The use of chitosan-based biomaterials for the treatment of hard-healing wounds

REVIEW ARTICLE

The use of chitosan-based biomaterials for the treatment of hard-healing wounds

Marta Kędzierska 1 , Katarzyna Miłowska 1

1. Uniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska, Katedra Biofizyki Ogólnej, Łódź,

Published: 2019-12-30
DOI: 10.5604/01.3001.0013.6823
GICID: 01.3001.0013.6823
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 768-781

 

Abstract

Wound healing is a complex process that engages skin cells, the blood, the immune system and a number of circulating substances in the body. Infections, contamination of the wound or a vast area of damage complicate and delay the natural process of skin regeneration. The incidence of hard-to-heal wounds is an increasingly common problem, because they can significantly impair the quality of life of the patient. For this reason, it is extremely important to look for factors (drugs, dressings or other substances) that could accelerate and relieve wound healing. Among many compounds in the area of medical engineering interest, attention should be paid to natural polysaccharides, e.g. chitosan and alginate. This article is devoted to biomaterials that play an important role in the treatment of chronic wounds. These include the following: hydrogels, non-wovens, membranes and chitosan sponges as well as chitosan-alginate composites or chitosan composites combined with zinc oxide and nanosilver. The material, which has chitosan as a base, works on all stages of the healing process. Many in vitro, in vivo and clinical studies that provide the basis for using chitosan materials as a substitute for conventional bandages and dressings have been carried out. At the stage of hemostasis, it accelerates platelet aggregation and the formation of a fibrin clot. In the inflamed stage, they cause the proliferation of neutrophils and macrophages that cleanse the wound, releasing cytokines at the wound site. Studies have shown that chitosan mimics the native extracellular matrix, providing the optimal microenvironment for the wound.

References

  • 1. Ahsan S.M., Thomas M., Reddy K.K., Sooraparaju S.G., AsthanaA., Bhatnagar I.: Chitosan as biomaterial in drug delivery and tissueengineering. Int. J. Biol. Macromol., 2018; 110: 97–109
    Google Scholar
  • 2. Amin M.A., Abdel-Raheem I.T.: Accelerated wound healing andanti-inflammatory effects of physically cross linked polyvinyl alcohol-chitosan hydrogel containing honey bee venom in diabetic rats.Arch. Pharm. Res., 2014; 37: 1016–1031
    Google Scholar
  • 3. An J., Yuan X., Luo Q., Wang D.: Preparation of chitosan-graft-(methylmethacrylate)/Ag nanocomposite with antimicrobial activity.Polym. Int., 2010; 59: 62–70
    Google Scholar
  • 4. Andrea J., Gallini R., Betsholtz C.: Role of platelet-derived growthfactors in physiology and medicine. Genes Dev., 2008; 22: 1276–1312
    Google Scholar
  • 5. Aoyagi S., Onishi H., Machida Y.: Novel chitosan wound dressingloaded with minocycline for the treatment of severe burn wounds.Int. J. Pharm., 2007; 330: 138–145
    Google Scholar
  • 6. Atala A., Lanza R., Thomson J.A., Nerem R.: Principles of RegenerativeMedicine. 2nd Edition. Elsevier, New York 2011
    Google Scholar
  • 7. Azad A.K., Sermsintham N., Chandrkrachang S., Stevens W.F.: Chitosanmembrane as a wound-healing dressing: characterization and clinicalapplication. J. Biomed. Mater. Res. B Appl. Biomater., 2004; 69: 216–222
    Google Scholar
