ARTYKUŁ PRZEGLĄDOWY
Inhibitor Rho-kinazy redukuje nadwrażliwość na ANG II ludzkich tętnic krezkowych pobranych i przechowywanych w takich warunkach jak przeszczepiane narządy
Rafal Szadujkis-Szadurski 1 , Maciej Slupski 2 , Katarzyna Szadujkis-Szadurska 1 , Leszek Szadujkis-Szadurski 1 , Milosz Jasinski 3 , Grzegorz Grzesk 1 , Elżbieta Grzesk 4 , Aleksandra Woderska 2 , Zbigniew Wlodarczyk 21. Department of Pharmacology and Therapeutics, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
2. Department of Transplantation and General Surgery, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
3. Department of Oncological Urology, Oncology Centre, Bydgoszcz, Poland; Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
4. Department of Pediatric Hematology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Polandw
Opublikowany: 2014-08-22
DOI: 10.5604/17322693.1118217
GICID: 01.3001.0003.1276
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2014; 68 : 1022-1027
Abstrakt
Przypisy
- 1. Breitwieser G.E.: G protein-coupled receptor oligomerization:implications for G protein activation and cell signaling. Circ. Res.,2004; 94: 17-27
Google Scholar - 2. Budzyn K., Marley P.D., Sobey C.G.: Targeting Rho and Rho-kinasein the treatment of cardiovascular disease. Trends Pharmacol. Sci.,2006; 27: 97-104
Google Scholar - 3. Büssemaker E., Pistrosch F., Förster S., Herbrig K., Gross P., PassauerJ., Brandes R.P.: Rho kinase contributes to basal vascular tonein humans: role of endothelium-derived nitric oxide. Am. J. Physiol.Heart Circ. Physiol., 2007; 293: H541-H547
Google Scholar - 4. Chapados R., Abe K., Ihida-Stansbury K., McKean D., Gates A.T.,Kern M., Merklinger S., Elliott J., Plant A., Shimokawa H., Jones P.L.:ROCK controls matrix synthesis in vascular smooth muscle cells:coupling vasoconstriction to vascular remodeling. Circ. Res., 2006;99: 837-844
Google Scholar - 5. Che Q., Carmines P.K.: Src family kinase involvement in rat preglomerularmicrovascular contractile and [Ca2+]i responses to ANGII. Am. J. Physiol. Renal Physiol., 2005; 288: F658-F664
Google Scholar - 6. Drake M.T., Shenoy S.K., Lefkowitz R.J.: Trafficking of G proteincoupledreceptors. Circ. Res., 2006; 99: 570-582
Google Scholar - 7. Friel A.M., Sexton D.J., O’reilly M.W., Smith T.J., Morrison J.J.: RhoA/Rho kinase: human umbilical artery mRNA expression in normaland pre eclamptic pregnancies and functional role in isoprostaneinducedvasoconstriction. Reproduction, 2006; 132: 169-176
Google Scholar - 8. Ganesan L.P., Joshi T., Fang H., Kutala V.K., Roda J., Trotta R.,Lehman A., Kuppusamy P., Byrd J.C., Carson W.E., Caligiuri M.A., TridandapaniS.: FcγR-induced production of superoxide and inflammatorycytokines is differentially regulated by SHIP through its influenceon PI3K and/or Ras/Erk pathways. Blood, 2006; 108: 718-725
Google Scholar - 9. Ganguli A., Persson L., Palmer I.R., Evans I., Yang L., SmallwoodR., Black R., Qwarnstrom E.E.: Distinct NF-κB regulation by shearstress through Ras-dependent IκBα oscillations: real-time analysisof flow-mediated activation in live cells. Circ. Res., 2005; 96: 626-634
Google Scholar - 10. Hilgers R.H., Webb R.C.: Molecular aspects of arterial smoothmuscle contraction: focus on Rho. Exp. Biol. Med., 2005; 230: 829-835
