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Summary
The sirtuins are a family of highly evolutionary conserved NAD+-dependent deacetylases 
(SIRT1, 2, 3, 5). Certain human sirtuins (SIRT4, 6) have, in addition, an ADP-ribosyltransferase 
activity. SIRT1 and SIRT2 are located in the nucleus and cytoplasm; SIRT3 exists predominantly 
in mitochondria, and SIRT6 is located in the nucleus. The mammalian sirtuins have emerged 
as key metabolic sensors that directly link environmental nutrient signals to metabolic ho-
meostasis. SIRT1 is involved in the regulation of gluconeogenesis and fatty acid oxidation, as 
well as inhibiting lipogenesis and inflammation in the liver. In addition, they contribute to 
the mobilization of fat in white adipose tissue, sense nutrient availability in the hypothala-
mus; regulate insulin secretion in the pancreas; as well as modulating the expression of genes 
responsible for the activity of the circadian clock in metabolic tissues. Sirtuins are implicated 
in a variety of cellular functions ranging from gene silencing, through the control of the cell 
cycle, to energy homeostasis. Caloric restriction, supported by polyphenols, including res-
veratrol, which is the SIRT1 activator, plays a special role in maintaining energy homeostasis. 
On a whole body level, the wide range of cellular activities of the sirtuins suggests that they 
could constitute a therapeutic target to combat obesity and related metabolic diseases. In 
addition, this work presents the current state of knowledge in the field of sirtuin activity in 
relation to nutritional status and lifespan.
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SIRT1 is the best-known mammalian sirtuin, which is simi-
lar to Sir2p in Saccharomyces cerevisiae yeast. It is present 
in the cell nucleus and catalyses the NAD+-dependent dea-
cetylation of many transcription-regulating factors. SIRT2 
is also a deacetylase, but it is found both in the cell cyto-
plasm and nucleus and it is responsible for polymerisa-
tion of α-tubulin and stabilisation of microtubules. SIRT3 
is present in the cell nucleus, where it participates in dea-
cetylation of histones, which form nucleosomes, but also 
in mitochondria, to which it is transported under cellular 
stress conditions [93].

Sirtuins (SIRT1-SIRT3 and SIRT5) [75] catalyse the par-
ticular deacetylation reaction, in which first a hydrolysis 
occurs of the glycoside bond between nicotinamide and 
ADP-ribose residue in NAD+ molecule. Then, the acetyl 
group is transferred from the bound protein substrate to 
ADP-ribose residue. That reaction yields 2’-O-acetyl-ADP 
ribose (AADPR) and nicotinamide (NAM) (Fig. 2). The reac-
tion of deacetylation is inhibited by nicotinamide (final 
product of the reaction), but can be also regulated by 
[NAD+]/[NADH] ratio, which depends on the energy status 
of the cell. The absolute requirement of the sirtuin-cata-
lysed reaction is the availability of NAD+ co-substrate, what 
places sirtuins in the centre of cell energy metabolism reg-
ulation and can be a link between the energy status in the 
cytoplasm and nuclear signalling. Catabolic reactions, such 
as β-oxidation of fatty acids, glycolysis, degradation of pro-
teins or citrate cycle, reduce NAD+ to NADH. Under con-
ditions of high energy potential – the intracellular NADH 
concentration increases significantly, while [NAD+]/[NADH] 
ratio usually changes in favour of NAD+.

It seems that SIRT1 can play the role of a sensor affect-
ing the gene expression process in order to ensure normal 
cell metabolism. AADPR (acetyl-ADP-ribose nicotinamide), 
the product yielded in deacetylation reaction catalysed 
by sirtuins plays also the role of a second messenger. It 
is involved in the process of transcription silencing and 
achieving a functional status of heterochromatin [38, 45]. 
AADPR achieves that in two independent mechanisms. The 
first one of them is induction of conformational changes in 
SIRT1, which enhance the silencing [45]. The second mech-
anism consists in binding AADPR to a macro histone vari-
ant (H2A1), which is present in inactive heterochromatin 
region [38].