  • 8. Balakrishnan B., Mohanty M., Umashankar P.R., JayakrishnanA.: Evaluation of an in situ forming hydrogel wound dressing basedon oxidized alginate and gelatin. Biomaterials, 2005; 26: 6335–6342
    Google Scholar
  • 9. Balassa L.L., Prudden J.F.: Applications of chitin and chitosan inwound healing acceleration. W: Chitin, chitosan and related enzymes.Red.: J.P. Zikakis, Academic Press, California 1984: 296–305
    Google Scholar
  • 10. Baranwal A., Kumar A., Priyadharshini A., Oggu G.S., BhatnagarI., Srivastava A., Chandra P.: Chitosan: An undisputed bio-fabricationmaterial for tissue engineering and bio-sensing applications. Int. J.Biol. Macromol., 2018; 110, 110–123
    Google Scholar
  • 11. Biagini G., Muzzarelli R.A., Giardiono R., Castaldini C.: Biologicalmaterial for wound healing. W: Advances in chitin and chitosan.Red.: C.J. Brine, P.A. Sanford, J.P. Zikakis, Elsevier Science Publishers,London 1992: 16–23
    Google Scholar
  • 12. Bielefeld K.A., Amini-Nik S., Alman B.A.: Cutaneous wound healing:recruiting developmental pathways for regeneration. Cell. Mol.Life. Sci., 2013; 70: 2059–2081
    Google Scholar
  • 13. Blaker J.J., Nazhat S.N., Boccaccini A.R.: Development and characterizationof silver-doped bioactive glass-coated sutures for tissueengineering and wound healing applications. Biomaterials, 2004;25:1319–1329
    Google Scholar
  • 14. Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M.:Wound healing dressings and drug delivery systems: A review. J.Pharm. Sci., 2008; 97: 2892–2923
    Google Scholar
  • 15. Boucard N., Viton C., Agay D., Mari E., Roger T., Chancerelle Y.:The use of physical hydrogels of chitosan for skin regeneration followingthird-degree burns. Biomaterials, 2007; 28: 3478–3488
    Google Scholar
  • 16. Broughton G.2nd, Janis J.E., Attinger C.E.: Wound healing: anoverview. Plast. Reconstr. Surg., 2006; 117: 1e-S-32e-S
    Google Scholar
  • 17. Brown B.N., Ratner B.D., Goodman S.B. Amar S., Badylak S.F.:Macrophage polarization: An opportunity for improved outcomesin biomaterials and regenerative medicine. Biomaterials, 2012; 33:3792–3802
    Google Scholar
  • 18. Chen R.N., Wang G.M., Chen C.H., Ho H.O., Sheu M.T.: Developmentof N,O-(carboxymethyl) chitosan/collagen matrixes asa wound dressing. Biomacromolecules, 2006; 7: 1058-1064
    Google Scholar
  • 19. Chen Z., Mo X., He C., Wang H.: Intermolecular interactionsin electrospun collagen chitosan complex nanofibers. Carbohydr.Polym., 2008; 72: 410–418
    Google Scholar
  • 20. Chung L.Y., Schmidt R.J., Hamlyn P.F., Sagar B.F., Andrews A.M.,Turner T.D.: Biocompatibility of potential wound management products:Fungal mycelia as a source of chitin/chitosan and their effecton the proliferation of human F1000 fibroblasts in culture. J. Biomed.Mater. Res., 1994; 28: 463–469
    Google Scholar
  • 21. Cohen M.L.: The theory of real materials. Annu. Rev. Mater.Sci., 2000; 30: 1–26
    Google Scholar
  • 22. Dąbrowiecki S.: Fizjologia i patofizjologia procesu gojenia ran.Pol. Med. Paliatywna, 2003; 4: 283–297
    Google Scholar
  • 23. Denkbaş E.B., Oztürk E., Ozdemir N., Keçeci K., Agalar C.: Norfloxacin-loaded chitosan sponges as wound dressing material. J.Biomater. Appl., 2004; 18: 291–303
    Google Scholar
  • 24. Disa J.J., Alizadeh K., Smith J.W., Hu Q., Cordeiro P.G.: Evaluationof a combined calcium sodium alginate and bio-occlusive membranedressing in the management of split-thickness skin graft donor sites.Ann. Plast. Surg., 2001; 46: 405–408
    Google Scholar
