The short-term rinsing of airways by N-acetylcysteine helps expectoration: The mechanism of sodium and chloride transport

ORIGINAL ARTICLE

The short-term rinsing of airways by N-acetylcysteine helps expectoration: The mechanism of sodium and chloride transport

Iga Hołyńska-Iwan 1 , Inga Dziembowska 2 , Dorota Olszewska-Słonina 3

1. Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun,
2. Department of Pathophysiology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun,
3. Department of Pathobiochemistry and Clinical Chemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun,

Published: 2020-09-08
DOI: 10.5604/01.3001.0014.3831
GICID: 01.3001.0014.3831
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 362-370

 

Abstract

N-acetyl-L-cysteine (NAC) mucolytic and antioxidant role is well known, but the effect on epithelial ion transport has not been yet described. The aim of the study was to evaluate the short-term and prolonged influence of NAC on ion transport in the epithelium. The experiment was performed on 108 fragments of rabbit tracheae. Fragments were divided into four groups: inhibited sodium (I) and chloride (II) transport, NAC with inhibited sodium (III) and NAC with inhibited chloride (IV) transport. The changes in electrophysiological parameters were measured in stationary conditions and during mechanical-chemical stimulation after immediate (15 s) and prolonged (60 min) N-acetylcysteine administration on the tissue. Each 15-second stimulation caused repeatable changes in the electric potential of the tissue. In trachea fragments with blocked chloride ion transport, significantly lower (P <0.0001) values of electric potential following prolonged NAC effect were observed when compared to short-term NAC-stimulation. The values of resistance were constant during experiments, which reflects the vitality of the tissue. Short-term NAC administration influences sodium ion transport, which is not observed in a prolonged stimulation. The use of the NAC solution to rinse the airways is of great clinical importance due to the short and intense contact with the epithelium.

