and fatty acids duringpregnancy, lactation and perinatal period. Nutritionalsupport in specific groups of pregnant women. Clin. Nutr.,2020; 39: 2337–2346
    Google Scholar
  • 37. Maurya V.K., Aggarwal M.: Factors influencing the absorptionof vitamin D in GIT: An overview. J. Food Sci. Technol.,2017; 54: 3753–3765
    Google Scholar
  • 38. Medawar E., Huhn S., Villringer A., Witte A.V.: The effectsof plant-based diets on the body and the brain: A systematicreview. Transl. Psychiatry, 2019; 9: 226
    Google Scholar
  • 39. Melina V., Craig W., Levin S.: Position of the academyof nutrition and dietetics: Vegetarian diets. J. Acad. Nutr.Diet., 2016; 116: 1970–1980
    Google Scholar
  • 40. Miller J.K., Swanson E.W., Spalding G.E.: Iodine absorption,excretion, recycling, and tissue distribution in thedairy cow. J. Dairy Sci., 1975; 58: 1578–1593
    Google Scholar
  • 41. Milman N.: Oral iron prophylaxis in pregnancy: Not toolittle and not too much! J. Pregnancy, 2012; 2012: 514345
    Google Scholar
  • 42. Milman N., Taylor C.L., Merkel J., Brannon P.M.: Ironstatus in pregnant women and women of reproductive agein Europe. Am. J. Clin. Nutr., 2017; 106: 1655S–1662S
    Google Scholar
  • 43. Mohiuddin M., Irshad M., Ping A., Hussain Z., ShahzadM.: Bioavailability of iodine to mint from soil applied withselected amendments. Environ. Pollut. Bioavailability, 2019;31: 138–144
    Google Scholar
  • 44. Narodowe Centrum Edukacji Żywieniowej, InstytutŻywności i Żywienia. Nadczynność tarczycy. 2019.https://ncez.pl/upload/zalecenia-dietetycy_cdo_ncez_niedoczynnosc_-tarczycy_2019.pdf (03.05.2020)
    Google Scholar
  • 45. Nossier S.A., Naeim N.E., El-Sayed N.A., Abu Zeid A.A.:The effect of zinc supplementation on pregnancy outcomes:A double-blind, randomised controlled trial, Egypt. Br. J.Nutr., 2015; 114: 274–285
    Google Scholar
  • 46. Özdemir A.A., Gündemir Y.E., Küçük M., Sarıcı D.Y.,Elgörmüş Y., Çağ Y., Bilek G.: Vitamin D deficiency in pregnantwomen and their infants. J. Clin. Res. Pediatr. Endocrinol.,2018; 10: 44–50
    Google Scholar
  • 47. Paul C., Brady D.M.: Comparative bioavailability andutilization of particular forms of B12 supplements withpotential to mitigate B12-related genetic polymorphisms.Integr. Med., 2017; 16: 42–49
    Google Scholar
  • 48. Pepper M.R., Black M.M.: B12 in fetal development.Semin. Cell Dev. Biol., 2011; 22: 619–623
    Google Scholar
  • 49. Pettifor J.M.: Calcium and vitamin D metabolism inchildren in developing countries. Ann. Nutr. Metab., 2014;64: 15–22
    Google Scholar
  • 50. Pilz S, Zittermann A, Obeid R., Hahn A., Pludowski P.,Trummer C., Lerchbaum E., Pérez-López F.R., Karras S.N.,März W.: The role of vitamin D in fertility and during pregnancyand lactation: A review of clinical data. Int. J. Environ.Res. Public Health, 2018; 15: 2241
    Google Scholar
  • 51. Pistollato F., Cano S.S., Elio I., Vergara M.M., GiampieriF., Battino M.: Plant-based and plant-rich diet patterns duringgestation: Beneficial effects and possible shortcomings.Adv. Nutr., 2015; 6: 581–591
    Google Scholar
  • 52. Poręba R., Drews K., Karowicz-Bilińska A., OszukowskiP., Pawelczyk L., Radowicki S., Spaczyński M., Szczapa J.:Expert review of Polish Gynecological Society regardingmicronutrient supplementation in pregnancy. Ginekol. Pol.,2011; 82: 550–553
    Google Scholar
  • 53. Recommendation of the Polish Society of Midwivesregarding the use of docosahexaenoic acid (DHA) duringbreastfeeding. 2018. http://www.ptpol.pl/aktualnosci/33-rekomendacja-polskiego-towarzystwa-poloznych-w-zakresie-stosowania-kwasu-dokozaheksaenowego-dha-w-okresie-karmienia-piersia (03.05.2020)
    Google Scholar
  • 54. Richter M., Boeing H., Grünewald-Funk D., Heseker H.,Kroke A., Leschik-Bonnet E., Oberritter H., Strohm D., WatzlB. for the German Nutrition Society (DGE): Vegan diet. Positionof the German Nutrition Society (DGE) Ernähr. Umsch.,2016; 63: 92–102