  • 25. Fornalski J.: Gojenie się ran z bliznowaceniem – metody terapeutyczne.Borgis-Nowa Med., 2006; 4: 66–70
    Google Scholar
  • 26. Forrest R.D.: Early history of wound treatment. J. R. Soc. Med.,1982; 75: 198–205
    Google Scholar
  • 27. Furth M.E., Atala A., Van Dyke M.E.: Smart biomaterials designfor tissue engineering and regenerative medicine. Biomaterials,2007; 28: 5068–5073
    Google Scholar
  • 28. Harris T.R., Bransford J.D., Brophy S.P.: Roles for learning sciencesand learning technologies in biomedical engineering education:A review of recent advances. Annu. Rev. Biomed. Eng., 2002; 4: 29–48
    Google Scholar
  • 29. Hinrichs W.L., Lommen E.J., Wildevuur C.R., Feijen J.: Fibractionand characterization of an asymmetric polyurethane membrane foruse as a wound dressing. J. Appl. Biomater., 1992; 3: 287–303
    Google Scholar
  • 30. Hombrey E., Pandya A., Giele H.: Adhesive retention dressingsare more comfortable than alginate dressings on split-skin-graftdonor sites. Br. J. Plast. Surg., 2003; 56: 498–503
    Google Scholar
  • 31. Howling G.I., Dettmar P.W., Goddard P.A., Hampson F.C., DornishM., Wood E.J.: The effect of chitin and chitosan on the proliferationof human skin fibroblasts and keratinocytes in vitro. Biomaterials,2001; 22: 2959–2966
    Google Scholar
  • 32. Husain S., Al-Samadani K.H., Najeeb S., Zafar M.S., Khurshid Z.,Zohaib S., Qasim S.B.: Chitosan biomaterials for current and potentialdental applications. Materials, 2017; 10: E602
    Google Scholar
  • 33. Huxley-Jones J., Robertson D.L., Boot-Handford R.P.: On the originsof the extracellular matrix in vertebrates. Matrix Biol., 2007;26: 2–11
    Google Scholar
  • 34. Ignatova M., Starbova K., Markova N., Manolova N., RashkovI.: Electrospun nano-fibre mats with antibacterial properties fromquaternized chitosan and poly(vinyl alcohol). Carbohydr. Res., 2006;341: 2098–2107
    Google Scholar
  • 35. Inamdar N.N., Mourya V.: Chitosan and low molecular weightchitosan: Biological and biomedical applications. W: Advanced Biomaterialsand Biodevices, red.: A. Tiwari, A.N. Nordin. ScrivenerPublishing, 2014, 183–242
    Google Scholar
  • 36. Ishihara M., Nakanishi K., Ono K., Sato M., Kikuchi M., SaitoY.: Photocrosslinkable chitosan as a dressing for wound occlusionand accelerator in healing process. Biomaterials, 2002; 23: 833–840
    Google Scholar
  • 37. Ishihara M., Ono K., Sato M., Nakanishi K., Saito Y., Yura H.,Matsui T., Hattori H., Fujita M., Kikuchi M., Kurita A.: Acceleration ofwound contraction and healing with a photocrosslinkable chitosanhydrogel. Wound Repair Regen., 2001; 9: 513–521
    Google Scholar
  • 38. Jaikumar D., Sajesh K.M., Soumya S., Nimal T.R., Chennazhi K.P.,Nair S.V., Jayakumar R.: Injectable alginate-O-carboxymethylchitosan/nano fibrin composite hydrogels for adipose tissue engineering.Int. J. Biol. Macromol., 2015; 74: 318–326
    Google Scholar
  • 39. Kagan H.M., Li W.: Lysyl oxidase: properties, specificity, andbiological roles inside and outside of the cell. J. Cell. Biochem., 2003;88: 660–672
    Google Scholar
  • 40. Kifune K.: Clinical application of chitin artificial skin. W: Advancesin chitin and chitosan. Red.: C.J. Brine, P.A. Sanford, J.P. Zikakis,Elsevier Science Punlishers, London 1992: 9–15
    Google Scholar
  • 41. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H.,Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., ChoM.H.: Antimicrobial effects of silver nanoparticles. Nanomedicine,2007; 3: 95–101
    Google Scholar
