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Summary
The uPAR protein is one of the most important elements in fibrinolysis. uPAR is associated 
with many biological processes, such as cell invasion, angiogenesis and cell proliferation. 
Because of its multifunctional character, it is difficult to produce an effective inhibitor of 
uPA-uPAR interactions. The present paper shows the current state of knowledge about the 
contribution of uPA-uPAR complex in many biological processes and the application of uPAR 
inhibitors (antibodies, small-molecules, peptides), which might be potentially useful in the 
treatment of vascular pathologies. 
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INTRODUCTION

Fibrinolysis is a fundamental physiological process lead-
ing to lyse a blood clot by dissolving fibrin fibers. The 
equilibrium between fibrinolysis and clotting processes 
is needed to retain blood fluidity by preventing hemo-
static clots from becoming too large and occluding the 
vessel. Fibrinolysis is a tightly controlled series of events 
involving a number of cofactors, inhibitors, and recept
ors and their effectiveness is greatly influenced by envir
onmental factors (clot structure and density) [47] and 
also by fibrinogen isoforms and polymorphisms [45, 47], 
the rate of thrombin generation [30], the reactivity of 
thrombus-associated cells such as platelets, and the over-
all biochemical environment  [11]. Components of the 
fibrinolytic system and fibrin degradation products are 
involved in a number of biological processes, including 
platelet aggregation, angiogenesis, cell migration, ovula-
tion and tissue remodeling. The physiological role of the 
components of the fibrinolytic system depends on their 
derivation (fibrin degradation products), localization (cell 
membrane) and involvement in the degradation of the 
basal membrane and extracellular matrix proteins [41].

PLASMINOGEN ACTIVATION SYSTEM

The key protein in fibrinolysis is plasminogen, which is  
a proenzyme which is converted to the active plasmin as 
an end-product of the plasminogen activation system. 
This system is composed by a series of serine proteases, 
inhibitors and several binding proteins, which are very 
universal and their ancestral orthologues were identified 
in the number of mammalian counterpart precursors [10]. 
Plasmin exhibits a broad range of proteolytic activities; it 
targets fibrinogen and fibrin, but also extracellular matrix 
components (fibronectin, thrombospondin, vitronectin), 
growth factors, such as TGF-β (transforming growth factor 
type β) and bFGF (basic fibroblast growth factor), which 
have an important function as a mediator of inflammation 
and the innate immune system [20]. In addition, plasmin 
activates several proenzymes, like pro-tPA (pro-tissue-
type plasminogen activator), pro-uPA (pro-urokinase-type 
plasminogen activator), plasminogen (autoactivation) and 
metalloproteinases zymogenes (proMMPs) [29, 33, 36].

Intravascular activation of fibrinolysis is carried out prin-
cipally by tPA and occurs on the surface of fibrin. Another 
plasminogen activator is urokinase (uPA), which is pro-
duced by monocytes, macrophages or urinary epithelium 
and is involved mainly in the extravascular proteo
lysis [11]. The pool of the active enzyme is also controlled 
by plasminogen activator inhibitors, such as PAI-1 and 
PAI-2 [36]. Plasmin is solely inhibited by α2-antyplasmine 
and α2-macroglobuline [15] (Fig. 1A). 

Under physiological conditions, uPA is synthesized 
mainly by epithelial, endothelial and smooth muscle 
cells, fibroblasts and monocytes/macrophages as a non-
active zymogene (pro-uPA) in the form of a single chain 
urokinase-type plasminogen activator (sc-uPA), with 

low proteolytic activity, which after two-steps proteo-
lytic cleavage, becomes the two-chain (tc-uPA) active 
form [36]. Sc-uPA activity is necessary for the genera-
tion of small amounts of plasmin, which hydrolyses 
the sc-uPA into tc-uPA. Both forms of uPA exhibit their 
enhanced proteolytic activity after binding to the spe-
cific receptor (uPAR), which is present on the cell sur-
face [3, 13, 29]. Increased synthesis of uPA is observed in 
tumor cells, in particular malignant tumors of the cer-
vix, ovaries, thyroid gland and breast, which is consid-
ered as diagnostic and prognostic biomarker [4, 13, 22, 
24, 27, 36]. In contrast, the uPAR deficiency has a signific
ant impact on fibrin accumulation in tissue, leading to 
decreased endothelial cell motility, impaired angiogen-
esis and finally tissue hypoxia and ulceration [2, 37, 42]. 

Immediately after uPA (free or bound to uPAR) activ
ation, the enzyme is combined with PAI-1 (plasmino-
gen activator inhibitor 1) to form an inactive uPA/
PAI-1/uPAR complex, which is up taken by LDL recep-
tor-related protein-1 (LRP-1) via clathrin dependent 
mechanism [14]. Inside the cell, the residual uPA/PAI-1 
complex is transported to the lysosomes, where it is 
degraded; nevertheless, the uPAR molecule is recycled in 
macropinosome-like vesicles and endosomal compart-
ments, where it can be transported to the cell surface 
and binds another urokinase [12].

