Tolerance of monocytes and macrophages in response to bacterial endotoxin

COMMENTARY ON THE LAW

Tolerance of monocytes and macrophages in response to bacterial endotoxin

Ewelina Wiśnik 1 , Ewa Pikus 1 , Piotr Duchnowicz 1 , Maria Koter-Michalak 1

1. Uniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska, Katedra Biofizyki Skażeń Środowiska, Łódź

Published: 2017-03-07
DOI: 10.5604/01.3001.0010.3802
GICID: 01.3001.0010.3802
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 176-185

 

Abstract

Monocytes belong to myeloid effector cells, which constitute the first line of defense against pathogens, also called the nonspecific immune system and play an important role in the maintenance of tissue homeostasis. In response to stimulation, monocytes differentiate into macrophages capable of microorganism phagocytosis and secrete factors that play a key role in the regulation of immune responses. However excessive exposure of monocytes/macrophages to the lipopolysaccharide (LPS) of Gram negative bacteria leads to the acquisition of immune tolerance by these cells. Such state results from disruption of different biological processes, for example intracellular signaling pathways and is accompanied by a number of disease states (immune, inflammatory or neoplastic conditions). Regulation of monocytes/macrophages activity is controlled by miRNAs, which are involved in the modulation of immune tolerance acquired by these cells. Moreover, the tolerance to endotoxin is conditioned by the posttranscriptional processes and posttranslational epigenetic modifications leading to the impairment of normal immune response for example by alterations in the expression of many genes encoding immune signaling mediators. The aim of this paper is to provide an overview existing knowledge on the modulation of activity of monocytes/macrophages in response to bacterial endotoxin and impaired immune responses.

