Trastuzumab – a monoclonal antibody – and dendrimers in a targeted therapy for breast cancer

COMMENTARY ON THE LAW

Trastuzumab – a monoclonal antibody – and dendrimers in a targeted therapy for breast cancer

Monika Marcinkowska 1 , Maciej Stańczyk 2 , Barbara Klajnert-Maculewicz 3

1. Katedra Biofizyki Ogólnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
2. Oddział Chirurgii Onkologicznej, Regionalny Ośrodek Onkologiczny, Wojewódzki Szpital Specjalistyczny im. Kopernika w Łodzi
3. Katedra Biofizyki Ogólnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki; Leibniz-Institut für Polymerforschung Dresden e.V., Niemcy

Published: 2015-01-02
DOI: 10.5604/17322693.1184555
GICID: 01.3001.0009.6602
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1313-1324

 

Abstract

Breast cancer is the most frequently occurring cancer in women. It has been confirmed that approximately 30% of patients have overexpression of human epidermal growth factor 2 (HER2) on the surface of tumor cells. Trastuzumab – a recombinant, humanized monoclonal antibody – is directed against this receptor. Its use in traditional chemotherapy (with anthracyclines or taxanes) causes an increase of therapy efficiency. However, the systemic toxicity of the anticancer drugs is still a serious problem. Therefore, new solutions are sought, especially in the field of selective drug transport to tumor cells. Dendrimers are composed of a core and branches. They are the bestknown group of nanoparticles. A lot of publications have shown that they can be used as carriers of various types of molecules, including anticancer drugs. The branched structure provides effective protection against premature release of the drug into the circulatory system. It gives a chance to reduce the dose while maintaining a therapeutic effect, and to reduce the toxicity of the drug for normal cells. Furthermore, the surface of dendrimers can be modified by a monoclonal antibody to achieve a targeted therapy. For that reason synthesis of conjugates of trastuzumab, dendrimers, and anticancer drugs is so crucial. This paper presents an overview of publications about the use of trastuzumab in in vitro, in vivo and clinical studies, as well as the latest developments of biology and chemistry, whose goal is to create the perfect, targeted carrier.

References

  • 1. Albanell J., Codony J., Rovira A., Mellado B., Gascon P.: Mechanism ofaction of anti-HER2 monoclonal antibodies: scientific update on trastuzumaband 2C4. Adv. Exp. Med. Biol., 2003; 532: 253-268
    Google Scholar
  • 2. Alexis F., Rhee J.W., Richie J.P., Radovic-Moreno A.F., Langer R., FarokhzadO.C.: New frontiers in nanotechnology for cancer treatment.Urol. Oncol., 2008; 26: 74-85
    Google Scholar
  • 3. Arpino G., Weiss H., Lee A.V., Schiff R., De Placido S., Osborne C.K., ElledgeR.M.: Estrogen receptor-positive, progesterone receptor-negativebreast cancer: association with growth factor receptor expression andtamoxifen resistance. J. Natl. Cancer Inst., 2005; 97: 1254-1261
    Google Scholar
  • 4. Barok M., Tanner M., Köninki K., Jorma I.: Trastuzumab-DM1 causestumour growth inhibition by mitotic catastrophe in trastuzumabresistant breast cancer cells in vivo. Breast Cancer Res., 2011; 13: R46
    Google Scholar
