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Summary
The generally accepted mechanism of metformin’s effect is stimulation of adenosine mono-
phosphate (AMP)-activated protein kinase (AMPK). AMPK is directly activated by an increase 
in AMP:ATP ratio in metabolic stress conditions including hypoxia and glucose deprivation. 
Lately, many novel pathways, besides AMPK induction, have been revealed, which can explain 
some of metformin’s beneficial effects. It may help to identify new targets for treatment of 
diabetes and metabolic syndrome. Moreover, metformin is now attracting the attention of 
researchers in fields other than diabetes, as it has been shown to have anti-cancer, immunore-
gulatory and anti-aging effects. The aim of this review is to describe the potential anti-cancer 
and anti-aging properties of metformin and discuss the possible underlying mechanisms.
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Introduction

Metformin is a biguanide derivative widely used in 
clinical practice as an anti-diabetic drug. It inhibits 
hepatic gluconeogenesis and triggers glucose uptake 
in skeletal muscles [50,52]. The drug is well tolerated 
and safe with known pharmacokinetics [50,52]. Because 
of its properties, metformin is presently the first-line 
drug for the treatment of type 2 diabetes (T2D). Inte-
restingly, there is a quickly growing body of literature 
demonstrating its potential in the therapy of multiple 
disorders other than diabetes, [33,43,52]. Many epide-

miologic analyses have reported that metformin may 
improve prognosis of cancer patients and also may 
prevent tumor initiation [18,51]. Moreover, there is 
evidence suggesting that metformin acts as an anti-
-aging factor and modulates the microbiota, promoting 
health [45]. Thus, metformin is currently being investi-
gated for new applications. The precise mechanisms of 
metformin’s action have not been entirely explained 
yet, but many pathways may be involved. The present 
review focuses on potential anti-aging and anti-cancer 
properties of metformin and discusses possible under-
lying mechanisms.
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Mechanisms of metformin action

Metformin is the drug indicated as the first-lime therapy 
of T2D. This type of diabetes is the most frequently dia-
gnosed and is characterized by hyperglycemia resulting 
from insulin resistance and reduced insulin secretion. 
Metformin acts mostly via inhibition of hepatic glu-
coneogenesis. Its anti-hyperglycemic influence is also 
mediated by an increase of hepatic insulin sensitivity 
and absorption of glucose in muscles [27,45]. 

Mitochondria seem to be a significant target for metfor-
min. Its principal function is ATP synthesis by oxidative 
phosphorylation. This process results in production of 
energy through oxidation of nutrients that create an 
electron chemical gradient across the mitochondrial 
inner membrane. Such a gradient is used as a source of 
energy that allows ATP synthesis, transport of ions and 
heat production [56]. Oxygen radicals, e.g. reactive oxy-
gen species (ROS), are also produced in mitochondria, 
which may be toxic for cells and cause DNA, protein and 
lipid damage. It is a cause of oxidative stress and mito-
chondrial dysfunction. Mitochondrial dysfunction has 
been reported to be related to insulin resistance in tis-
sues such as skeletal muscles, liver, fat, heart and pan-
creas [26,34,54]. 

The widely accepted mechanism of metformin action is 
stimulation of adenosine monophosphate (AMP)-activa-
ted protein kinase (AMPK) [50,56]. AMPK is activated by 
an increase in AMP:ATP ratio in metabolic stress con-
ditions including hypoxia and glucose deficiency [24]. 
Thus, AMPK can act as an indicator of energy levels in 
cells [14]. In hepatocytes metformin accumulates within 
the mitochondrial matrix and targets complex I of the 
mitochondrial respiratory chain [42,53]. Once complex 
I is inhibited, it results in a reduction of ATP production 
and an increase in ADP and AMP levels, which leads to 
AMPK activation [25,42,53]. AMPK inhibits gluconeoge-
nic gene transcription. Moreover, it inhibits lipogenesis, 
which improves insulin sensitivity [20,21,31,45]. Mito-
chondrial stress may also influence tissue metabolism 
independently of AMPK stimulation [28].