  • 42. Koehler J., Brandl F.P., Goepferich A.M.: Hydrogel wound dressingsfor bioactive treatment of acute and chronic wounds. Eur. Pol.J., 2018; 100: 1–11
    Google Scholar
  • 43. Kossovich L.Y., Salkovskiy Y., Kirillova I.V.: Electrospun chitosannanofiber materials as burn dressing. W: 6th World Congressof Biomechanics (WCB 2010). August 1–6, 2010 Singapore. IFMBEProceedings. Red.: C.T. Lim, J.C.H. Goh, Springer, Berlin, Heidelberg,2010, 1212–1214
    Google Scholar
  • 44. Krasowski G., Kruk M.: Leczenie odleżyn i ran przewlekłych.Wydawnictwo Lekarskie PZWL, Warszawa 2008: 81–89
    Google Scholar
  • 45. Kucharska M., Struszczyk M.H., Niekraszewicz A., Ciechańska D.,Witczak E., Tarkowska S., Fortuniak K., Gulbas-Diaz A., RogaczewskaA., Płoszaj I., Pluta A., Gąsiorowski T.: Tromboguard® – first aid wounddressing. Prog. Chem. Appl. Chitin Its Deriv., 2011; 16: 121–130
    Google Scholar
  • 46. Labler L., Mica L., Härter L., Trentz O., Keel M.: Influence ofV.A.C.-therapy on cytokines and growth factors in traumatic wounds.Zentralbl. Chir., 2006; 131: S62–S67
    Google Scholar
  • 47. Lanza R., Langer R., Vacanti J.: Principles of Tissue Engineering.Elsevier Academic Press, Burlington 2007
    Google Scholar
  • 48. Lau K., Paus R., Tiede S., Day P., Bayat A.: Exploring the role ofstem cells in cutaneous wound healing. Exp. Dermatol., 2009; 18:921–933
    Google Scholar
  • 49. Lee D.W., Lim H., Chong H.N., Shim W.S.: Advances in chitosanmaterial and its hybrid derivatives: A review. Open Biomater. J.,2009; 1: 10–20
    Google Scholar
  • 50. Lee H.B., Khang G., Lee J.H.: Polymeric biomaterials. W: BiomedicalEngineering Fundamentals, red.: J.D. Bronzino, D.R. Peterson.CRC Press, Boca Raton 2006, 40
    Google Scholar
  • 51. Lee Y.M., Kim S.S., Park M.H., Song K.W., Sung Y.K., Kang I.K.:β-Chitin-based wound dressing containing silver sulfurdiazine. J.Mater. Sci. Mater. Med., 2000; 11: 817–823
    Google Scholar
  • 52. Li L.H., Deng J.C., Deng H.R., Liu Z.L., Li X.L.: Preparation, characterizationand antimicrobial activities of chitosan/Ag/ZnO blendfilms. Chem. Eng. J., 2010; 160: 378–382
    Google Scholar
  • 53. Liang S., Sun Y., Dai X.: A review of the preparation, analysisand biological functions of chitooligosaccharide. Int. J. Mol. Sci.,2018; 19: E2197
    Google Scholar
  • 54. Liu R., Xu X., Zhuang X., Cheng B.: Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr. Polym., 2014; 101:1116–1121
    Google Scholar
  • 55. Lloyd A.W.: Interfacial bioengineering to enhance surface biocompatibility.Med. Device Technol., 2002; 13: 18–21
    Google Scholar
  • 56. Loeb L.: A comparative study of the mechanism of wound healing.J. Med. Res., 1920; 41: 247–281
    Google Scholar
  • 57. Lorenz H.P., Longaker M.T.: Wounds: Biology, Pathology andManagement. W: Essential Practice of Surgery: Basic Science andClinical Evidence, red.: M. Li, J.A. Norton, R.R. Bollinger, A.E. Chang,S.F. Lowry. Springer, New York 2003, 77–88
    Google Scholar
  • 58. Luo C., Zhang Y., Zeng X., Zeng Y., Wang Y.: The role ofpoly(ethylene glycol) in the formation of silver nanoparticles. J.Colloid Interface Sci., 2005; 288: 444–448
    Google Scholar
  • 59. Marciniak J.: Biomechaniczne, metaboliczne, bioelektronicznei kliniczne aspekty złamań. Praca badawcza Inst. MetaloznawstwaPol. Śl., Gliwice 1986–1990
    Google Scholar
  • 60. Marciniak J.: Biomateriały. Wydawnictwo Politechniki Śląskiej,Gliwice 2002
    Google Scholar
  • 61. Martin P.: Wound healing-aiming for perfect skin regeneration.Science, 1997; 276: 75–81