  • 5. Barratt G.M.: Therapeutic applications of colloidal drug carriers.Pharm. Sci. Technolo. Today, 2000; 3: 163-171
    Google Scholar
  • 6. Baselga J., Norton L., Albanell J., Kim Y.M., Mendelsohn J.: Recombinanthumanized anti-HER2 antibody (Herceptin®) enhances the antitumoractivity of paclitaxel and doxorubicin against HER2/neu overexpressinghuman breast cancer xenografts. Cancer Res., 1998; 58:2825-2831
    Google Scholar
  • 7. Beano A., Signorino E., Evangelista A., Brusa D., Mistrangelo M., PolimeniM.A., Spadi R., Donadio M., Ciuffreda L., Matera L.: Correlationbetween NK function and response to trastuzumab in metastatic breastcancer patients. J. Transl. Med., 2008; 6: 25
    Google Scholar
  • 8. Bishop J.M.: Cellular oncogenes and retroviruses. Annu. Rev. Biochem.,1983; 52: 301-354
    Google Scholar
  • 9. Blanco M.D., Teijón C., Olmo R.M., Teijón J.M.: Targeted nanoparticlesfor cancer therapy. W: Recent advances in novel drug carriersystems. 2012; 241-277
    Google Scholar
  • 10. Boerman O.C., van Schaijk F.G., Oyen W.J., Corstens F.H.: Pretargetedradioimmunotherapy of cancer: progress step by step. J. Nucl.Med., 2003; 44: 400-411
    Google Scholar
  • 11. Borg A., Tandon A.K., Sigurdsson H., Clark G.M., Fernö M., FuquaS.A., Killander D., McGuire W.L.: HER-2/neu amplification predictspoor survival in node-positive breast cancer. Cancer Res., 1990; 50:4332-4337
    Google Scholar
  • 12. Bublil E.M., Yarden Y.: The EGF receptor family: spearheading a mergerof signaling and therapeutics. Curr. Opin. Cell. Biol., 2007; 19: 124-134
    Google Scholar
  • 13. Burstein H.J., Keshaviah A., Baron A.D., Hart R.D., Lambert-FallsR., Marcom P.K., Gelman R., Winer E.P.: Trastuzumab plus vinorelbineor taxane chemotherapy for HER2-overexpressing metastatic breastcancer: the trastuzumab and vinorelbine or taxane study. Cancer, 2007;110: 965-972
    Google Scholar
  • 14. Byrne J.D., Betancourt T., Brannon-Peppas L.: Active targeting schemesfor nanoparticle systems in cancer therapeutics. Adv. Drug Deliv.Rev., 2008; 60: 1615-1626
    Google Scholar
  • 15. Cadoo K.A., Fornier M.N., Morris P.G.: Biological subtypes of breastcancer: current concepts and implications for recurrence patterns. Q.J. Nucl. Med. Mol. Imaging, 2013; 57: 312-321
    Google Scholar
  • 16. Cancello G., Montagna E., D’Agostino D., Giuliano M., Giordano A.,Di Lorenzo G., Plaitano M., De Placido S., De Laurentiis M.: Continuingtrastuzumab beyond disease progression: outcomes analysis in patientswith metastatic breast cancer. Breast Cancer Res., 2008; 10: R60
    Google Scholar
  • 17. Cardinale D., Colombo A., Torrisi R., Sandri M.T., Civelli M., SalvaticiM., Lamantia G., Colombo N., Cortinovis S., Dessanai M.A., Nolè F.,Veglia F., Cipolla C.M.: Trastuzumab-induced cardiotoxicity: clinicaland prognostic implications of troponin I evaluation. J. Clin. Oncol.,2010; 28: 3910-3916
    Google Scholar
  • 18. Chan C., Cai Z., Reilly R.M.: Trastuzumab labeled to high specificactivity with ¹¹¹In by conjugation to G4 PAMAM dendrimers derivatizedwith multiple DTPA chelators exhibits increased cytotoxic potencyon HER2-positive breast cancer cells. Pharm. Res., 2013; 30: 1999-2009
    Google Scholar
  • 19. Charliński G., Boguradzki P.: Zastosowanie trastuzumabu w leczeniuguzów litych. Współcz. Onkol., 2003; 7: 39-44