Urokinase-type plasminogen activator receptor (uPAR), 
also known as CD87, is a glycoprotein, attached to the 
cell membrane by a glycosylphosphatidylinositol (GPI) 
anchor [12, 50]. This single chain (313 a.a.) peptide con-
sists of three domains with different biological func-
tions: D1 – binding the N-terminal fragment of urokinase 
(ATF), D2 and D3 – controlling interaction of uPAR with 
vitronectin. The crystal structure of uPAR has been pro-
posed by Llinas at al. and the uPA binding central cavity 
has been modeled [34]. 

The short amino acid chain, the D1/D2 linker region 
has properties similar to chemokines when it is cleaved 
by MMPs, plasmin, chymotrypsin, and uPA [36]. uPAR 
expression was determined in most normal cells as well 
as in cancer cells [23, 43]. uPAR mediates a variety of cel-
lular processes, such as angiogenesis, metastasis, cell 
adhesion, invasion and inflammation [29, 36, 43].

BIOLOGICAL AND CLINICAL IMPORTANCE OF UPA/UPAR 
COMPLEX

It has been well proven that the uPA proteolytic system 
is especially involved in cancer malignancy and other 
diseases associated with ‘low-grade inflammation’ (LGI), 
which is an undefined subclinical chronic inflammatory 
state, e.g. sepsis, autoimmune disorders or cardiovascu-
lar diseases including arrhythmias [9, 25, 26, 44, 48]. The 
most commonly used biomarker of LGI is a pentraxin 
called C-Reactive Protein (CRP), which shows positive 
correlation with a soluble form of uPAR (suPAR) in many 
LGI processes [9, 44, 48]. In contrast to other LGI biomark-
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permeability is rapid and sustained, in contract to  
a two-step transient/delayed VEGF-induced permeabil-
ity. In the delayed phase of endothelial dysfunction, uPAR 
upregulation was observed in the correlation with beta-
catenin nuclear translocation and downregulation of  
ocludin  [5]. The mechanisms responsible for VEGF-
induced endothelial permeability include fenestration 
due to VE-cadherin , β-catenin tyrosine phosphoryla-
tion and actin cytoskeleton rearrangement [17]. These 
results suggest that u-PA/u-PAR and Wnt pathways are 
tightly related with presently non-revealed manner.

ROLE OF UPAR IN VASCULAR PATHOLOGIES

Endothelial extracellular vesicles (EVs) can be considered 
as a hallmark of vascular pathology [46]. Especially the 
population of the bigger EVs called microvesicles (MVs) 
or ectosomes is very active in the conveyance of both 
procoagulant and fibrinolytic factors including tissue fac-
tor (TF), phosphatidylserine or uPAR [1, 6, 49]. The uPAR 
activity in endothelial dysfunction has been previously 
described and its role in the modulation of angiogenetic 
response of endothelial MVs has been documented [32]. 
Endothelial cells provide a catalytic surface for the con-
version of plasminogen into plasmin by expressing the 
uPA/uPAR complex, thus decreasing uPAR activity on 
dysfunctional endothelial cells by releasing uPAR-bearing 
MVs turns vascular lining into pathological prothrom-

ers, suPAR is independent of age, which assigns it to be 
a good predictor both in young and old individuals [25]. 
In the large international project determining trends in 
cardiovascular diseases (MONICA 10), it was proven that 
a shorter life expectancy and the increased risk of CVD 
(cardiovascular diseases), type 2 diabetes mellitus or can-
cer are associated with elevated plasma suPAR concentra-
tions [18]. Moreover, the level of suPAR is increased with 
renal dysfunction (albuminuria) and other diabetic com-
plications [31]. suPAR is associated with glomerular focal 
sclerosis due to podocyte and basal membrane damage 
and modification of renal barrier function [50, 51]. Exper-
iments carried out on a mouse allograft model showed 
that uPAR contributes to cellular apoptosis and renal 
ischemia [21], whereas inhibition of uPAR decreases pro-
teinuria in mice with glomerular disease [50, 52].