    Google Scholar
  • 62. Matsuda K., Suzuki S., Isshiki N., Yoshioka K., Wada R., Hyon S.H.,Ikada Y.: Evaluation of bilayer artificial skin capable of sustained releaseof an antibiotic. Biomaterials, 1992; 13: 119–122
    Google Scholar
  • 63. Mazurek P., Kuliński S., Gosk J.: Możliwości wykorzystania chitynyi chitozanu w leczeniu ran. Polim. Med., 2013; 43: 297–302
    Google Scholar
  • 64. Mi F.L., Wu Y.B., Shyu S.S., Chao A.C., Lai J.Y., Su C.C.: Asymmetricchitosan membranes prepared by dry/wet phase separation:a new type of wound dressing for controlled antibacterial release.J. Membr. Sci., 2003; 212: 237–254
    Google Scholar
  • 65. Minami S.: Effects of chitosan on wound healing. W: Carbohydratesand carbohydrate polymers: analysis, biotechnology, modification,antiviral, biomedical and other applications, red.: M. Yalpani.Atl Pr Scientific Pub, 1993, 141–152
    Google Scholar
  • 66. Mohammadzadeh Pakdel P., Peighambardoust S.J.: A review onacrylic based hydrogels and their applications in waste water treatment.J. Environ. Manage., 2018; 217: 123–143
    Google Scholar
  • 67. Mukherjee D., Azamthulla M., Santhosh S., Dath G., Ghosh A.,Natholia R., Anbu J., Teja B.V., Muzammil K.M.: Development andcharacterization of chitosan-based hydrogels as wound dressingmaterials. J. Drug Del. Sci. Technol., 2018; 46: 498–510
    Google Scholar
  • 68. Muzzarelli R.: In vivo biochemical significance of chitin basedmedical items. W: Polymeric biomaterials, red.: S. Dumitriu. MarcelDekker, Inc., New York 1994: 179–197
    Google Scholar
  • 69. Muzzarelli R.A.: Chitins and chitosan for the repair of woundskin, nerve, cartilage and bone. Carbohydr. Polym., 2009; 76: 167–182
    Google Scholar
  • 70. Muzzarelli R.A., El Mehtedi M., Mattioli-Belmonte M.: Emergingbiomedical applications of nano-chitins and nano-chitosansobtained via advanced eco-friendly technologies from marine resources.Mar. Drugs, 2014; 12: 5468–5502
    Google Scholar
  • 71. Natarajan S., Williamson D., Stiltz A.J., Harding K.: Advances inwound care and healing technology. Am. J. Clin. Dermatol., 2000;1: 269–275
    Google Scholar
  • 72. National Research Council: Materials Science and Engineeringfor the 1990s: Maintaining Competitiveness in the Age of Materials.The National Academies Press, Washington, DC 1989
    Google Scholar
  • 73. Niekraszewicz A.: Chitosan Medical Dressings. Fibres Text. East.Eur., 2005; 13: 16–18
    Google Scholar
  • 74. Ong S.Y., Wu J., Moochhala S.M., Tan M.H., Lu J.: Developmentof a chitosan-based wound dressing with improved hemostatic andantimicrobial properties. Biomaterials, 2008; 29: 4323–4332
    Google Scholar
  • 75. Paul W., Sharma C.P.: Polysaccharides: Biomedical Applications.W: Encyclopedia of Surface and Colloid Science, red.: P. Somasundaran.CRC Press, Boca Raton 2004, 507–518
    Google Scholar
  • 76. Pellá M.C., Lima-Tenório M.K., Tenório-Neto E.T., Guilherme M.R.,Muniz E.C., Rubira A.F.: Chitosan-based hydrogels: From preparationto biomedical applications. Carbohydr. Polym., 2018; 196: 233–245
    Google Scholar
  • 77. Peplow P.V., Chatterjee M.P.: A review of the influence of growthfactors and cytokines in in vitro human keratinocyte migration. Cytokine,2013; 62: 1–21
    Google Scholar
  • 78. Pikuła M., Langa P., Kosikowska P., Trzonkowski P.: Komórkimacierzyste i czynniki wzrostu w gojeniu ran. Postępy Hig. Med.Dośw., 2015; 69: 874–885
    Google Scholar