    Google Scholar
  • 20. Cho H.S., Mason K., Ramyar K.X., Stanley A.M., Gabelli S.B., DenneyD.W.Jr., Leahy D.J.: Structure of the extracellular region of HER2 aloneand in complex with the Herceptin Fab. Nature, 2003; 421: 756-760
    Google Scholar
  • 21. Clark A.S., West K., Streicher S., Dennis P.A.: Constitutive and inducibleAkt activity promotes resistance to chemotherapy, trastuzumab,or tamoxifen in breast cancer cells. Mol. Cancer Ther., 2002; 1: 707-717
    Google Scholar
  • 22. Cline E.N., Li M.H., Choi S.K,, Herbstman J.F., Kaul N., Meyhöfer E.,Skiniotis G., Baker J.R., Larson R.G., Walter N.G.: Supporting informationfor: paclitaxel-conjugated PAMAM dendrimers adversely affect microtubulestructure through two independent modes of action. Universityof Michigan, Ann Arbor, MI48109: S1-S12
    Google Scholar
  • 23. Cohen S., Carpenter G., King L.Jr.: Epidermal growth factor-receptor-proteinkinase interactions. Co-purification of receptor and epidermalgrowth factor-enhanced phosphorylation activity. J. Biol. Chem.,1980; 255: 4834-4842
    Google Scholar
  • 24. Colbern G.T., Hiller A.J., Musterer R.S., Working P.K., HendersonI.C.: Antitumor activity of Herceptin® in combination with STEALTH®liposomal cisplatin or nonliposomal cisplatin in a HER2 positive humanbreast cancer model. J. Inorg. Biochem., 1999; 77: 117-120
    Google Scholar
  • 25. Dębska S., Potemski P.: Kontynuowanie leczenia trastuzumabempo progresji u chorych na raka piersi – argumenty za i przeciw. Onkol.Prakt. Klin., 2009; 5: 189-197
    Google Scholar
  • 26. El-Sahwi K., Bellone S., Cocco E., Cargnelutti M., Casagrande F., BelloneM., Abu-Khalaf M., Buza N., Tavassoli F.A., Hui P., Silasi D.A., AzodiM., Schwartz P.E., Rutherford T.J., Pecorelli S., Santin A.D.: In vitro activityof pertuzumab in combination with trastuzumab in uterine serouspapillary adenocarcinoma. Br. J. Cancer, 2010; 102: 134-143
    Google Scholar
  • 27. Esfand R., Tomalia D.A.: Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications. DrugDiscov. Today, 2001; 6: 427-436
    Google Scholar
  • 28. Fountzilas G., Tsavdaridis D., Kalogera-Fountzila A., ChristodoulouC.H., Timotheadou E., Kalofonos C.H., Kosmidis P., Adamou A., PapakostasP., Gogas H., Stathopoulos G., Razis E., Bafaloukos D., Skarlos D.: Weeklypaclitaxel as first-line chemotherapy and trastuzumab in patientswith advanced breast cancer. A Hellenic Cooperative Oncology Groupphase II study. Ann. Oncol., 2001; 12: 1545-1551
    Google Scholar
  • 29. Fuchs I., Vorsteher N., Buhler H., Evers K., Sehouli J., Schaller G.,Kümmel S.: The prognostic significance of human epidermal growthfactor receptor correlations in squamous cell cervical carcinoma. AnticancerRes., 2007; 27: 959-963
    Google Scholar
  • 30. Garea S.A., Ghebaur A.: FT-IR spectroscopy and thermogravimetricalcharacterization of prodrugs based on different dendritic polymersand antitumoral drug. Mater. Plast., 2012; 49: 1-4
    Google Scholar
  • 31. Gianni L.., Eiermann W., Semiglazov V., Lluch A., Tjulandin S., ZambettiM., Moliterni A., Vazquez F., Byakhov M.J., Lichinitser M., ClimentM.A., Ciruelos E., Ojeda B., Mansutti M., Bozhok A., et al.: Neoadjuvantand adjuvant trastuzumab in patients with HER2-positive locally advancedbreast cancer (NOAH): follow-up of a randomised controlledsuperiority trial with a parallel HER2-negative cohort. Lancet Oncol.,2014; 15: 640-647