References

  • 1. Anderson W., Coakley R., Button B., Henderson A., Zeman K.,Alexis N., Peden D.B., Lazarowski E.R., Davis C.W., Bailey S., FullerF., Almond M., Qagish B., Bordonali E., Rubinstein M., et al.: Therelationship of mucus concentration (hydration) to mucus osmoticpressure and transport in chronic bronchitis. Am. J. Respir. Crit.Care Med., 2015; 192: 182–190
    Google Scholar
  • 2. Blouquit S., Regnier A., Dannhoffer L., Fermanian C., Naline E.,Boucher R., Chinet T.: Ion and fluid transport properties of smallairways in cystic fibrosis. Am. J. Respir. Crit. Care Med., 2006; 174:299–305
    Google Scholar
  • 3. Campos R., Shimizu M.H., Volpini R.A., de Bragança A.C., AndradeL., Lopes F.D., Olivio C., Canale D., Sequro A.C.: N-acetylcysteineprevents pulmonary edema and acute kidney injury inrats with sepsis submitted to mechanical ventilation. Am. J. Physiol.Lung Cell Mol. Physiol., 2012; 302: L640–L650
    Google Scholar
  • 4. Cazzola M., Calzetta L., Facciolo F., Rogliani P., Matera M.G.:Pharmacological investigation on the anti-oxidant and anti-inflammatoryactivity of N-acetylcysteine in an ex vivo model ofCOPD exacerbation. Respir. Res., 2017; 18: 26
    Google Scholar
  • 5. De Backer J., Vos W., Van Holsbeke C., Vinchurkar S., Claes R.,Parizel P.M., De Backer W.: Effect of high-dose N-acetylcysteineon airway geometry, inflammation, and oxidative stress in COPDpatients. Int. J. Chron. Obstruct. Pulmon. Dis., 2013; 8: 569–579
    Google Scholar
  • 6. De Lisle R.C., Roach E., Jansson K.: Effects of laxative and Nacetylcysteineon mucus accumulation, bacterial load, transit, andinflammation in the cystic fibrosis mouse small intestine. Am. J.Physiol. Gastrointest. Liver Physiol., 2007; 293: G577–G584
    Google Scholar
  • 7. Denora N., Lopedota A., Perrone M., Laguintana V., IacobazziR.M., Miella A., Fanizza E., Depalo N., Cutrignelli A., Lopalco A.,Franco M.: Spray-dried mucoadhesives for intravesical drug deliveryusing N-acetylcysteine and glutathione-glycol chitosan conjugates.Acta Biomater., 2016; 43: 170–184
    Google Scholar
  • 8. Eftekhari P., Hajizadeh S., Raoufy M.R., Masjedi M.R., Yang M.,Hansbro N., Li J.J., Foster P.S.: Preventive effect of N-acetylcysteinein a mouse model of steroid resistant acute exacerbation of asthma.EXCLI J., 2013; 12: 184–192
    Google Scholar
  • 9. Foncerrada G., Culnan, D.M., Capek K.D., González-Trejo S.,Cambiaso-Daniel J., Woodson L.C., Herndon D.N., Finnerty C.C.,Lee J.O.: Inhalation injury in the burned patient. Ann. Plast. Surg.,2018; 80 (Suppl. 2): S98–S105
    Google Scholar
  • 10. Gerde P., Malmlöf M., Havsborn L., Sjöberg C.O., Ewing P., EirefeltS., Ekelund K.: DissolvIt. An in vitro method for simulating thedissolution and absorption of inhaled dry powder drugs in thelungs. Assay Drug Dev. Technol., 2017; 15: 77–88
    Google Scholar
  • 11. Greczko I., Tyrakowski T.: The effect of serotonin on airwaytransepithelial sodium ion pathways. Eur. J. Pharmacol., 2001; 412:113–119
    Google Scholar
  • 12. Grubb B.R., O’Neal W.K., Ostrowski L.E., Kreda S.M., Button B.,Boucher R.C.: Transgenic hCFTR expression fails to correct β-ENaCmouse lung disease. Am. J. Physiol. Lung Cell Mol. Physiol., 2012;302: L238–L247
    Google Scholar
  • 13. Grubb B.R., Rogers T.D., Boucher R.C., Ostrowski L.E.: Ion transportacross CF and normal murine olfactory and ciliated epithelium.Am. J. Physiol. Cell Physiol., 2009; 296: C1301–C1309
    Google Scholar