ROLE OF UPAR IN ENDOTHELIAL PATHWAY REGULATIONS

What is more intriguing, uPAR stimulates the activ-
ity of TCF-responsive promoter and transactivation 
of uPA and cyclin D-1 genes and the overexpression of 
u-PAR and uPA has also been shown in atherosclerotic 
plaques [40]. Other data indicate that VEGF (vascular 
endothelial growth factor) stimulates uPA expression 
by inducing endothelial cells hyperpermeability due to 
the activation of the uPA/uPAR system through beta-
catenin signaling [5]. What is interesting, uPA-induced 

Fig. 1. Functional uPAR-uPA interactions in cell physiology and their molecularlandscape for the design of targeted inhibitors; A – Urokinase-type plasminogen 
activator (uPA) activity is controlled by two plasminogen activator inhibitors (PAI-1 and PAI-2) and its specific receptor (uPAR); uPA and uPA/uPAR complex activate 
plasmin and interact with extracellular matrix protein (ECM) – vitronectin, which modulates their activity; uPA/uPAR contributes in different cellular processes; 
B – Pocket in uPAR-uPA interaction targeted by inhibitory antibodies; C – Pocket in uPAR-uPA interaction used for the design of small molecular weight inhibitors. 
Depicted molecular coordinates correspond to the crystal structure of the uPAR-uPA complex determined at 1.9 A resolution (PDB code: 2FD6)
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out on human ovarian cancer cell line OV-MZ-6 indi-
cated that the IIIF10 antibody decreased uPA-induced 
cell proliferation by disrupting uPA/uPAR interac-
tions [19]. In clinic, antibodies against uPAR might be 
useful not only for therapeutic purposes but also for 
imaging in tumors with high expression of uPAR [16]. 

Here, we propose the conformational analysis for the 
uPA/uPAR complex and docking antibody and small 
molecule inhibitors (Fig. 1B and C).

There are a few small molecule inhibitors of the uPA/uPAR 
protein-protein interaction; the biological role and func-
tional properties of two of them were thoroughly analyzed: 
IPR-456 and IPR-803. They were discovered by a bioinfor-
matical analysis against various conformations of uPAR 
derived from explicit-solvent molecular dynamics simu-
lations [28]. In vitro, the IPR-456 compound blocks uPA/
uPAR and inhibits MDA-MB-231 cell invasion [28]. However, 
there was no impact on cell adhesion and the effect on cells 
migration was weak, which suggests that other ligands (no 
uPA) are associated with the mediation of these processes. 
Similarly, the IPR-803 compound impairs MDA-MB-231 cell 
adhesion and migration and, what is most important, cell 
invasion by blocking MMP activity [38].

CONCLUSIONS

Several antibodies, small molecules and peptides have 
been developed to target uPAR in vascular pathologies 
by the blocking uPAR/uPA pathway. The main chal-
lenge in developing the efficient uPAR inhibitor is the 
pleiotropic nature of uPAR interactions and its multi-
functional properties in coagulation, inflammatory and 
vascular systems. Moreover, the uPAR gene is under con-
trol of the Wnt pathway (beta-catenin). All these data 
suggest that the uPA/uPAR system contributes in many 
cellular processes, including endothelial cell prolifera-
tion or dysfunction and targeting uPAR may imbalance 
these processes unknowingly.

botic state [6]. By contrast, the increase of soluble uPAR-
-bearing endothelial MVs contributes to the fibrinolytic 
and proangiogenic activity of MVs [32]. This MVs-uPAR 
interplay might explain a molecular mechanism associ-
ated with an increased risk of vascular complications in 
patients with diabetes mellitus.

TARGETING UPAR IN DIABETIC VASCULAR COMPLICATIONS

The spontaneously diabetic Torri (SDT) rats can develop 
diabetic retinopathy (DR) in a similar way to human, 
which is why they are one of the most popular models for 
studying the pathologic signs of type 2 diabetes. UPARANT 
is a new designed tetrapeptide which mimics the amino 
acid sequence responsible for uPAR agonists binding in 
the cell membrane [8]. In the laser-induced choroidal 
neovascularization (CNV) mice model, UPARANT dis-
turbs inflammation and angiogenesis through transcrip-
tion factors encoding inflammatory and angiogenesis 
genes [7]. These results suggest that UPARANT might be 
potentially useful in the treatment of age-related macu-
lar degeneration (AMD) and diabetic retinopathy [7, 8]. 
Additionally, this tetrapeptide down-regulates the expres-
sion of uPAR and its membrane partners in SDT rats and 
diabetic mice, which resulted in the reduction in levels 
of inflammatory (IL-1β, IL-6, TNF-α) and pro-angiogenic 
factors (FGF-2, VEGF, IGF-1, Ang-2) [7, 8]. Another peptide, 
derived from the non-receptor-binding region of uroki-
nase (Å6), blocks the retinal vascular permeability and 
reduces the loss of VE-cadherin in diabetes, which sug-
gests its potential role as a therapeutic agent in the treat-
ment of diabetic macular edema [39]. 

Also, antibody-blocking strategy is very promising in 
targeting uPAR function. Bacteriophage display librar-
ies were used to produce short amino acids fragments of 
monoclonal antibody against uPAR. The mAb IIIF10 sig-
nificantly reduce the binding of uPA to uPAR, which sug-
gest that this sFv fragment is located within or close to 
the uPA-binding site in uPAR [35]. Experiments carried 
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