    Google Scholar
  • 32. Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-GebhartM., Thürlimann B., Senn H.J.; Panel members.: Personalizing the treatmentof women with early breast cancer: highlights of the St GallenInternational Expert Consensus on the Primary Therapy of Early BreastCancer 2013. Ann. Oncol., 2013; 24: 2206-2223
    Google Scholar
  • 33. Huang J., Wang S., Lyu H., Cai B., Yang X., Wang J., Liu B.: The anti–erbB3 antibody MM-121/SAR256212 in combination with trastuzumabexerts potent antitumor activity against trastuzumab-resistant breastcancer cells. Mol. Cancer, 2013; 12: 134
    Google Scholar
  • 34. Hudis C.A.: Trastuzumab – mechanism of action and use in clinicalpractice. N. Engl. J. Med., 2007; 357: 39-51
    Google Scholar
  • 35. Hurrell T., Outhoff K.: The in vitro influences of epidermal growthfactor and heregulin-β1 on the efficacy of trastuzumab used in Her-2positive breast adenocarcinoma. Cancer Cell Int., 2013; 13: 97
    Google Scholar
  • 36. Jackson S.E., Chester J.D.: Personalised cancer medicine. Int. J. Cancer,2015; 137: 262-266
    Google Scholar
  • 37. Kim J.W., Kim Y.T., Kim D.K., Song C.H., Lee J.W.: Expression of epidermalgrowth factor receptor in carcinoma of the cervix. Gynecol.Oncol., 1996; 60: 283-287
    Google Scholar
  • 38. Kobayashi H., Wu C., Kim M.K., Paik C.H., Carrasquillo J.A., BrechbielM.W.: Evaluation of the in vivo biodistribution of indium-111 andyttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation withanti-Tac monoclonal antibody. Bioconjug. Chem., 1999; 10: 103-111
    Google Scholar
  • 39. Kroep J.R., Linn S.C., Boven E., Bloemendal H.J., Baas J., MandjesI.A., van den Bosch J., Smit W.M., de Graaf H., Schröder C.P.,Vermeulen G.J., Hop W.C., Nortier J.W.: Lapatinib: clinical benefit inpatients with HER2-positive advanced breast cancer. Neth. J. Med.,2010; 68: 371-376
    Google Scholar
  • 40. Kukowska-Latallo J.F., Candido K.A., Cao Z., Nigavekar S.S., MajorosI.J., Thomas T.P., Balogh L.P., Khan M.K., Baker J.R.Jr.: Nanoparticletargeting of anticancer drug improves therapeutic response in animalmodel of human epithelial cancer. Cancer Res., 2005; 65: 5317-5324
    Google Scholar
  • 41. Kunisue H., Kurebayashi J., Otsuki T., Tang C.K., Kurosumi M., YamamotoS., Tanaka K., Doihara H., Shimizu N., Sonoo H.: Anti-HER2 antibodyenhances the growth inhibitory effect of anti-oestrogen on breastcancer cells expressing both oestrogen receptors and HER2. Br. J.Cancer, 2000; 82: 46-51
    Google Scholar
  • 42. Lamond N.W., Younis T.: Pertuzumab in human epidermal growth–factor receptor 2-positive breast cancer: clinical and economic considerations.Int. J. Womens Health, 2014; 6: 509-521
    Google Scholar
  • 43. Majoros I.J., Myc A., Thomas T., Mehta C.B., Baker J.R.Jr.: PAMAMdendrimer-based multifunctional conjugate for cancer therapy: synthesis,characterization, and functionality. Biomacromolecules, 2006;7: 572-579
    Google Scholar
  • 44. Mannocci A., De Feo E., de Waure C., Specchia M.L., Gualano M.R.,Barone C., Ricciardi W., La Torre G.: Use of trastuzumab in HER2-positivemetastatic breast cancer beyond disease progression: a systematicreview of published studies. Tumori, 2010; 96: 385-391