  • 14. Hahn A., Faulhaber J., Srisawang L., Stortz A., Salomon J., MallM.A., Frings S., Möhrlen F.: Cellular distribution and function ofion channels involved in transport processes in rat tracheal epithelium.Physiol. Rep., 2017; 5: e13290
    Google Scholar
  • 15. Hamzeh N., Li L., Barkes B., Huang J., Canono B., GillespieM., Maier L., Day B.: The effect of an oral anti-oxidant, N-acetylcysteine,on inflammatory and oxidative markers in pulmonarysarcoidosis. Respir. Med., 2016; 112: 106–111
    Google Scholar
  • 16. Homma S., Azuma A., Taniguchi H., Ogura T., Mochiduki Y., SugiyamaY., Nakata K., Yoshimura K., Takeuchi M., Kudoh S.: Efficacyof inhaled N-acetylcysteine monotherapy in patients with earlystage idiopathic pulmonary fibrosis. Respirology, 2012; 17: 467–477
    Google Scholar
  • 17. Hussain S., Varelogianni G., Särndahl E., Roomans G.: N-acetylcysteineand azithromycin affect the innate immune responsein cystic fibrosis bronchial epithelial cells in vitro. Exp. Lung Res.,2015; 41: 251–260
    Google Scholar
  • 18. Keshk W.A., Ibrahim M.A., Shalaby S.M., Zalat Z.A., ElseadyW.S.: Redoxstatus, inflammation, necroptosis and inflammasomeas indispensable contributors to high fat diet (HFD)-induced neurodegeneration;Effect of Nacetylcysteine (NAC). Arch. Biochem.Biophys., 2019; 680: 108227
    Google Scholar
  • 19. Kopincová J., Mokrá D., Mikolkam P., Kolomazník M., ČalkovskáA.: N-acetylcysteine advancement of surfactant therapy in experimentalmeconium aspiration syndrome: possible mechanisms.Physiol. Res., 2014; 63 (Suppl. 4): S629–S642
    Google Scholar
  • 20. Kozumi C., Yamada M., Ishizaki K., Ueda T., Sakurai K.: Antiinfectivecontrol in human bronchiolar epithelial cells by mucinphenotypic changes following uptake of N-acetyl-L-cysteine. FreeRadic. Res., 2015; 49: 1449–1458
    Google Scholar
  • 21. Lababidi N., Ofosu Kissi E., Elgaher W.A., Sigal V., Haupenthal J.,Schwarz B.C., Hirsch A.K., Rades T., Schneider M.: Spray-drying ofinhalable, multifunctional formulations for the treatment of biofilmsformed in cystic fibrosis. J. Control Release, 2019; 314: 62–71
    Google Scholar
  • 22. Lin V.Y., Fain M.D., Jackson P.L., Berryhill T.F., Wilson L.S.,Mazur M., Barnes S.J., Blalock J.E., Raju S.V., Rowe S.M.: VaporizedE-cigarette liquids induce ion transport dysfunction in airway epithelia.Am. J. Respir. Cell Mol. Biol., 2019; 61: 162–173
    Google Scholar
  • 23. Liu M., Wikonal N.M., Brash D.E.: Induction of cyclin-dependentkinase inhibitors and G(1) prolongation by the chemopreventiveagent N-acetylcysteine. Carcinogenesis, 1999; 20: 1869–1872
    Google Scholar
  • 24. Livraghi-Butrico A., Kelly E., Wilkinson K., Rogers T., GilmoreR., Harkema J., Randell S.H., Boucher R.C., O’Neal W.K., Grubb B.R.:Loss of Cftr function exacerbates the phenotype of Na hyperabsorptionin murine airways. Am. J. Physiol. Lung Cell Mol. Physiol.,2013; 304: L469–L480
    Google Scholar
  • 25. Looi K., Buckley A.G., Rigby P.J., Garrat L.W., Iosifidis T., ZoskyG.R., Larcombe A.N., Lannigan F.J., Ling K.M., Martinovich K.M.,Kicic-Stracevich E., Shaw N.C., Sutanto E.N., Knight D.A., Kicic A.,Stick S.M.: Effects of human rhinovirus on epithelial barrier integrityand function in children with asthma. Clin. Exp. Allergy,2018; 48: 513–524
    Google Scholar
  • 26. Mall M.A., Button B., Johannesson B., Zhou Z., Livraghi A.,Caldwell R.A., Schubert S.C., Schultz C., O’Neal W.K., PradervandS., Hummler E., Rossier B.C., Grubb B.R.: Airway surface liquid volumeregulation determines different airway phenotypes in Liddlecompared with β-ENaC-overexpressing mice. J. Biol. Chem., 2010;285: 26945–26955
    Google Scholar