References

  • 1. Antosz H., Choroszyńska D.: Negatywna regulacja sygnalizacji receptorów Toll-podobnych. Postępy Hig. Med. Dośw., 2013; 67: 339-351
    Google Scholar
  • 2. Arbibe L., Sansonetti P.J.: Epigenetic regulation of host response to LPS: causing tolerance while avoiding Toll Errancy. Cell Host Microbe, 2007; 1: 244-246
    Google Scholar
  • 3. Aziz M., Jacob A., Wang P.: Revisiting caspases in sepsis. Cell Death Dis., 2014; 5: e1526
    Google Scholar
  • 4. Bayarsaihan D.: Epigenetic mechanisms in inflammation. J. Dent. Res., 2011; 90: 9-17
    Google Scholar
  • 5. Bhatt D., Ghosh S.: Regulation of the NF-κB-mediated transcription of inflammatory genes. Front. Immunol., 2014; 5: 71
    Google Scholar
  • 6. Biswas S.K., Lopez-Collazo E.: Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol., 2009; 30: 475-487
    Google Scholar
  • 7. Biswas S.K., Shalova I.N.: Endotoxin tolerance as a key mechanism for immunosuppression. INTECH Open Access Publisher, 2012, Chapter 2
    Google Scholar
  • 8. Christmas P.: Toll-like receptors: sensors that detect infection. Nature Education, 2010; 3: 85-90
    Google Scholar
  • 9. Fontana L., Pelosi E., Greco P., Racanicchi S., Testa U., Liuzzi F., Croce C.M., Brunetti E., Grignani F., Peschle C.: MicroRNAs 17-5p-20a- 106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat. Cell Biol., 2007; 9: 775-787
    Google Scholar
  • 10. Foster S.L., Hargreaves D.C., Medzhitov R.: Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature, 2007; 447: 972-979
    Google Scholar
  • 11. Futoma-Kołoch B., Godlewska U., Pędlowski M.: Lipopolisacharyd bakteryjny jako najnowszy obiekt badań nad sepsą. Laboratorium – Przegląd Ogólnopolski, 2014; 7/8: 37-41
    Google Scholar
  • 12. Graff J.W., Dickson A.M., Clay G., McCaffrey A.P., Wilson M.E.: Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem., 2012; 287: 21816-21825
    Google Scholar
  • 13. Grygorowicz M.A., Kozłowska E.: Udział receptorów TLR rozpoznających wzorce molekularne organizmów patogennych w modulowaniu aktywności regulatorowych limfocytów T CD4+ CD25+ FOXP3+. Post. Mikrobiol., 2011; 50: 141-154
    Google Scholar
  • 14. Hao N.B., Lü M.H., Fan Y.H., Cao Y.L., Zhang Z.R., Yang S.M.: Macrophage in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol., 2012; 2012: 948098
    Google Scholar
  • 15. Hotchi J., Hoshiga M., Takeda Y., Yuki T., Fujisaka T., Ishihara T., Hanafusa T.: Plaque-stabilizing effect of angiotensin-converting enzyme inhibitor and/or angiotensin receptor blocker in a rabbit plaque model. J. Atheroscler. Thromb., 2013; 20: 257-266
    Google Scholar
  • 16. Janssens S., Burns K., Tschopp J., Beyaert R.: Regulation of interleukin-1- and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr. Biol., 2002; 12: 467-471
    Google Scholar
  • 17. Krausgruber T., Blazek K., Smallie T., Alzabin S., Lockstone H., Sahgal N., Hussell T., Feldmann M., Udalova I.A.: IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol., 2011; 12: 231-238
    Google Scholar
  • 18. Kulczycka L., Sysa-Jędrzejowska A., Robak E.: Udział receptorów Toll-like w patogenezie wybranych chorób skóry. Postępy Hig. Med. Dośw., 2010; 64: 364-371
    Google Scholar
  • 19. Lagrange B., Martin R.Z., Droin N., Aucagne R., Paggetti J., Largeot A., Itzykson R., Solary E., Delva L., Bastie J.N.: A role for miR-142- 3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochim. Biophys. Acta, 2013; 1833: 1936-1946
    Google Scholar
  • 20. Lawrence T., Natoli G.: Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol., 2011; 11: 750-761
    Google Scholar
  • 21. Litvak V., Ramsey S.A., Rust A.G., Zak D.E., Kennedy K.A., Lampano A.E., Nykter M., Shmulevich I., Aderem A.: Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat. Immunol., 2009; 10: 437-443
    Google Scholar
  • 22. Liu J., Buckley J.M., Redmond H.P., Wang J.H.: ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance. J. Immunol., 2010; 184: 5802-5808
    Google Scholar
  • 23. Liu L., Li Y.H., Niu Y.B., Sun Y., Guo Z.J., Li Q., Li C., Feng J., Cao S.S., Mei Q.B.: An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis, 2010; 31: 1822-1832
    Google Scholar
  • 24. Lu M., Varley A.W., Mundorf R.S.: Persistently active microbial molecules prolong innate immune tolerance in vivo. PLoS Pathog., 2013; 9: e1003339
    Google Scholar
  • 25. Majewska M., Szczepanik M.: Rola receptorów toll-podobnych (TLR) w odporności wrodzonej i nabytej oraz ich funkcja w regulacji odpowiedzi immunologicznej. Postępy Hig. Med. Dośw., 2006; 60: 52-63
    Google Scholar
  • 26. Martinez F.O., Gordon S.: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime. Rep., 2014; 6: 13
    Google Scholar
  • 27. Nazimek K., Bryniarski K.: Aktywność biologiczna makrofagów w zdrowiu i chorobie. Postępy Hig. Med. Dośw.: 2012; 66: 507-520
    Google Scholar
  • 28. Nazimek K, Filipczak-Bryniarska I., Bryniarski K.: Rola leków, egzosomów i cząsteczek miRNA w modulacji aktywności immunologicznej makrofagów. Postępy Hig. Med. Dośw., 2015; 69: 1114-1129
    Google Scholar
  • 29. Obata Y., Furusawa Y., Hase K.: Epigenetic modifications of the immune system in health and disease. Immunol. Cell Biol., 2015; 9: 226-232
    Google Scholar
  • 30. Ponomarev E.D., Veremeyko T., Weiner H.L.: MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 2013; 61: 91-103
    Google Scholar
  • 31. Reyes R.E., Andrade A.A., Jimenez R.C., González C.R., Herrera M.O.: Mechanisms of O-antigen structural variation of bacterial lipopolysaccharide (LPS). INTECH Open Access Publisher, 2012, Chapter 3
    Google Scholar
  • 32. Roberts L.M., Ledvina H.E., Tuladhar S., Rana D., Steele S.P., Sempowski G.D., Frelinger J.A.: Depletion of alveolar macrophages in CD11c diphtheria toxin receptor mice produces an inflammatory response. Immun. Inflamm. Dis., 2015; 3: 71-81
    Google Scholar
  • 33. Salomao R., Brunialti M.K., Rapozo M.M., Baggio-Zappia G.L., Galanos C.H., Freudenberg M.: Bacterial sensing, cell signaling, and modulation of the immune response during sepsis. Shock, 2012; 38: 227-242
    Google Scholar
  • 34. Smolarczyk R., Cichoń T., Jarosz M., Szala S.: HMGB1 – rola w progresji i terapii przeciwnowotworowej. Postępy Hig. Med. Dośw., 2012; 66: 913-920
    Google Scholar
  • 35. Sun Y., Cai J., Ma F., Lu P., Huang H., Zhou J:. miR-155 mediates suppressive effect of progesterone on TLR3, TLR4-triggered immune response. Immunol. Lett., 2012; 146: 25-30
    Google Scholar
  • 36. van’t Veer C., van den Pangaart P.S., van Zoelen M.A., de Kruif M., Birjmohun R.S., Stroes E.S., de Vos A.F., van der Poll T.: Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J. Immunol., 2007; 179: 7110-7120
    Google Scholar
  • 37. Wei J., Huang X., Zhang Z., Jia W., Zhao Z., Zhang Y., Liu X., Xu G.: MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol. Immunol., 2013; 55: 303-309
    Google Scholar
  • 38. Wiśnik E., Koter-Michalak M.: Komórkowy szlak sygnalizacyjny zależny od jądrowego czynnika transkrypcyjnego NF-κB i jego zaburzenia w wybranych chorobach nowotworowych. Post. Biol. Kom., 2015; 42: 559-572
    Google Scholar
  • 39. Zhang W., Shen X., Xie L., Chu M., Ma Y.: MicroRNA-181b regulates endotoxin tolerance by targeting IL-6 in macrophage RAW264.7 cells. J. Inflamm., 2015; 12: 18
    Google Scholar
  • 40. Zhu D., Pan C., Li L., Bian Z., Lv Z., Shi L., Zhang J., Li D., Gu H., Zhang C.Y., Liu Y., Zen K.: MicroRNA-17/20a/106a modulate macrophage inflammatory responses through targeting signal-regulatory protein α. J. Allergy Clin. Immunol., 2013; 132: 426-436.e8
    Google Scholar

Full text

Skip to content