    Google Scholar
  • 55. Rogne T., Tielemans M.J., Chong M.F., Yajnik C.S., KrishnaveniG.V., Poston L., Jaddoe V.W., Steegers E.A., Joshi S.,Chong Y.S., Godfrey K.M., Yap F., Yahyaoui R., Thomas T.,Hay G., et al.: Associations of maternal vitamin B12 concentrationin pregnancy with the risks of preterm birth andlow birth weight: A systematic review and meta-analysisof individual participant data. Am. J. Epidemiol., 2017; 185:212–223
    Google Scholar
  • 56. Rzymski P., Pischel I., Conrad F., Zwingers T., RzymskiP., Opala T.: The bioavailability of calcium in the form ofpyruvate, carbonate, citrate–malate in healthy postmenopausalwomen. Eur. Food Res. Technol., 2016; 242: 45–50
    Google Scholar
  • 57. Sanders T.A., Reddy S.: The influence of a vegetariandiet on the fatty acid composition of human milk and theessential fatty acid status of the infant. J. Pediatr., 1992;120: S71–S77
    Google Scholar
  • 58. Schuchardt J.P., Hahn A.: Bioavailability of long-chainomega-3 fatty acids. Prostaglandins Leukot. Essent. FattyAcids, 2013; 89: 1–8
    Google Scholar
  • 59. Sebastiani G., Herranz Barbero A., Borrás-Novell C.,Alsina Casanova M., Aldecoa-Bilbao V., Andreu-FernándezV., Pascual Tutusaus M., Ferrero Martínez S., Gómez RoigM.D., García-Algar O.: The effects of vegetarian and vegandiet during pregnancy on the health of mothers and offspring.Nutrients, 2019; 11: 557
    Google Scholar
  • 60. Shaikh M.G., Anderson J.M., Hall S.K., Jackson M.A.:Transient neonatal hypothyroidism due to a maternal vegandiet. J. Pediatr. Endocrinol. Metab., 2003; 16: 111–113
    Google Scholar
  • 61. Standardy opieki medycznej nad noworodkiem w Polsce.Zalecenia Polskiego Towarzystwa Neonatologicznego.Wydanie II. Medi Press, Warszawa 2017
    Google Scholar
  • 62. Stewart C.P., Christian P., Schulze K.J., Arguello M.,LeClerq S.C., Khatry S.K., West K.P. Jr.: Low maternal vitaminB-12 status is associated with offspring insulin resistanceregardless of antenatal micronutrient supplementation inrural Nepal. J. Nutr., 2011; 141: 1912–1917
    Google Scholar
  • 63. Straub D.A.: Calcium supplementation in clinical practice:A review of forms, doses, and indications. Nutr. Clin.Pract., 2007; 22: 286–296
    Google Scholar
  • 64. Taneja A., Gupta S., Kaur G., Jain N.P., Kaur J., Kaur S.:Vitamin D: Its deficiency and effect of supplementationon maternal outcome. J. Assoc. Physicians India, 2020; 68:47–50
    Google Scholar
  • 65. Watanabe F., Yabuta Y., Tanioka Y., Bito T.: Biologicallyactive vitamin B12 compounds in foods for preventing deficiencyamong vegetarians and elderly subjects. J. Agric.Food. Chem., 2013; 61: 6769–6775
    Google Scholar
  • 66. Willemse J.P., Meertens L.J., Scheepers H.C., AchtenN.M., Eussen S.J., van Dongen M.C., Smits L.J.: Calcium intakefrom diet and supplement use during early pregnancy:The expect study I. Eur. J. Nutr., 2020; 59: 167–174
    Google Scholar
  • 67. Winje B.A., Kvestad I., Krishnamachari S., Manji K.,Taneja S., Bellinger D.C., Bhandari N., Bisht S., Darling A.M.,Duggan C.P., Fawzi W., Hysing M., Kumar T., Kurpad A.V.,Sudfeld C.R., Svensen E., Thomas S. Strand T.A.: Does earlyvitamin B12 supplementation improve neurodevelopmentand cognitive function in childhood and into school age: Astudy protocol for extended follow-ups from randomisedcontrolled trials in India and Tanzania. BMJ Open, 2018;8: e018962
    Google Scholar
  • 68. Xie L., Wang B., Cui X., Tang Q., Cai W., Shen X.: Youngadult vegetarians in Shanghai have comparable bone healthto omnivores despite lower serum 25(OH) vitamin D in vegans:A cross-sectional study. Asia Pac. J. Clin. Nutr., 2019;28: 383–388
    Google Scholar

Full text

Skip to content