  • 27. Martin S.L., Saint-Criq V., Hwang T.C., Csanády L.: Ion channelsas targets to treat cystic fibrosis lung disease. J. Cyst. Fibros.,2018; 17: S22–S27
    Google Scholar
  • 28. Mokra D., Drgova A., Mokry J., Antosova M., Durdik P., CalkovskaA.: N-acetylcysteine effectively diminished meconium-inducedoxidative stress in adult rabbits. J. Physiol. Pharmacol., 2015;66: 101–110
    Google Scholar
  • 29. Nyui M., Shoji Y., Ueno M., Nakanishi I., Matsumoto K.I.: Reductionof molecular oxygen by redox active thiols: comparisonof glutathione, N-acetylcysteine, cysteine, and homocysteine.J. Clin. Biochem. Nutr., 2019; 65: 185–192
    Google Scholar
  • 30. Oldham J.M., Ma S.F., Martinez F.J., Anstron K.J., Raghu G.,Schwartz D.A., Valezi E., Witt L., Lee C., Vij R., Huang H., StrekM.E., Noth J.: TOLLIP, MUC5B, and the response to N-acetylcysteineamong individuals with idiopathic pulmonary fibrosis. Am. J.Respir. Crit. Care Med., 2015; 192: 1475–1482
    Google Scholar
  • 31. Rochat T., Lacroix J.S., Jarnot L.: N-acetylcysteine inhibits Na+absorption across human nasal epithelial cells. J. Cell Physiol.,2004; 201: 106–116
    Google Scholar
  • 32. Roomans G., Tegner H., Toremain N.: Acetylcysteine and itsderivates: functional and morphological effects on tracheal mucosain vitro. Eur. J. Respir. Dis., 1983; 64: 416–425
    Google Scholar
  • 33. Samuni Y., Goldstein S., Dean O.M., Berk M.: The chemistryand biological activities of N-acetylcysteine. Biochim. Biophys.Acta, 2013; 1830: 4117–4129
    Google Scholar
  • 34. Seagrave J.C., Albrecht H.H., Hill D.B., Rogers D.F., SolomonG.: Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5ACand mucociliary transport in primary differentiated humantracheal-bronchial cells. Respir. Res., 2012; 13: 98
    Google Scholar
  • 35. Smuszkiewicz P., Drobnik L., Mieszkowski J., Konikowski A.,Hołyńska I., Kaczorowski P., Tyrakowski T.: Comparison of the influenceof halothane and isoflurane on airway transepithelial potentialdifference. Pharmacol. Rep., 2006; 58: 736–745
    Google Scholar
  • 36. Tarran R.: Regulation of airway surface liquid volume andmucus transport by active ion transport. Physiol. Res., 2014; 63 (Suppl. 4): S629–S642
    Google Scholar
  • 37. Tse H.N., Raiteri L., Wong K.Y., Yee K.S., Ng L.Y., Wai K.Y., LooC.K., Chan M.H.: High-dose N-acetylcysteine in stable COPD. The1-year, double-blind, randomized, placebo-controlled HIACE study.Chest, 2013; 144: 106–118
    Google Scholar
  • 38. Tyrakowski T., Sedlaczek A., Greczko I., Bartłomowicz M., WojciechowskaM.: Ambroxol effect on transepithelial electrical potentialdifference of isolated tracheal wall. Pol. J. Pharmac., 1997;49: 53–58
    Google Scholar
  • 39. Wei J., Pang C.S., Han J., Yan H.: Effect of orally administeredn-acetylcysteine on chronic bronchitis: A meta-analysis. Adv. Ther.,2019; 36: 3356–3367
    Google Scholar
  • 40. Yuan S., Hollinger M., Lachowicz-Scroggins M.E., Kerr S.C.,Dunican E.M., Daniel B.M., Ghosh S., Erzurum S.C., Willard B., HazenS.L., Huang X., Carrington S.D., Oscarson S., Fahy J.V.: Oxidationincreases mucin polymer cross-links to stiffen airway mucusgels. Sci. Transl. Med., 2015; 7: 276ra27
    Google Scholar
  • 41. Zhang R., Hu J., Deng L., Li S., Chen X., Liu F., Wang S., MohammedAbdul K.S., Beng H., Tan W.: Aerosol characteristics andphysico-chemical compatibility of Combivent® (containing salbutamoland ipratropium bromide) mixed with three other inhalants:Budesonide, beclomethasone or N-acetylcysteine. Pharmaceutics,2020; 12: E78
    Google Scholar

Full text

Skip to content