Recently, some new pathways, besides AMPK activation, 
were discovered, which can explain the additional posi-
tive properties of metformin. The decrease in cellular 
energy level can directly inhibit the gluconeogenic pro-
cess. Moreover, increased AMP leads to inhibition of ade-
nylate cyclase, resulting in lowering of cAMP production. 
As a result the activity of PKA (protein kinase A) and its 
targets, such as CREB (cyclic AMP response element bin-
ding), are inhibited. Metformin stops the activity of mGPD 
(glycerol-3-phosphate dehydrogenase) as well. In turn it 
prevents glycerol usage in gluconeogenesis. The cytosolic 
redox state is increased, which reduces the use of lactate 
as a gluconeogenic substrate [13,35,45,48]. 

These novel properties of metformin are now attracting 
the attention of researchers in fields other than diabe-

tes, as the drug has been reported to have anti-cancer, 
immunoregulatory and anti-aging effects [33,43,52]. 
Such new mechanisms of metformin are described in 
detail below.

Metformin influences longevity

Two different mechanisms are described as the primary 
causes of aging. The first one – the ROS theory – refers 
to cumulative DNA damage caused by ROS, the by-pro-
ducts of oxidative phosphorylation. The second one is 
the TOR theory, and it is connected with constitutive sti-
mulation of mitogen – and nutrient-sensing mTOR/S6 
signaling [23]. The cellular pathways upstream of mTOR 
such as the IGF-1/GH axis, MAPK, AKT, and PI3K are the 
targets for aging inhibition. They may be stimulated by 
mitogens, growth factors, sugars and amino acids. On the 
other hand, calorie restriction, mimetics such as 2-deoxy-
-Dglucose and blockers of mitogens and growth factors 
such as somatotropin and IGF-1 may suppress mTOR 
signaling pathways [4,5,8]. It is supported by the fact that 
the mutations reducing growth hormone (GH) and IGF-1 
signaling in mammals are associated with a prolonged 
lifespan [6,7]. The specific inhibitor rapamycin may direc-
tly inhibit the kinase activity of mTOR. It is widely repor-
ted that rapamycin has gero-suppressive effects such as 
extending the lifespan, preventing age-related disorders 
or reducing costs of patient care [11,17]. AMPK activa-
tion leads to indirect inhibition of mTOR; thus metformin 
as an AMPK activator is shown to have gero-suppressive 
effects [41]. Extended longevity and lifespan were shown 
in experiments with mice fed with metformin and rapa-
mycin [2,3]. The use of metformin as an anti-aging drug 
has been recently suggested based on its wide application 
in clinical practice as well as its well-known pharmacoki-
netics and acceptable toxicity [3].

Among gero-suppressive mechanisms the activation of 
autophagy plays a significant role as well [46,55]. The 
process is induced by nutrient deficiency that leads 
to subcellular membrane rearrangement. As a result, 
double-membraned autophagosomes enclosing cyto-
plasmic constituents and organelles are formed [39,46]. 
Autophagy protects the nutrient supply and the proper 
function of cell organelles [28]. Genes involved in regu-
lation of autophagy are critical for longevity of diffe-
rent organisms from yeasts, flies and nematodes up to 
mice. It was also reported that induction of autophagy 
may extend the lifespan [17]. Polyamines are the most 
effective activators of autophagy, and induction of this 
process is associated with suppression of signaling along 
the IGF and mTOR pathways [40,49] Thus, inhibitors of 
these pathways such as rapamycin or metformin can be 
activators of autophagy [36]. Anti-aging effects of met-
formin are presented in Fig. 1.

Metformin exhibits anti-cancer effects

Recently, it was widely proposed that metformin could 
be protective against neoplastic diseases. The anti-
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nism damaging the metabolism of folates leads to inhibi-
tion of cancer cell proliferation. The cell cycle regulation 
via interactions with classical oncogenes and tumor sup-
pressors, which may be induced by AMPK, is conside-
red as the next mechanism responsible for anti-cancer 
properties of metformin. Experimental research provi-
des evidence that metformin down-regulates c-MYC in 
an AMPK-dependent manner in breast cancer cell lines 
[12]. AMPK has also been found to target p53 and indu-
ces cell-cycle arrest by Ser15 phosphorylation of p53 
protein [14,29].