  • 79. Pittman J.: Effect of aging on wound healing: Current concepts.J. Wound Ostomy Continence Nurs., 2007; 34: 412–417
    Google Scholar
  • 80. Porter S., Clark I.M., Kevorkian L., Edwards D.R.: The ADAMTSmetalloproteinases. Biochem. J., 2005; 386: 15–27
    Google Scholar
  • 81. Potempa M., Jonczyk P., Kandefer B., Szczerba K., Janerka M.,Kucharzewski M.: Wpływ chitosanu na gojenie ran u chorych z cukrzycą.Eduk. Biol. Śr., 2017; 4: 32-40
    Google Scholar
  • 82. Qasim S.B, Zafar M.S., Najeeb S., Khurshid Z., Shah A.H., HusainS., Rehman I.U.: Electrospinning of chitosan-based solutionsfor tissue engineering and regenerative medicine. Int. J. Mol. Sci.,2018; 19: E407
    Google Scholar
  • 83. Rai M., Yadav A., Gade A.: Silver nanoparticles as a new generationof antimicrobials. Biotechnol. Adv., 2009; 27: 76–83
    Google Scholar
  • 84. Rao S.B., Sharma C.P.: Use of chitosan as a biomaterial: studieson its safety and hemostatic potential. J. Biomed. Mater. Res.,1997; 34: 21–28
    Google Scholar
  • 85. Ribeiro M.P., Espiga A., Silva D., Baptista P., Henriques J., FerreiraC., Silva J.C., Borges J.P., Pires E., Chaves P., Correia I.J.: Developmentof a new chitosan hydrogel for wound dressing. Wound Repair Regen.,2009; 17: 817–824
    Google Scholar
  • 86. Rivera A.E., Spencer J.M.: Clinical aspects of full thickness woundhealing. Clin. Dermatol., 2007; 25: 39–48
    Google Scholar
  • 87. Robson M.C., Steed D.L., Franz M.G.: Wound healing: biologicfeatures and approaches to maximize healing trajectories. Curr.Probl. Surg., 2001; 38: 72–140
    Google Scholar
  • 88. Rochima E., Azhary S.Y., Pratama R.I., Panatarani C., Joni I.M.: Preparationand characterization of nano chitosan from crab shell waste bybeads-milling method. IOP Conf. Ser.: Mater. Sci. Eng., 2017; 193: 012043
    Google Scholar
  • 89. Sachlos E., Czernuszka J.T.: Making tissue engineering scaffoldswork. Review: The application of solid freeform fabrication technologyto the production of tissue engineering scaffolds. Eur. Cell.Mater., 2003; 5: 29–40
    Google Scholar
  • 90. Shahverdi A.R., Fakhimi A., Shahverdi H.R. Minaian S.: Synthesisand effect of silver nanoparticles on the antibacterial activity of differentantibiotics against Staphylococcus aureus and Escherichia coli.Nanomedicine, 2007; 3: 168–171
    Google Scholar
  • 91. Shi X., Fang Q., Ding M., Wu J., Ye F., Lv Z., Jin J.: Microspheres ofcarboxymethyl chitosan, sodium alginate and collagen for a novelhemostatic in vitro study. J. Biomater. Appl., 2016; 30: 1092–1102
    Google Scholar
  • 92. Silver F.H., Christiansen D.L.: Biomaterials Science and Biocompatibility,Springer, New York 1999, 9–26, 62–68
    Google Scholar
  • 93. Sung J.H., Hwang M.R., Kim J.O., Lee J.H., Kim Y.I., Kim J.H., ChangS.W., Jin S.G., Kim J.A., Lyoo W.S., Han S.S., Ku S.K., Yong C.S., ChoiH.G.: Gel characterization and in vivo evaluation of minocycline-loadedwound dressing with enhanced wound healing using polyvinylalcohol and chitosan. Int. J. Pharm., 2010; 392: 232–240
    Google Scholar
  • 94. Szycher M., Lee S.J.: Modern wound dressings: a systematic approachto wound healing. J. Biomater. Appl., 1992; 7: 142–213
    Google Scholar
  • 95. Szymański P., Markowicz M., Mikiciuk-Olasik E.: Zastosowanienanotechnologii w medycynie i farmacji. LAB, 2012; 17: 51–56
    Google Scholar
  • 96. Tashiro T.: Antibacterial and bacterium adsorbing macromolecules.Macromol. Mater. Eng., 2001; 286: 63–87
    Google Scholar