Two sirtuins: SIRT4 and SIRT6 have no deacetylase activ-
ity (Table 1) but show the activity of NAD+-dependent ADP- 
-ribosyltransferase. The ability of human sirtuins to cata-
lyse ADP-ribosylation of target proteins was suggested 
already in the first reports on those enzymes [83]. The 
detailed mechanism of that reaction has not been fully elu-

INTRODUCTION 

The „founder” of the sirtuin family is the silent information 
regulator 2 protein (Sir2p) detected in the cells of Saccha-
romyces cerevisiae yeast. The protein is a nicotinamide ade-
nine dinucleotide (NAD+) – dependent histone deacetylase 
which regulates chromatin silencing [5]. Yeast strains with 
altered Sir2p level show many metabolic disorders includ-
ing transcriptional and recombination silencing, ageing and 
repair of DNA. Besides Sir2p, S. cerevisiae cells produce four 
other NAD+-dependent histone deacetylases – Hist1 – Hist 4. 
In mammals, seven sirtuin homologues have been identi-
fied: SIRT1 – SIRT7 [16, 17]. The unusual homology of sir-
tuin genes from yeast to human ones indicates that these 
proteins play a significant vital role [17]. SIRT1 and SIRT2 
are found both in the nucleus and cytoplasm, while SIRT6 
and SIRT7 are only present in the nucleus. SIRT3, SIRT4 and 
SIRT5 are called mitochondrial sirtuins [54]. Based on the 
phylogenetically preserved basic domain, the sirtuins have 
been divided into five subclasses (I-IV and U). The subclass I 
includes SIRT1, SIRT2 and SIRT3, which show a deacetylase 
activity. SIRT4 with ADP-ribosyltransferase activity belongs 
to the subclass II [2, 21]. The subclass III includes SIRT5, 
which has a deacylase activity [95] and a weak deacetylase 
activity [56]. Sirtuins from subclass IV, i.e. SIRT6 and SIRT7, 
show both deacetylase and ADP-ribosyltransferase activi-
ties [34]. The subclass U includes sirtuins present in archaea 
and bacteria; they constitute a bridge between classes I 
and IV [17]. Mammalian sirtuins belonging to classes I, II 
and IV contain in their structure zinc as a cofactor. Zinc, as  
a nucleophilic element, participates in the activation of 
water molecules and enables hydrolysis of the acetamide 
bond between acetate and ε-amine residue of lysine [29]. 
Mammalian deacetylases from class III also contain zinc, but 
it is not directly involved in the reaction.

Initially, the function of sirtuins was associated with 
repression of transcription. The acetylated H1, H3 and H4 
histones are physiological substrates of sirtuins. Lysine in 
position 16 of the H4 histone is the critical residue in sir-
tuin-mediated transcription silencing [38, 88]. It has been 
disclosed, however, that sirtuin substrates include many 
important non-histone proteins, such as transcription 
factors, enzymes, and structural proteins (Table 1).

SIRTUIN STRUCTURE AND MECHANISM OF ACTION

The sequence of seven genes of sirtuins present in humans 
is known. They encode proteins of molecular masses from 
33.8 (SIRT5) to 81.7 kDa (SIRT1). Human sirtuins show  
a significant homology of sequences and contain  
conservative catalytic domains and NAD+-binding 
domains (Fig. 1).
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adeninedinucleotide, NAM –nicotinamide, NFκB – nuclear factor κB, PDC – pyruvate dehydroge-
nase complex, PDP1 – pyruvate dehydrogenase phosphatase-1, PDHA1 – pyruvate dehydroge-
nase E1 component subunit alpha, PER2 – period circadian protein homolog 2, PGC-1α – PPAR γ 
coactivator 1α (peroxisome proliferator-activated receptor γ coactivator 1α), PPAR γ – peroxisome 
proliferator-activated receptor γ, SREBP – steroid regulatory element binding protein, Sir2p – silent 
information regulator 2 protein, UCP2 – uncoupling protein 2.
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catalysed by peptidase, 142 amino acids are detached from 
the N-terminal domain, what causes an activation of SIRT3 
[64, 74, 78].

SIRT4 plays a significant role in the regulation of energy 
substrate consumption in the mitochondria [22, 58] and 
is strongly expressed in tissues, such as pancreatic β cells, 
liver, heart, brain and kidneys [2, 22, 54]. SIRT4 shows 
mono-ADP-ribosyltransferase and lipoamidase activities 
[22]. The basic substrate of SIRT4 is glutamate dehydroge-
nase (GDH). ADP-ribosylation of GDH leads to an inhibition 
of its enzymatic activity [44].

SIRT5 is a sirtuin, which is a demalonylase and desucciny-
lase [67]. SIRT5 shows a weak deacetylase activity and no 
ADP-ribosyltransferase activity [90]. SIRT5 removes acylic 
residues from lysine and therefore it seems to be more  
a deacylase than deacetylase [95].