    Google Scholar
  • 45. Margolis B.L., Lax I., Kris R., Dombalagian M., Honegger A.M., HowkR., Givol D., Ullrich A., Schlessinger J.: All autophosphorylation sites ofepidermal growth factor (EGF) receptor and HER2/neu are located intheir carboxyl-terminal tails. Identification of a novel site in EGF receptor.J. Biol. Chem., 1989; 264: 10667-10671
    Google Scholar
  • 46. Mendelsohn J.: The epidermal growth factor receptor as a targetfor cancer therapy. Endocr. Relat. Cancer, 2001; 8: 3-9
    Google Scholar
  • 47. Merlin J.L., Barberi-Heyob M., Bachmann N.: In vitro comparativeevaluation of trastuzumab (Herceptin®) combined with paclitaxel (Taxol®)or docetaxel (Taxotere®) in HER2-expressing human breast cancercell lines. Ann. Oncol., 2002; 13: 1743-1748
    Google Scholar
  • 48. Milani A., Sangiolo D., Montemurro F., Aglietta M., Valabrega G.:Active immunotherapy in HER2 overexpressing breast cancer: currentstatus and future perspectives. Ann Oncol., 2013; 24: 1740-1748
    Google Scholar
  • 49. Miyano T., Wijagkanalan W., Kawakami S., Yamashita F., HashidaM.: Anionic amino acid dendrimer-trastuzumab conjugates for specificinternalization in HER2-positive cancer cells. Mol. Pharm., 2010; 7:1318-1327
    Google Scholar
  • 50. Montemurro F., Donadio M., Clavarezza M., Redana S., JacomuzziM.E., Valabrega G., Danese S., Vietti-Ramus G., Durando A., VenturiniM., Aglietta M.: Outcome of patients with HER2-positive advanced breast cancer progressing during trastuzumab-based therapy. Oncologist,2006; 11: 318-324
    Google Scholar
  • 51. Mrozkowiak M., Olszewski W.P., Piaścik A., Olszewski W.T.: HER2status in breast cancer determined by IHC and FISH: comparison of theresults. Pol. J. Pathol., 2004; 55: 165-171
    Google Scholar
  • 52. Nahta R., Esteva F.J.: HER-2-targeted therapy: lessons learned andfuture directions. Clin. Cancer Res., 2003; 9: 5078-5084
    Google Scholar
  • 53. Nishimura R., Okumura Y., Arima N.: Trastuzumab monotherapyversus combination therapy for treating recurrent breast cancer: timeto progression and survival. Breast Cancer, 2008; 15: 57-64
    Google Scholar
  • 54. Olson E.M., Najita J.S., Sohl J., Arnaout A., Burstein H.J., Winer E.P.,Lin N.U.: Clinical outcomes and treatment practice patterns of patientswith HER2-positive metastatic breast cancer in the post-trastuzumabera. Breast, 2013; 22: 525-531
    Google Scholar
  • 55. Park J.W., Colbern G., Nuijens A.: Increased levels of circulatingHER2 ECD in response to anti-HER2 antibody therapy. Breast CancerRes. Treat., 1997; 46: 267
    Google Scholar
  • 56. Pegram M.., Hsu S., Lewis G., Pietras R., Beryt M., Sliwkowski M.,Coombs D., Baly D., Kabbinavar F., Slamon D.: Inhibitory effects of combinationsof HER-2/neu antibody and chemotherapeutic agents usedfor treatment of human breast cancers. Oncogene, 1999; 18: 2241-2251
    Google Scholar
  • 57. Perez E.A., Suman V.J., Davidson N.E., Sledge G.W., Kaufman P.A.,Hudis C.A., Martino S., Gralow J.R., Dakhil S.R., Ingle J.N., Winer E.P.,Gelmon K.A., Gersh B.J., Jaffe A.S., Rodeheffer R.J.: Cardiac safetyanalysis of doxorubicin and cyclophosphamide followed by paclitaxelwith or without trastuzumab in the North Central CancerTreatment Group N9831 adjuvant breast cancer trial. J. Clin. Oncol.,2008; 26: 1231-1238