  • 97. Tian J., Wong K.K., Ho C.M., Lok C.N., Yu W.Y., Che C.M., Chiu J.F.,Tam P.K.: Topical delivery of silver nanoparticles promotes woundhealing. ChemMedChem., 2007; 2: 129–136
    Google Scholar
  • 98. Vanwijck R.: Surgical biology of wound healing. Bull. Mem. Acad.R. Med. Belg., 2001; 156: 175–184
    Google Scholar
  • 99. Vicentini D.S., Smania A.Jr., Laranjeira M.C.: Chitosan/poly (vinylalcohol) films containing ZnO nanoparticles and plasticizers. Mater.Sci. Eng. C, 2010; 30: 503–508
    Google Scholar
  • 100. von Recum A.F., LaBerge M.: Educational goals for biomaterialsscience and engineering: perspective view. J. Appl. Biomater.,1995; 6: 137–144
    Google Scholar
  • 101. Wang L., Khor E., Wee A., Lim L.Y.: Chitosan-alginate PEC membraneas a wound dressing: Assessment of incisional wound healing.J. Biomed. Mater. Res., 2002; 63: 610–618
    Google Scholar
  • 102. Wang Y., Zhang L.: Blends and composites based on celluloseand natural polymers. W: Biodegradable Polymer Blends and Compositesfrom Renewable Resources, red.: L. Yu. John Wiley & Sons,Inc., New Jersey 2008; 129–161
    Google Scholar
  • 103. Wang Z.L.: Zinc oxide nanostructures: growth, properties andapplications. J. Phys. Condens. Matter., 2004; 16: R829–R858
    Google Scholar
  • 104. Wiśniewska-Wrona M., Kucharska M., Niekraszewicz A., KardasI., Ciechańska D., Bodek K.H.: Biokompozyty chitozanowo-alginianowew postaci filmów do leczenia odleżyn. Polimery Med.,2010; 40: 57–64
    Google Scholar
  • 105. Wu T., Zivanovic S., Draughon F.A., Conway W.S., Sams C.E.:Physicochemical properties and bioactivity of fungal chitin andchitosan. J. Agric. Food Chem., 2005; 53: 3888–3894
    Google Scholar
  • 106. Xie H., Chen X., Shen X., He Y., Chen W., Luo Q., Ge W., YuanW., Tang X., Hou D., Jiang D., Wang Q., Liu Y., Liu Q., Li K.: Preparationof chitosan-collagen-alginate composite dressing andits promoting effects on wound healing. Int. J. Biol. Macromol.,2018; 107: 93–104
    Google Scholar
  • 107. Xu J., Han X., Liu H., Hu Y.: Synthesis and optical properties ofsilver nanoparticles stabilized by gemini surfactant. Colloids Surf.,A, 2006; 273: 179–183
    Google Scholar
  • 108. Yamanaka M., Hara K., Kudo J.: Bactericidal actions of a silverion solution on Escherichia coli, studied by energy-filtering transmissionelectron microscopy and proteomic analysis. Appl. Environ.Microbiol., 2005; 71: 7589–7593
    Google Scholar
  • 109. Yanagibayashi S., Kishimoto S., Ishihara M., Murakami K.,Aoki H., Takikawa M., Fujita M., Sekido M., Kiyosawa T.: Novel hydrocolloid-sheet as wound dressing to stimulate healing-impairedwound healing in diabetic db/db mice. Biomed. Mater. Eng., 2012;22: 301–310
    Google Scholar
  • 110. Yang X., Yang K., Wu S., Chen X., Yu F., Li J., Ma M., Zhu Z.: Cytotoxicityand wound healing properties of PVA/ws-chitosan/glycerolhydrogels made by irradiation followed by freeze-thawing. Radiat.Phys. Chem., 2010; 79: 606–611
    Google Scholar
  • 111. Yarden Y.: The EGRF family and its ligands in human cancer:Signalling mechanisms and therapeutic opportunities. Eur. J. Cancer,2001; 37: S3–S8
    Google Scholar
  • 112. Zhang X., Yang D., Nie J.: Chitosan/polyethylene glycol diacrylatefilms as potential wound dressing material. Int. J. Biol. Macromol.,2008; 43: 456–462
    Google Scholar
  • 113. Zhou Y., Yang D., Chen X., Xu Q., Lu F., Nie J.: Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrousmembrane as potential wound dressing for skin regeneration. Biomacromolecules,2008; 9: 349–354
    Google Scholar

Full text

Skip to content