Mitochondrial sirtuins also control the activity of pyru-
vate dehydrogenase complex (PDC) through allosteric 
regulation. Pyruvate dehydrogenase is a multienzymatic 
complex transforming pyruvate into acetyl-CoA, CO2 and 
NADH. Succinylation of PDC increases the activity of that 
complex [65]. PDC activity reduction occurs in the effect of 
SIRT5-catalysed desuccinylation of Lys residue [11]. SIRT3 
increases PDC activity through deacetylation of pyruvate 
dehydrogenase (PDHA1) and pyruvate dehydrogenase 
phosphatase (PDP1). SIRT4 inhibits PDC activity through 
lipoamidase activity [49].

THE ROLE OF SIRT1 IN THE REGULATION OF METABOLISM 

The proteins from the sirtuin family are a link between 
the nutrition status of the body and life span [20, 92]. The 
activity of sirtuins, as protein deacetylases and ADP-ribo-
syltransferases, is directed towards histones, transcription 

cidated and remains the subject of studies [13, 25, 26]. The 
hypothesis by Hawse and Wolberger [26] seems most likely, 
suggesting that acetylated lysine is the target point for sir-
tuins. At the first stage of the reaction, acetyllysine reacts 
with NAD+  to yield intermediate O-alkylamide. O-alkyla-
mide can react with nicotinamide to regenerate the initial 
reagents (NAD+ and acetyllysine) or with arginine, leading 
to ADP-ribosylation of the protein substrate and repeated 
acetylation of lysine.

SIRT3, SIRT4 and SIRT5 sirtuins are present in the mito-
chondrial matrix. They contain at the N-terminus of the 
peptide chain the targeting sequences enabling their trans-
portation from the cytoplasm to the mitochondria. Among 
the three sirtuins present in the mitochondria, SIRT3 is the 
main mitochondrial deacetylase playing an important role 
in controlling the energy metabolism [47]. For that reason, 
SIRT3 expression is very high in many metabolically active 
tissues, such as the heart, brain, kidneys, liver, brown adi-
pose tissue and muscles [62]. SIRT3 is synthesized in the 
form of inactive protein and in that form is transported to 
the mitochondrial matrix. After translocation, in a reaction 

Table 1. Characteristics of human sirtuins.

Sirtuin Intracellular localization Enzymatic activity Destinations Biological effects References

SIRT 1 Cell nucleus Deacetylation PGC-1α, FOXO, NFκB
Metabolism, inflammation, 
neurodegeneration

[23]

SIRT 2
Cytoplasm, 
cell nucleus

Deacetylation H4, α-tubulin FOXO 3a Cell cycle, carcenogenesis [61, 89, 91]

SIRT 3 Cell nucleus, mitochondrion Deacetylation AceCS2,
Metabolism,  
ATP synthesis, thermogenesis

[1, 24, 28, 70, 77, 79, 82, 84]

SIRT 4 Mitochondrion (matrix)
ADP-ribozylation
Lipoamidation

GDH
PDC

ROS generation,
Insulin secretion
β-oxidation 

[22, 42, 49, 57]

SIRT 5
Mitochondrion,
cytoplasm

Deacetylation
Demalonylation
Desuccinylation

CPS1 Urea cycle [11, 56, 67]

SIRT 6 Cell nucleus ADP-ribozylation DNA polimerase β
DNA repair, metabolism, 
inflammation

[32, 52, 53, 94]

SIRT 7 Cell nucleus Deacetylation RNA polimerase 1 DNA repair, transcription [15, 86]

PGC-1α – PPAR γ coactivator 1α (peroxisome proliferator-activated receptor γ coactivator 1α), PPAR γ – peroxisome proliferator-activated receptor γ, FOXO – forheadbox type O 
transcription factor, NFκB – nuclear factor κB, H4 – histone 4, AceCS2 – acetyl coenzyme A synthetase 2, GDH – glutamate dehydrogenase, PDC – pyruvate dehydrogenase complex, 
CPS 1 – carbamoyl phosphate synthetase 1.

Fig. 1. Schematic structure of human sirtuins. 
Presented acc. to [22], aa – amino acids.
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factors, co-regulators and also enzymes involved in the 
regulation of gene expression and metabolism adjusted 
to the energy status of the cells [30, 41, 81]. Many of those 
enzymes, including also Sir2p, are related to the ageing 
process of many organisms – from yeasts to mammals. The 
protective effect of those proteins includes a positive regu-
lation of response to stress and maintaining energy homeo-
stasis [5, 72, 76, 92]. SIRT1, similarly as its yeast homologue 
Sir2p, is often called the master metabolic regulator due to 
the ability to modify and control many transcription fac-
tors involved in the homeostasis of the whole body (Fig. 3) 
[76].