    Google Scholar
  • 58. Ritter C.A., Arteaga C.L.: The epidermal growth factor receptor-tyrosinekinase: a promising therapeutic target in solid tumors. Semin.Oncol., 2003; 30 (Suppl. 1): 3-11
    Google Scholar
  • 59. Ropero S., Menéndez J.A., Vázquez-Martín A., Montero S., Cortés–Funes H., Colomer R.: Trastuzumab plus tamoxifen: anti-proliferativeand molecular interactions in breast carcinoma. Breast Cancer Res.Treat., 2004; 86: 125-137
    Google Scholar
  • 60. Ross J.S., Slodkowska E.A., Symmans W.F., Pusztai L., Ravdin P.M.,Hortobagyi G.N.: The HER-2 receptor and breast cancer: ten years oftargeted anti-HER-2 therapy and personalized medicine. Oncologist,2009; 14: 320-368
    Google Scholar
  • 61. Rossin R., Verkerk P.R., van den Bosch S.M., Vulders R.C., Verel I.,Lub J., Robillard M.S.: In vivo chemistry for pretargeted tumor imagingin live mice. Angew. Chem. Int. Ed. Engl., 2010; 49: 3375-3378
    Google Scholar
  • 62. Rouzier R., Perou C.M., Symmans W.F., Ibrahim N., Cristofanilli M.,Anderson K., Hess K.R., Stec J., Ayers M., Wagner P., Morandi P., Fan C.,Rabiul I., Ross J.S., Hortobagyi G.N., Pusztai L.: Breast cancer molecularsubtypes respond differently to preoperative chemotherapy. Clin. CancerRes., 2005; 11: 5678-5685
    Google Scholar
  • 63. Seidman A., Hudis C., Pierri M.K., Shak S., Paton V., Ashby M., MurphyM., Stewart S.J., Keefe D.: Cardiac dysfunction in the trastuzumabclinical trials experience. J. Clin. Oncol., 2002; 20: 1215-1221
    Google Scholar
  • 64. Shukla R., Thomas T.P., Desai A.M., Kotlyar A., Park S.J., Baker J.R.:HER2 specific delivery of methotrexate by dendrimer conjugated anti–HER2 mAb. Nanotechnology, 2008; 19: 295102
    Google Scholar
  • 65. Simon R., Nocito A., Hübscher T., Bucher C., Torhorst J., Schraml P.,Bubendorf L., Mihatsch M.M., Moch H., Wilber K., Schötzau A., KononenJ., Sauter G.: Patterns of HER-2/neu amplification and overexpressionin primary and metastatic breast cancer. J. Natl. Cancer Inst., 2001; 93:1141-1146
    Google Scholar
  • 66. Singletary S.E., Allred C., Ashley P., Bassett L.W., Berry D., BlandK.I., Borgen P.I., Clark G., Edge S.B., Hayes D.F., Hughes L.L., Hutter R.V.,Morrow M., Page D.L., Recht A., et al.: Revision of the American JointCommittee on Cancer staging system for breast cancer. J. Clin. Oncol.,2002; 20: 3628-3636
    Google Scholar
  • 67. Sjögren S., Inganäs M., Lindgren A., Holmberg L., Bergh J.: Prognosticand predictive value of c-erbB-2 overexpression in primary breastcancer, alone and in combination with other prognostic markers. J. Clin.Oncol., 1998; 16: 462-469
    Google Scholar
  • 68. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuireW.L.: Human breast cancer: correlation of relapse and survival withamplification of the HER-2/neu oncogene. Science, 1987; 235: 177-182
    Google Scholar
  • 69. Slamon D.J., Leyland-Jones B., Shak S., Fuchs H., Paton V., BajamondeA., Fleming T., Eiermann W., Wolter J., Pegram M., Baselga J.,Norton L.: Use of chemotherapy plus a monoclonal antibody againstHER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J.Med., 2001; 344: 783-792
    Google Scholar