AMPK-independent mechanisms of metformin’s anti-cancer 
effects

AMPK-independent mechanisms can also explain the 
anti-cancer mechanism of metformin action. The drug 
can inhibit cell DNA damage by preventing ROS gene-
ration by complex I [1]. Furthermore, metformin can 
induce activation of mTORC1 in the absence of AMPK 
[30]. Some research provides evidence that the anti-neo-
plastic effect of metformin is mediated by AMPK-inde-
pendent inhibition of cyclin D1, which is an important 
regulator of the cell cycle [9]. Such inhibition is repor-
ted to be connected with p53-dependent up-regulation 
of REDD1 that is a result of the DNA damage response 
[10]. It was shown that metformin up-regulates apop-
tosis and autophagy in esophageal squamous cell carci-
noma, which leads to reduction of tumor growth [19]. 
This was mediated by inactivation of the Stat3 (signal 
transducer and activator of transcription 3)-Bcl2 path-
way. This pathway is only marginally deteriorated by 
AMPK knockdown, which indicates a rather limited con-

-cancer activities of metformin are associated with 
both indirect and direct effects of this drug. The indi-
rect mechanisms result from general modifications 
of blood glucose and insulin levels, which could influ-
ence the survival of cancer cells [52]. It is reported that 
insulin and insulin-like growth factor 1 (IGF-1) can pro-
mote tumorigenesis by stimulating the proliferation of 
epithelial cells [44,45]. Decreasing the insulin level as 
a result may prevent such neoplastic activity. Metfor-
min can also affect the inflammatory processes that 
are reported to play a significant role in tumor progres-
sion. Blocking of transcription factor nuclear factor-κ 
B (NF-κ B) activity mediated by metformin results in 
reduced secretion of pro-inflammatory cytokines [38]. 
Additionally, metformin has been reported to activate 
the immune response to cancer cells [45]. For example, 
it has been found that the drug improved the effective-
ness of an experimental anti-cancer vaccine that was 
mainly mediated by activation of memory T cells [43]. 
The direct anti-cancer effects of metformin are con-
nected with AMPK-dependent and AMPK-independent 
mechanisms [52]. These are summarized in Fig. 2.

AMPK-dependent mechanisms of metformin’s anti-cancer 
effects

The activation of the AMPK pathway may be significan-
tly involved in the anti-cancer mechanisms of metfor-
min’s action. A key consequence of AMPK activation is 
inhibition of mTOR signaling – the major regulator of 
cell growth and proliferation [22]. It was also reported 
that metformin can act as an anti-folate drug [15,16]. 
Similarly to anti-folate chemotherapeutics, this mecha-
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Fig. 1: Anti-aging effects of metformin. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METFORMIN  
 

AMPK activation 
 

mTOR inhibition 
 

Autophagy activation 
 

EXTENDED LONGEVITY AND LIFESPAN 

Fig. 1. Anti-aging effects of metformin



173

Podhorecka M. et al.– Metformin – its potential anti-cancer...

diseases was recently reported. In particular, the anti-
-cancer and anti-aging effects of metformin seem to be 
promising. There are a number of mechanisms repor-
ted to be responsible for these effects, which have been 
described in this review. However, further studies in this 
subject are still required, and numerous mechanisms 
must still be explained.

tribution of AMPK. It was also reported that metformin 
reduced glucose uptake in lung cancer and breast cancer 
cells. Inhibition of such an energy source leads finally 
to mitochondrial depolarization and programmed cell 
death [32,47].

Conclusions

Metformin is currently approved for treatment of T2D, 
but its therapeutic potential in the treatment of other 
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Fig. 2: Anti-cancer effects of metformin. 
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