SIRT1 deacetylates not only histone proteins but also 
many transcription factors and cofactors. SIRT1 contains 

no DNA-binding domain, what causes that the transporta-
tion to the target promoters is realised through a specific 
sequence of transcription factors and leads to chromatin 
remodelling and then to regulation of gene expression [69]. 
SIRT1 can also bind to the heterochromatin region and pro-
mote H1 histone deacetylation [88]. That epigenetic mod-
ification causes silencing of gene transcription and plays 
an important integral role, both in respect of health and 
life span of the organism [80]. The multitude of SIRT1 func-
tions: deacetylation, epigenetic modifications and modula-
tion of transcription factors indicate that SIRT1 is regarded 
as a molecular bridge between metabolic status and adap-
tive cell response at gene expression level.

CALORIC RESTRICTION AND SIRTUIN ACTIVITY

The activity of sirtuins is strictly controlled by various envi-
ronmental factors. One of the regulators is the food con-
sumption regimen [20]. Caloric restriction (CR) of 20–40% 
below calorie consumption ad libitum, but without signs 
of undernutrition, is a strong inductor of sirtuin activity 
[92]. An effect of CR has also been observed on the mean 
and maximum life span of many organisms, from yeasts, 
through: worms, fish, birds, to mammals. In mammals, CR 
application alleviates many pathologies associated with 
obesity and metabolic syndrome through reduction of fat 
content in the adipose tissue, reduction of triglyceride and 
LDL cholesterol concentrations in serum and increase of 
insulin sensitivity [14, 35]. SIRT1 is also an important factor 
regulating autophagia [43], which is the basic mechanism 
ensuring cell survival under hunger conditions [33, 73].

SIRT1 protein concentration under CR conditions increases 
in the brain, white adipose tissue, muscles, liver and kid-
neys [60, 68]. CR activates not only SIRT1 but also SIRT6. It 
has been found that fat-rich as well as carbohydrate-rich 
diet can inhibit both SIRT1 and SIRT6, what is consistent 
with its observed unfavourable effect on the hepatocytes 
(non-alcoholic fatty liver disease) [59].

Fig. 2. Mechanism of reactions catalysed by sirtuins: deacetylation and ADP- 
-ribosylation SIRT 1, 2, 3 and 5 sirtuins catalyse the reaction of acetyl residue transfer 
from ε-N-acylated lysine of the protein substrate to ADP-ribose in NAD+ molecule. SIRT 
4 and 6 sirtuins catalyse the reaction of protein ADP-ribosylation. NAM – nicotinamide.

Fig. 3. SIRT1 activity in the regulation of metabolism
FXR – farnesoid X receptor, LXR – liver X receptor, SREBP – steroid regulatory element binding protein, PGC-1α – PPAR γ coactivator 1α (peroxisome proliferator-activated 
receptor γ coactivator 1α), PPARα – peroxisome proliferator-activated receptor α, CRTC2 – coactivator 2 transcription factor CREB (CREB - cAMP response element-binding protein),  
NF-κB – nuclear factor κB.
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The fact that cellular NAD+ concentration and NAD+/NADH 
ratio, as important factors in the mechanism of SIRT1 activ-
ity regulation, are different in individual tissues, suggests 
that under CR conditions the changes of SIRT1 activity in 
various tissues occur in various directions [9]. SIRT1 activ-
ity is also independently modulated by various stimula-
tors. For example, in murine myogenic cells (myoblasts) 
of C2C12 line, SIRT1 activity is stimulated by AMP-depend-
ent protein kinase (AMPK) and by increased cellular NAD+ 
concentration [7, 8]. In such cells SIRT1 activity is also con-
trolled by adiponectin as a result of Ca2+-mediated signal-
ling and changes in the NAD+/NADH ratio [31]. It should 
be mentioned, however, that the mechanisms regulating 
cellular NAD+ concentration and SIRT1 activity in various 
physiological conditions have not been learned in detail 
and still remain not elucidated. Some study results sug-
gest straight out that not the NAD+/NADH ratio but rather 
posttranslational modifications and interactions between  
proteins significantly regulate SIRT1 activity [12]. 