Google Scholar - 11. Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., MaekawaM., Narumiya S.: Pharmacological properties of Y-27632 a specificinhibitor of rho-associated kinases. Mol. Pharmacol., 2000; 57:976-983
Google Scholar - 12. Keef K.D., Hume J.R., Zhong J.: Regulation of cardiac and smoothmuscle Ca2+ channels (Cav1.2a,b) by protein kinases. Am. J. Physiol.Cell Physiol., 2001; 281: C1743-C1756
Google Scholar - 13. Kenakin T.: Principles: receptor theory in pharmacology. TrendsPharmacol. Sci., 2004; 25: 186-192
Google Scholar - 14. Kenakin T., Jenkinson S., Watson C.: Determining the potencyand molecular mechanism of action of insurmountable antagonists.J. Pharmacol. Exp. Ther., 2006; 319: 710-723
Google Scholar - 15. Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M.,Yamamori B., Feng J., Nakano T., Okawa K., Iwamatsu A., KaibuchiK.: Regulation of myosin phosphatase by Rho and Rho-associatedkinase (Rho-kinase). Science, 1996; 273: 245-248
Google Scholar - 16. Laufs U., Liao J.K.: Targeting Rho in cardiovascular disease. Circ.Res., 2000; 87: 526-528
Google Scholar - 17. Lee D.L., Webb R.C., Jin L.: Hypertension and RhoA/Rho-kinasesignaling in the vasculature: highlights from the recent literature.Hypertension, 2004; 44: 796-799
Google Scholar - 18. Lin K., Wang D., Sadée W.: Serum response factor activation bymuscarinic receptors via RhoA novel pathway specific to M1 subtypeinvolving calmodulin calcineurin and Pyk2. J. Biol. Chem., 2002;277: 40789-40798
Google Scholar - 19. Loirand G., Guerin P., Pacaud P.: Rho kinases in cardiovascularphysiology and pathophysiology. Circ. Res., 2006; 98: 322-334
Google Scholar - 20. Mehta P.K., Griendling K.K.: Angiotensin II cell signaling: physiologicaland pathological effects in the cardiovascular system. Am.J. Physiol. Cell. Physiol., 2007; 292: C82-C97
Google Scholar - 21. Ohtsu H., Dempsey P.J., Eguchi S.: ADAMs as mediators of EGFreceptor transactivation by G protein-coupled receptors. Am. J. Physiol.Cell Physiol., 2006; 291: C1–C10
Google Scholar - 22. Ohtsu H., Mifune M., Frank G.D., Saito S., Inagami T., Kim-MitsuyamaS., Takuwa Y., Sasaki T., Rothstein J.D., Suzuki H., NakashimaH., Woolfolk E.A., Motley E.D., Eguchi S.: Signal-crosstalk betweenRho/ROCK and c-Jun NH2-terminal kinase mediates migration ofvascular smooth muscle cells stimulated by angiotensin II. Arterioscler.Thromb. Vasc. Biol., 2005; 25: 1831-1836
Google Scholar - 23. Ratz P.H., Berg K.M., Urban N.H., Miner A.S.: Regulation of smoothmuscle calcium sensitivity: KCl as a calcium-sensitizing stimulus.Am. J. Physiol. Cell Physiol., 2005; 288: C769-C783
Google Scholar - 24. Rikitake Y., Liao J.K.: ROCKs as therapeutic targets in cardiovasculardiseases. Expert Rev. Cardiovasc. Ther., 2005; 3: 441-451
Google Scholar - 25. Shiga N., Hirano K., Hirano M., Nishimura J., Nawata H., KanaideH.: Long-term inhibition of RhoA attenuates vascular contractilityby enhancing endothelial NO production in an intact rabbit mesentericartery. Circ. Res., 2005; 96: 1014-1021
Google Scholar - 26. Shimokawa H., Takeshita A.: Rho-kinase is an important therapeutictarget in cardiovascular medicine. Arterioscler. Thromb.Vasc. Biol., 2005; 25: 1767-1775
Google Scholar - 27. Slupski M., Szadujkis-Szadurski L., Grześk G., Szadujkis-SzadurskiR., Szadujkis-Szadurska K., Wlodarczyk Z., Masztalerz M., PiotrowiakI., Jasiński M.: Guanylate cyclase activators influence reactivity ofhuman mesenteric superior arteries retrieved and preserved in thesame conditions as transplanted kidneys. Transplant. Proc., 2007;39: 1350-1353
Google Scholar - 28. Somlyo A.P., Somlyo A.V.: Ca2+-sensitivity of smooth and non–muscle myosin II: modulation by G proteins kinases and myosinphosphatase. Physiol. Rev., 2003; 83: 1325-1358
Google Scholar - 29. Szadujkis-Szadurska K., Slupski M., Szadujkis-Szadurski R., JasinskiM., Grześk G., Matusiak G.: Modulation of the reaction of vascularsmooth muscle cells to angiotensin II induced by catalaseand aminotriasol during ischemia-reperfusion. Transplant. Proc.,2010; 42: 1614-1617
Google Scholar - 30. Szadujkis-Szadurska K., Slupski M., Szadujkis-Szadurski R., Szadujkis-SzadurskiL., Jasiñski M., Kolodziejska R.: The role of the endotheliumin the regulation of vascular smooth muscle cell contractionsinduced by angiotensin II after ischemia and reperfusion.Arch. Pharm. Res., 2010; 33: 1019-1024
Google Scholar - 31. Szadujkis-Szadurska K., Szadujkis-Szadurski L., Szadujkis-SzadurskiR., Grześk G.: Modulation of the reactivity of the vascularsmooth muscle cells on angiotensin II (ANG II) during ischemia/reperfusion (I/R). Eur. J. Clin. Invest., 2006; 36, suppl. 1: 4
Google Scholar - 32. Szadujkis-Szadurski L., Szadujkis-Szadurski R., Szadujkis-SzadurskaK., Skublicki S., Szymański W.: Nitric oxide induces dilationof human chorionic via inhibition of Rho-kinase signalling. Fund.Clin. Pharmacol., 2004; 18, suppl. 1: 77
Google Scholar - 33. Szadujkis-Szadurski R., Szadujkis-Szadurska K., Szadujkis-SzadurskiL., Skublicki S., Szymański W.: Angiotensin II-evoked Ca2+ releaseand influx responses are inhibited by nitric oxide in humanchorionic arteries. Pol. J. Pharmacol., 2004; 56, suppl.: 199
Google Scholar - 34. Thompson-Torgerson C.S., Holowatz L.A., Flavahan N.A., KenneyW.L.: Cold-induced cutaneous vasoconstriction is mediated by Rhokinase in vivo in human skin. Am. J. Physiol. Heart Circ. Physiol.,2007; 292: H1700-H1705
Google Scholar - 35. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., MorishitaT., Tamakawa H., Yamagami K., Inui J., Maekawa M., Narumiya S.:Calcium sensitization of smooth muscle mediated by a Rho-associatedprotein kinase in hypertension. Nature, 1997; 389: 990-994
Google Scholar - 36. Volpe M., Tocci G., Savoia C.: Angiotensin II receptor blockersand coronary artery disease: ‘presumed innocents’. Eur. Heart J.,2006; 27: 1506-1507
Google Scholar - 37. Wang Q.S., Zheng Y.M., Dong L., Ho Y.S., Guo Z., Wang Y.X.: Roleof mitochondrial reactive oxygen species in hypoxia-dependent increasein intracellular calcium in pulmonary artery myocytes. FreeRadic. Biol. Med., 2007; 42: 642-653
Google Scholar - 38. Wang Z., Jin N., Ganguli S., Swartz D.R., Li L., Rhoades R.A.: Rho–kinase activation is involved in hypoxia-induced pulmonary vasoconstriction.Am. J. Respir. Cell Mol. Biol., 2001; 25: 628-635
Google Scholar - 39. Yin J., Jin L., Ying Z., Webb R.C.: Activation of NADPH oxidasecontributes to RhoA/Rho-kinase dependent contraction induced byangiotensin II. Hypertension, 2004; 44: 560
Google Scholar