  • 70. Sosińska-Melcarek K., Jassem J.: Przeciwciała monoklonalne w leczeniunowotworów litych. Onkol. Prakt. Klin., 2005; 1: 225-232
    Google Scholar
  • 71. Stemmler H.J., Mengele K., Schmitt M., Harbeck N., Laessig D., HerrmannK.A., Schaffer P., Heinemann V.: Intrathecal trastuzumab (Herceptin)and methotrexate for meningeal carcinomatosis in HER2-overexpressingmetastatic breast cancer: a case report. Anticancer Drugs,2008; 19: 832-836
    Google Scholar
  • 72. Suter T.M., Procter M., van Veldhuisen D.J., Muscholl M., Bergh J.,Carlomagno C., Perren T., Passalacqua R., Bighin C., Klijn J.G., AgeevF.T., Hitre E., Groetz J., Iwata H., Knap M., et al.: Trastuzumab-associatedcardiac adverse effects in the herceptin adjuvant trial. J. Clin. Oncol.,2007; 25: 3859-3865
    Google Scholar
  • 73. Talekar M., Kendall J., Denny W., Garg S.: Targeting of nanoparticlesin cancer: drug delivery and diagnostics. Anticancer Drugs, 2011;22: 949-962
    Google Scholar
  • 74. Tang Y., Lamberti G., Curran E., Kiani M., Wang B.: Development andcharacterization of a multi-drug resistant Her-2/neu positive breastcancer cell line (58.6). FASEB J., 2014; 28 (Suppl.): 58.6
    Google Scholar
  • 75. Taucher S., Rudas M., Mader R.M., Gnant M., Dubsky P., BachleitnerT., Roka S., Fitzal F., Kandioler D., Sporn E., Friedl J., Mittlböck M., JakeszR.: Do we need HER-2/neu testing for all patients with primary breastcarcinoma? Cancer, 2003; 98: 2547-2553
    Google Scholar
  • 76. Treish I., Schwartz R., Lindley C.: Pharmacology and therapeuticuse of trastuzumab in breast cancer. Am. J. Health Syst. Pharm., 2000;57: 2063-2076
    Google Scholar
  • 77. Tripathy S., Das M.K.: Dendrimers and their applications as noveldrug delivery carriers. J. Appl. Pharmaceut. Sci, 2013; 3: 142-149
    Google Scholar
  • 78. Tseng P.H., Wang Y.C., Weng S.C., Weng J.R., Chen C.S., BrueggemeierR.W., Shapiro C.L., Chen C.Y., Dunn S.E., Pollak M., Chen C.S.: Overcomingtrastuzumab resistance in HER2-overexpressing breast cancercells by using a novel celecoxib-derived phosphoinositide-dependentkinase-1 inhibitor. Mol. Pharmacol., 2006; 70: 1534-1541
    Google Scholar
  • 79. Vogel C.L., Cobleigh M.A., Tripathy D., Gutheil J.C., Harris L.N., FehrenbacherL., Slamon D.J., Murphy M., Novotny W.F., Burchmore M., ShakS., Stewart S.J.: First-line Herceptin® monotherapy in metastatic breastcancer. Oncology, 2001; 61 (Suppl. 2): 37-42
    Google Scholar
  • 80. Witters L.M., Kumar R., Chinchilli V.M., Lipton A.: Enhanced anti–proliferative activity of the combination of tamoxifen plus HER-2-neuantibody. Breast Cancer Res. Treat, 1997; 42: 1-5
    Google Scholar
  • 81. Wu C., Brechbiel M.W., Kozak R.W., Gansow O.A.: Metal-chelatedendrimer-antibodyconstructs for use in radioimmunotherapy andimaging. Bioorg. Med. Chem. Lett., 1994; 4: 449-454
    Google Scholar
  • 82. Yabbarov N.G., Posypanova G.A., Vorontsov E.A., Popova O.N., SeverinE.S.: Targeted delivery of doxorubicin: drug delivery system basedon PAMAM dendrimers. Biochemistry, 2013; 78: 884-894
    Google Scholar
  • 83. Zhu S., Hong M., Zhang L., Tang G., Jiang Y., Pei Y.: PEGylated PAMAMdendrimer-doxorubicin conjugates: in vitro evaluation and in vivotumor accumulation. Pharm. Res., 2010; 27: 161-174
    Google Scholar

Full text

Skip to content