SIRTUINS AND LIFE SPAN

It has been stressed in many reports that SIRT1 is the basic 
mediator of longevity. That view is, however, highly con-
troversial. It has been demonstrated that SIRT1 overex-
pression in mice causes the so-called healthy ageing but 
the changes observed have not contributed to prolonga-
tion of life [27]. Furthermore, the conditions of maintain-
ing full health harmony seem most important and such 
chance may be offered by adequate control of the calorie 
supply/consumption, in which sirtuins can be absolutely 
helpful. In caloric restriction, a significant effect on sirtuin 
(particularly SIRT1) activity was exerted by resveratrol,  
a natural vegetal polyphenol contained in grapes and berries  

Fig. 4. Effect of SIRT1 on the energy metabolism of various tissues and organs
PPAR γ – peroxisome proliferator-activated receptor γ, FOXO – forhead box type O transcription factor, UCP2 – uncoupling protein 2, PER2 – period circadian protein homolog 2), 
CLOCK – transcription factor activating the PERIOD gene. The remaining abbreviations as under Fig. 3.

[19, 50]. The mechanisms of the protective effect of res-
veratrol have not been fully elucidated as yet. Resveratrol 
shows many activities, important for the development of 
obesity, which include in the first place: anti-inflammatory 
effect, regulation of glucose metabolism or insulin sensi-
tivity [46, 66, 85]. Not without significance are also its car-
dioprotective, neuroprotective or antitumour effects [3, 37, 
40, 50, 71]. Among many activities of resveratrol, particular 
attention has been attracted by the reports on its partici-
pation in the secretion of many myokines and adipokines 
[36]. Moreover, resveratrol not only promotes SIRT1 activ-
ity but also enhances SIRT5 activity, which is confirmed by 
the engagement of another sirtuin in the energy homeo-
stasis and the effect on the life span of cells [39]. The ques-
tion of resveratrol effect remains, however, open: does 
resveratrol activate SIRT1 directly, or is its effect mediated 
by many signalling pathways? [4, 63].

SUMMARY AND PERSPECTIVES

In summary, sirtuins, being potential modulators under 
caloric restriction conditions, participate in important bio-
logical processes in mammals, including cell survival and 
ageing, DNA repair, DNA transcription, and in many meta-
bolic pathways. The activity of sirtuins, particularly mito-
chondrial ones (SIRT3, SIRT4, SIRT5) is closely related to the 
development of diseases exacerbating with age, including 
cardiomyopathies, insulin resistance, immunity reduction, 
neurodegenerative diseases or other disorders [51, 87]. 
Among many functions of sirtuins, the important functions 
of SIRT1 come to the fore, indicating its ability to regulate 
and maintain homeostasis of the whole body, including the 
metabolism of cholesterol, fatty acid, glucose homeostasis 
and immune response (Fig. 3).
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decisive importance for the balance between metabolism 
and ageing process. The multitude of activities of SIRT1 
suggest that a pharmacological modulation of its effect 
can be an important therapeutic goal, particularly in obe-
sity-related metabolic diseases of civilisation [55]. Much 
attention has been recently paid to caloric restriction 
mimetics [10, 18, 48]. Micromolecular SIRT1 activators, 
such as polyphenols (resveratrol) could be potentially 
used in the future in the treatment of metabolic diseases 
[6, 50, 55], although their future still remains the subject 
of an interesting debate: are they direct SIRT1 activators 
or whether their function is prevention of development 
of obesity and/or diabetes? [4, 63]. Therefore, further 
studies are indispensable, concerning systemic and tis-
sue-specific effects of sirtuins also in other aspects of the 
ageing process, such as stem cell regeneration or control 
of protein quality in the mechanism of autophagia.

SIRT1 activity is regulated by cell energy status, micro-
molecular activators, interactions between proteins and 
posttranslational modifications. After activation, SIRT1 
modulates various metabolic processes, both systemic 
and local (Fig. 4), which concern, among other processes: 
hepatic metabolism of lipids, adipose tissue activity, control 
of food intake, and expression of genes responsible for the 
circadian rhythm.

The findings suggesting life span prolongation in sim-
ple organisms (e.g. Saccharomyces cerevisiae yeast), 
in which an overexpression of sirtuins was observed, 
caused a significant development of studies on their 
role in the metabolism and ageing processes in humans. 
Energy metabolism disorders, genome instability and also 
response to stress in mice with sirtuin deficit, seem to 
suggest that human sirtuins are a significant element, of 
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