Inhibitor Rho-kinazy redukuje nadwrażliwość na ANG II ludzkich tętnic krezkowych pobranych i przechowywanych w takich warunkach jak przeszczepiane narządy

ARTYKUŁ PRZEGLĄDOWY

Inhibitor Rho-kinazy redukuje nadwrażliwość na ANG II ludzkich tętnic krezkowych pobranych i przechowywanych w takich warunkach jak przeszczepiane narządy

Rafal Szadujkis-Szadurski 1 , Maciej Slupski 2 , Katarzyna Szadujkis-Szadurska 1 , Leszek Szadujkis-Szadurski 1 , Milosz Jasinski 3 , Grzegorz Grzesk 1 , Elżbieta Grzesk 4 , Aleksandra Woderska 2 , Zbigniew Wlodarczyk 2

1. Department of Pharmacology and Therapeutics, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
2. Department of Transplantation and General Surgery, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
3. Department of Oncological Urology, Oncology Centre, Bydgoszcz, Poland; Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
4. Department of Pediatric Hematology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Polandw

Opublikowany: 2014-08-22
DOI: 10.5604/17322693.1118217
GICID: 01.3001.0003.1276
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2014; 68 : 1022-1027

 

Abstrakt

Przypisy

  • 1. Breitwieser G.E.: G protein-coupled receptor oligomerization:implications for G protein activation and cell signaling. Circ. Res.,2004; 94: 17-27
    Google Scholar
  • 2. Budzyn K., Marley P.D., Sobey C.G.: Targeting Rho and Rho-kinasein the treatment of cardiovascular disease. Trends Pharmacol. Sci.,2006; 27: 97-104
    Google Scholar
  • 3. Büssemaker E., Pistrosch F., Förster S., Herbrig K., Gross P., PassauerJ., Brandes R.P.: Rho kinase contributes to basal vascular tonein humans: role of endothelium-derived nitric oxide. Am. J. Physiol.Heart Circ. Physiol., 2007; 293: H541-H547
    Google Scholar
  • 4. Chapados R., Abe K., Ihida-Stansbury K., McKean D., Gates A.T.,Kern M., Merklinger S., Elliott J., Plant A., Shimokawa H., Jones P.L.:ROCK controls matrix synthesis in vascular smooth muscle cells:coupling vasoconstriction to vascular remodeling. Circ. Res., 2006;99: 837-844
    Google Scholar
  • 5. Che Q., Carmines P.K.: Src family kinase involvement in rat preglomerularmicrovascular contractile and [Ca2+]i responses to ANGII. Am. J. Physiol. Renal Physiol., 2005; 288: F658-F664
    Google Scholar
  • 6. Drake M.T., Shenoy S.K., Lefkowitz R.J.: Trafficking of G proteincoupledreceptors. Circ. Res., 2006; 99: 570-582
    Google Scholar
  • 7. Friel A.M., Sexton D.J., O’reilly M.W., Smith T.J., Morrison J.J.: RhoA/Rho kinase: human umbilical artery mRNA expression in normaland pre eclamptic pregnancies and functional role in isoprostaneinducedvasoconstriction. Reproduction, 2006; 132: 169-176
    Google Scholar
  • 8. Ganesan L.P., Joshi T., Fang H., Kutala V.K., Roda J., Trotta R.,Lehman A., Kuppusamy P., Byrd J.C., Carson W.E., Caligiuri M.A., TridandapaniS.: FcγR-induced production of superoxide and inflammatorycytokines is differentially regulated by SHIP through its influenceon PI3K and/or Ras/Erk pathways. Blood, 2006; 108: 718-725
    Google Scholar
  • 9. Ganguli A., Persson L., Palmer I.R., Evans I., Yang L., SmallwoodR., Black R., Qwarnstrom E.E.: Distinct NF-κB regulation by shearstress through Ras-dependent IκBα oscillations: real-time analysisof flow-mediated activation in live cells. Circ. Res., 2005; 96: 626-634
    Google Scholar
  • 10. Hilgers R.H., Webb R.C.: Molecular aspects of arterial smoothmuscle contraction: focus on Rho. Exp. Biol. Med., 2005; 230: 829-835
    Google Scholar
  • 11. Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., MaekawaM., Narumiya S.: Pharmacological properties of Y-27632 a specificinhibitor of rho-associated kinases. Mol. Pharmacol., 2000; 57:976-983
    Google Scholar
  • 12. Keef K.D., Hume J.R., Zhong J.: Regulation of cardiac and smoothmuscle Ca2+ channels (Cav1.2a,b) by protein kinases. Am. J. Physiol.Cell Physiol., 2001; 281: C1743-C1756
    Google Scholar
  • 13. Kenakin T.: Principles: receptor theory in pharmacology. TrendsPharmacol. Sci., 2004; 25: 186-192
    Google Scholar
  • 14. Kenakin T., Jenkinson S., Watson C.: Determining the potencyand molecular mechanism of action of insurmountable antagonists.J. Pharmacol. Exp. Ther., 2006; 319: 710-723
    Google Scholar
  • 15. Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M.,Yamamori B., Feng J., Nakano T., Okawa K., Iwamatsu A., KaibuchiK.: Regulation of myosin phosphatase by Rho and Rho-associatedkinase (Rho-kinase). Science, 1996; 273: 245-248
    Google Scholar
  • 16. Laufs U., Liao J.K.: Targeting Rho in cardiovascular disease. Circ.Res., 2000; 87: 526-528
    Google Scholar
  • 17. Lee D.L., Webb R.C., Jin L.: Hypertension and RhoA/Rho-kinasesignaling in the vasculature: highlights from the recent literature.Hypertension, 2004; 44: 796-799
    Google Scholar
  • 18. Lin K., Wang D., Sadée W.: Serum response factor activation bymuscarinic receptors via RhoA novel pathway specific to M1 subtypeinvolving calmodulin calcineurin and Pyk2. J. Biol. Chem., 2002;277: 40789-40798
    Google Scholar
  • 19. Loirand G., Guerin P., Pacaud P.: Rho kinases in cardiovascularphysiology and pathophysiology. Circ. Res., 2006; 98: 322-334
    Google Scholar
  • 20. Mehta P.K., Griendling K.K.: Angiotensin II cell signaling: physiologicaland pathological effects in the cardiovascular system. Am.J. Physiol. Cell. Physiol., 2007; 292: C82-C97
    Google Scholar
  • 21. Ohtsu H., Dempsey P.J., Eguchi S.: ADAMs as mediators of EGFreceptor transactivation by G protein-coupled receptors. Am. J. Physiol.Cell Physiol., 2006; 291: C1–C10
    Google Scholar
  • 22. Ohtsu H., Mifune M., Frank G.D., Saito S., Inagami T., Kim-MitsuyamaS., Takuwa Y., Sasaki T., Rothstein J.D., Suzuki H., NakashimaH., Woolfolk E.A., Motley E.D., Eguchi S.: Signal-crosstalk betweenRho/ROCK and c-Jun NH2-terminal kinase mediates migration ofvascular smooth muscle cells stimulated by angiotensin II. Arterioscler.Thromb. Vasc. Biol., 2005; 25: 1831-1836
    Google Scholar
  • 23. Ratz P.H., Berg K.M., Urban N.H., Miner A.S.: Regulation of smoothmuscle calcium sensitivity: KCl as a calcium-sensitizing stimulus.Am. J. Physiol. Cell Physiol., 2005; 288: C769-C783
    Google Scholar
  • 24. Rikitake Y., Liao J.K.: ROCKs as therapeutic targets in cardiovasculardiseases. Expert Rev. Cardiovasc. Ther., 2005; 3: 441-451
    Google Scholar
  • 25. Shiga N., Hirano K., Hirano M., Nishimura J., Nawata H., KanaideH.: Long-term inhibition of RhoA attenuates vascular contractilityby enhancing endothelial NO production in an intact rabbit mesentericartery. Circ. Res., 2005; 96: 1014-1021
    Google Scholar
  • 26. Shimokawa H., Takeshita A.: Rho-kinase is an important therapeutictarget in cardiovascular medicine. Arterioscler. Thromb.Vasc. Biol., 2005; 25: 1767-1775
    Google Scholar
  • 27. Slupski M., Szadujkis-Szadurski L., Grześk G., Szadujkis-SzadurskiR., Szadujkis-Szadurska K., Wlodarczyk Z., Masztalerz M., PiotrowiakI., Jasiński M.: Guanylate cyclase activators influence reactivity ofhuman mesenteric superior arteries retrieved and preserved in thesame conditions as transplanted kidneys. Transplant. Proc., 2007;39: 1350-1353
    Google Scholar
  • 28. Somlyo A.P., Somlyo A.V.: Ca2+-sensitivity of smooth and non–muscle myosin II: modulation by G proteins kinases and myosinphosphatase. Physiol. Rev., 2003; 83: 1325-1358
    Google Scholar
  • 29. Szadujkis-Szadurska K., Slupski M., Szadujkis-Szadurski R., JasinskiM., Grześk G., Matusiak G.: Modulation of the reaction of vascularsmooth muscle cells to angiotensin II induced by catalaseand aminotriasol during ischemia-reperfusion. Transplant. Proc.,2010; 42: 1614-1617
    Google Scholar
  • 30. Szadujkis-Szadurska K., Slupski M., Szadujkis-Szadurski R., Szadujkis-SzadurskiL., