Transformation of medicinal plants using Agrobacterium tumefaciens

COMMENTARY ON THE LAW

Transformation of medicinal plants using Agrobacterium tumefaciens

Katarzyna Bandurska 1 , Agnieszka Berdowska 1 , Małgorzata Król 1

1. Zakład Mikrobiologii i Biotechnologii, Instytut Chemii, Ochrony Środowiska i Biotechnologii, Akademia im. Jana Długosza w Częstochowie

Published: 2016-12-20
DOI: 10.5604/17322693.1226660
GICID: 01.3001.0009.6900
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1220-1228

 

Abstract

For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.

References

  • 1. Abdin M.Z., Israr M., Rehman R.U., Jain S.K.: Artemisinin, a novelantimalarial drug: biochemical and molecular approaches forenhanced production. Planta Med., 2003; 69: 289-299
    Google Scholar
  • 2. Albach D.C., Meudt H.M., Oxelman B.: Piecing together the „new“Plantaginaceae. Am. J. Bot., 2005; 92: 297-315
    Google Scholar
  • 3. Bandurska K., Król I., Myga-Nowak M.: Interferony: między strukturąa funkcją. Postępy Hig. Med. Dośw., 2014; 68: 428-440
    Google Scholar
  • 4. Bhattacharya A., Ramanathan M., Ghosal S., Bhattacharya S.K.:Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicityin rats. Phytother. Res., 2000; 14: 568-570
    Google Scholar
  • 5. Cal C., Garban H., Jazirehi A., Yeh C., Mizutani Y., Bonavida B.: Resveratroland cancer: chemoprevention, apoptosis, and chemo-immunosensitizingactivities. Curr. Med. Chem. Anti-Canc. Agents., 2003; 3: 77-93
    Google Scholar
  • 6. Chen J.C., Chiu M.H., Nie R.L., Cordell G.A., Qiu S.X.: Cucurbitacinsand cucurbitane glycosides: structures and biological activities. Nat.Prod. Rep., 2005; 22: 386-399
    Google Scholar
  • 7. Chen W.P., Punja Z.K.: Agrobacterium-mediated transformationof American ginseng with a rice chitinase gene. Plant. Cell. Rep.,2002; 20: 1039-1045
    Google Scholar
  • 8. Chhabra G., Chaudhary D., Sainger M., Jaiwal P.K.: Genetic transformationof Indian isolate of Lemna minor mediated by Agrobacteriumtumefaciens and recovery of transgenic plants. Physiol. Mol.Biol. Plants., 2011; 17: 129-136
    Google Scholar
  • 9. Christie P.J., Gordon J.E.: The Agrobacterium Ti plasmids. Microbiol.Spectr., 2014; 2: PLAS-0010-2013
    Google Scholar
  • 10. Cruz E.A., Reuter S., Martin H., Dehzad N., Muzitano M.F., Costa S.S., Rossi-Bergmann B., Buhl R., Stassen M., Taube C.: Kalanchoepinnata inhibits mast cell activation and prevents allergic airwaydisease. Phytomedicine, 2012; 19: 115-121
    Google Scholar
  • 11. Dreger M., Krajewska-Patan A., Górska-Paukszta M., Pieszak M.,Buchwald W., Mikołajczak P.: Production of the secondary metabolitesin Salvia miltiorrhiza in vitro cultures. Herb. Polon., 2010; 56: 78-90
    Google Scholar
  • 12. Elfahmi S.S., Suhandono S., Chahyadi A.: Optimization of genetictransformation of Artemisia annua L. using Agrobacterium for artemisininproduction. Pharmacogn. Mag., 2014; 10: S176-S180
    Google Scholar
  • 13. Facchini P.J., De Luca V.: Opium poppy and Madagascar periwinkle:model non-model systems to investigate alkaloid biosynthesisin plants. Plant. J., 2008; 54: 763-784
    Google Scholar
  • 14. Franzyk H., Olsen C.E., Jensen S.R.: Dopaol 2-keto- and 2,3-diketoglycosidesfrom Chelone obliqua. J. Nat. Prod., 2004; 67: 1052-1054
    Google Scholar
  • 15. Gala B.V., Gujar V.: Product development, biochemical, anti-microbialand organoleptic analysis on (Trigonella foenum-graecum) fenugreekseeds and leaves. Plant Sciences Feed, 2014; 4: 15-18
    Google Scholar
  • 16. Gao Z., Li Y., Chen J., Chen Z., Cui M.L.: A rapid and stable Agrobacterium-mediatedtransformation method of a medicinal plantChelone glabra L. App. Biochem. Biotechnol., 2015; 175: 2390-2398
    Google Scholar
  • 17. Gelvin S. B.: Agrobacterium in the genomics age. Plant. Physiol.,2009; 150: 1665-1676
    Google Scholar
  • 18. Ghimire B.K., Lim J.D., Yu C.Y.: Biological activity of Rehmanniaglutinosa transformed with resveratrol synthase genes. W: Transgenicplants – advances and limitations, red.: Yelda Ozden Çiftçi.InTech, 2012, 161-172
    Google Scholar
  • 19. Gohlke J., Deeken R.: Plant responses to Agrobacterium tumefaciensand crown gall development. Front. Plant. Sci., 2014; 5: 1-11
    Google Scholar
  • 20. Hashem Abadi D., Kaviani B.: In vitro proliferation of an importantmedicinal plant aloe – a method for rapid production. Aust. J.Crop. Sci., 2010; 4: 216-222
    Google Scholar
  • 21. He C., Zhang J., Chen J., Ye X., Du L., Dong Y., Zhao H.: Genetictransformation of Aloe barbadensis Miller by Agrobacterium tumefaciens.J. Genet. Genomics., 2007; 34: 1053-1060
    Google Scholar
  • 22. Hosseini B., Shahriari-Ahmadi F., Hashemi H., Marashi M.H.,Mohseniazar M., Farokhzad A., Sabokbari M.: Transient expressionof cor gene in Papaver somniferum. BioImpacts, 2011; 1: 229-235
    Google Scholar
  • 23. Ignatowicz E., Baer-Dubowska W.: Resveratrol, a natural chemopreventiveagent against degenerative diseases. Pol. J. Pharmacol.,2001; 53: 557-569
    Google Scholar
  • 24. Jayaprakasam B., Nair M.G.: Cyclooxygenase-2 enzyme inhibitorywithanolides from Withania somnifera leaves. Tetrahedron.,2003; 59: 841-849
    Google Scholar
  • 25. Jaziri M., Fauconnier M.L., Guo Y.W., Marlier M., Vanhaelen M.:Genetic transformation of Anthemis nobilis L. (Roman chamomile).Biotechnol. Agricult. Forest., 1999; 45: 47-54
    Google Scholar
  • 26. Jhala A., Hall L.: Flax (Linum usitatissimum L.): current uses andfuture applications. Aust. J. Bas. App. Sci., 2010; 4: 4304-4312
    Google Scholar
  • 27. Jiang R.W., Lau K.M., Hon P.M., Mark T.C., Woo K.S., Fung K.P.:Chemistry and biological activities of caffeic acid derivatives fromSalvia miltiorrhiza. Curr. Med. Chem., 2005; 12: 237-246
    Google Scholar
  • 28. Jiao X.L., Bi W., Li M., Luo Y., Gao W.W.: Dynamic response ofginsenosides in American ginseng to root fungal pathogens. PlantSoil, 2011; 339: 317-327
    Google Scholar
  • 29. Jung Y., Rhee Y., Auh C.K., Shim H., Choi J.J., Kwon S.T., Yang J.S.,Kim D., Kwon M.H., Kim Y.S., Lee S.: Production of recombinant singlechain antibodies (scFv) in vegetatively reproductive Kalanchoe pinnataby in planta transformation. Plant. Cell. Rep., 2009; 28: 1593-1602
    Google Scholar
  • 30. Khawar K.M., Gulbitti-Onarici S., Çöçü S., Erisen S., Sancak C.,Özcan S.: In vitro crown galls induced by Agrobacterium tumefaciensstrain A281 (pTiBo542) in Trigonella foenum-graecum. Biol. Plant.,2004; 48: 441-444
    Google Scholar
  • 31. Kiyokawa S., Kikuchi Y., Kamada H., Harada H.: Genetic transformationof Begonia tuberhybrida by Ri rol genes. Plant Cell. Rep.,1996; 15: 606-609
    Google Scholar
  • 32. Krasnyanski S., May R.A., Loskutov A., Ball T.M., Sink K.C.: Transformationof the limonene synthase gene into peppermint (Menthapiperita L.) and preliminary studies on the essential oil profiles ofsingle transgenic plants. Theor. Appl. Genet., 1999; 99: 676-682
    Google Scholar
  • 33. Kumar M., Singh S., Singh S.: In vitro morphogenesis of a medicinalplant Aloe vera L. Asian J. Plant. Sci. Res., 2011; 1: 31-40
    Google Scholar
  • 34. Lee G., Yu J., Cho S., Byun S.J., Kim D.H., Lee T.K., Kwon M.H.,Lee S.: A nucleic-acid hydrolyzing single chain antibody confersresistance to DNA virus infection in HeLa cells and C57BL/6 Mice.PLOS Pathog., 2014; 10: e1004208
    Google Scholar
  • 35. Li M., Jiang F., Yu X., Miao Z.: Engineering isoprenoid biosynthesisin Artemisia annua L. for the production of taxadiene: a kayintermediate of taxol. Biomed. Res. Int., 2015; 2015: 504932
    Google Scholar
  • 36. Li Y., Gao Z., Piao C., Lu K., Wang Z., Cui M.L.: A stable and efficientAgrobacterium tumefaciens-mediated genetic transformation ofthe medicinal plant Digitalis purpurea L. Appl. Biochem. Biotechnol.,2014; 172: 1807-1817
    Google Scholar
  • 37. Lim D.W., Kim Y.T.: Dried root of Rehmannia glutinosa preventsbone loss in ovariectomized rats. Molecules, 2013; 18: 5804-5813
    Google Scholar
  • 38. Lim T.K.: Begonia x tuberhybrida. W: Edible medicinal and non–medicinal plants. Vol. 7 Flowers. Springer Netherlands 2014, 556-558
    Google Scholar
  • 39. Lowther W., Lorick K., Lawrence S.D., Yeow WS.: Expression ofbiologically active human interferon alpha 2 in Aloe vera. Transgenic.Res., 2012; 21: 1349-1357
    Google Scholar
  • 40. Magnotta M., Murata J., Chen J., De Luca V.: Expression of deacetylvindoline-4-O-acetyltransferasein Catharanthus roseus hairyroots. Phytochemistry, 2007; 68: 1922-1931
    Google Scholar
  • 41. Manvitha K., Bidya B.: Aloe vera: a wonder plant its history, cultivationand medicinal uses. J. Pharmacognosy Phytochem., 2014;2: 85-88
    Google Scholar
  • 42. Menger L., Vacchelli E., Kepp O., Eggermont A., Tartour E., ZitvogelL., Kroemer G., Galluzzi L.: Trial watch: Cardiac glycosides andcancer therapy. Oncoimmunology, 2013; 2: e23082
    Google Scholar
  • 43. Mierziak J., Wojtasik W., Kostyn K., Czuj T., Szopa J., Kulma A.:Crossbreeding of transgenic flax plants overproducing flavonoidsand glucosyltransferase results in progeny with improved antifungaland antioxidative properties. Mol. Breed., 2014; 34: 1917-1932
    Google Scholar
  • 44. Mirjalili M.H., Fakhr-Tabatabaei S.M., Bonfill M., Alizadeh H.,Cusido R.M., Ghassempour A., Palazon J.: Morphology and withanolideproduction of Withania coagulans hairy root cultures. Eng.Life. Sci., 2009; 9: 197-204
    Google Scholar
  • 45. Pandey V., Misra P., Chaturvedi P., Mishra M.K., Trivedi P.K., TuliR.: Agrobacterium tumefaciens-mediated transformation of Withaniasomnifera (L.) Dunal: an important medical plant. Plant Cell. Rep.,2010; 29: 133-141
    Google Scholar
  • 46. Park K.S., Chang I.M.: Anti-inflammatory activity of aucubin byinhibition of tumor necrosis factor-α production in RAW 264.7 cells.Planta Med., 2004; 70: 778-779
    Google Scholar
  • 47. Patil S., Jain G.: Holistic approach of Trigonella foenum-graecumin phytochemistry and pharmacology – a review. Curr. Trends Technol.Sci. 2014; 3: 34-48
    Google Scholar
  • 48. Pérez-Bermúdez P., García A.A., Tuñón I., Gavidia I.: Digitalispurpurea P5βR2, encoding steroid 5β-reductase, is a novel defense–related gene involved in cardenolide biosynthesis. New Phytol.,2010; 185: 687-700
    Google Scholar
  • 49. Pramila D.M., Xavier R., Marimuthu K., Kathiresan S., Khoo M.L., Senthilkumar M., Sathya K., Sreeramanan S.: Phytochemical analysisand antimicrobial potential of methanolic leaf extract of peppermint(Mentha piperita: Lamiaceae). J. Med. Plant. Res., 2012; 6: 331-335
    Google Scholar
  • 50. Punja Z.K.: Genetic engineering of plants to enhance resistanceto fungal pathogens – a review of progress and future prospects.Can. J. Plant. Pathol., 2001; 23: 216-235
    Google Scholar
  • 51. Qi L.W., Wang C.Z., Yuan C.S.: Ginsenosides from American ginseng:chemical and pharmacological diversity. Phytochemistry, 2011;72: 689-699
    Google Scholar
  • 52. Rajput H.: Effects of Atropa belladonna as an anti-cholinergic.Nat. Prod. Chem. Res., 2013; 1: 104
    Google Scholar
  • 53. Reynolds T.: Aloes: the genus Aloe. CRC Press, Boca Raton 2004
    Google Scholar
  • 54. Rita P., Animesh D.K.: An updated overview on Atropa belladonnaL. Int. Res. J. Pharm., 2011; 2: 11-17
    Google Scholar
  • 55. Ro D.K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L.,Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., Chang M.C.,Withers S.T., Shiba Y., Sarpong R., Keasling J.D.: Production of theantimalarial drug precursor artemisinic acid in engineered yeast.Nature, 2006; 440: 940-943
    Google Scholar
  • 56. Robb E.L., Page M.M., Wiens B.E., Stuart J.A.: Molecular mechanismsof oxidative stress resistance induced by resveratrol: specificand progressive induction of MnSOD. Biochem. Biophys. Res. Commun.,2008; 367: 406-412
    Google Scholar
  • 57. Sharma A., Purkait B.: Identification of medicinally active ingredientin ultradiluted Digitalis purpurea: fluorescence spectroscopicand cyclic-voltammetric study. J. Anal. Methods Chem., 2012;2012: 109058
    Google Scholar
  • 58. Shen Q., Chen Y.F., Wang T., Wu S.Y., Lu X., Zhang L., Zhang F.Y,Jiang W.M., Wang G.F., Tang K.X.: Overexpression of the cytochromeP450 monooxygenase (cyp71av1) and cytochrome P450 reductase(cpr) genes increased artemisinin content in Artemisia annua (Asteraceae).Genet. Mol. Res., 2012; 11: 3298-3309
    Google Scholar
  • 59. Shim Y.Y., Reaney M.J.: Kinetic interactions between cyclolinopeptidesand immobilized human serum albumin by surface plasmonresonance. J. Agric. Food Chem., 2015; 63: 1099-1106
    Google Scholar
  • 60. Sivanandhan G., Arun M., Mayavan S., Rajesh M., Mariashibu T.S.,Manickavasagam M., Selvaraj N., Ganapathi A.: Chitosan enhanceswithanolides production in adventitious root cultures of Withaniasomnifera (L.) Dunal. Ind. Crop. Prod., 2012; 37: 124-129
    Google Scholar
  • 61. Sivanandhan G., Kapil Dev G., Theboral J., Selvaraj N., GanapathiA., Manickavasagam M.: Sonication, vacuum infiltration andthiol compounds enhance the Agrobacterium-mediated transformationfrequency of Withania somnifera (L.) Dunal. PLoS One, 2015;10: e0124693
    Google Scholar
  • 62. Song G., Walworth A.: Agrobacterium tumefaciens-mediated transformationof Atropa belladonna. Plant Cell. Tiss. Organ. Cult., 2013;115: 107-113
    Google Scholar
  • 63. Srivastava J.K., Shankar E., Gupta S.: Chamomile: a herbal medicineof the past with bright future. Mol. Med. Rep., 2010; 3: 895-901
    Google Scholar
  • 64. Srivastava T., Das S., Sopory S.K., Srivastava P.S.: A reliable protocolfor transformation of Catharanthus roseus through Agrobacteriumtumefaciens. Physiol. Mol. Biol. Plants, 2009; 15: 93-98
    Google Scholar
  • 65. Szopa J., Wróbel-Kwiatkowska M., Kulma A., Zuk M., Skórkowska-TelichowskaK., Dymińska L., Mączka M., Hanuza J., Zebrowski J.,Preisner M.: Chemical composition and molecular structure of fibersfrom transgenic flax producing polyhydroxybutyrate, and mechanicalproperties and platelet aggregation of composite materialscontaining these fibers. Compos. Sci. Technol., 2009; 69: 2438-2446
    Google Scholar
  • 66. van Der Heijden R., Jacobs D.I., Snoeijer W., Hallard D., VerpoorteR.: The Catharanthus alkaloids: pharmacognosy and biotechnology.Curr. Med. Chem., 2004; 11: 607-628
    Google Scholar
  • 67. Vincenzi S., Tomasi D., Gaiotti F, Lovat L., Giacosa S., Torchio F.,Rio Segade S., Rolle L.: Comparative study of the resveratrol contentof twenty-one italian red grape varieties. S. Afr. J. Enol. Vitic.,2013; 34: 30-35
    Google Scholar
  • 68. Vladimirova I.N., Georgiyants V.A.: Biologically active compoundsfrom Lemna minor S. G. Gray. Pharm. Chem. J., 2014; 47: 599-601
    Google Scholar
  • 69. Wang Q., Xing S., Pan Q., Yuan F., Zhao J., Tian Y., Chen Y., WangG., Tang K.: Development of efficient Catharanthus roseus regenerationand transformation system using Agrobacterium tumefaciens andhypocotyls as explants. BMC Biotechnol., 2012; 12: 34
    Google Scholar
  • 70. WHO Malaria Policy Advisory Committee and Secretariat.: Malariapolicy advisory committee to the WHO: conclusions and recommendationsof eighth biannual meeting (September 2015). Malar.J., 2016; 15: 117
    Google Scholar
  • 71. Wu B., Li Y., Yan H., Ma Y., Luo H., Yuan L., Chen S. Lu S.: Comprehensivetranscriptome analysis reveals novel genes involved incardiac glycoside biosynthesis and mlncRNAs associated with secondarymetabolism and stress response in Digitalis purpurea. BMCGenomics, 2012; 13: 15
    Google Scholar
  • 72. Yan Y., Wang Z.: Genetic transformation of the medicinal plantSalvia miltiorrhiza by Agrobacterium tumefaciens-mediated method.Plant Cell. Tiss. Organ. Cult., 2007; 88: 175-184
    Google Scholar
  • 73. Yang L., Stöckigt J.: Trends for diverse production strategies ofplant medicinal alkaloids. Nat. Prod. Rep., 2010; 27:1469-1479
    Google Scholar
  • 74. Zhou L., Zuo Z., Chow M.S.: Danshen: an overview of its chemistry,pharmacology, pharmacokinetics, and clinical use. J. Clin.Pharmacol., 2005; 45: 1345-1359
    Google Scholar
  • 75. Zhuang H., Kim Y.S., Koehler R.C., Dore S.: Potential mechanismby which resveratrol, a red wine constituent, protects neurons. Ann.N. Y. Acad. Sci., 2003; 993: 276-286
    Google Scholar

Full text

Skip to content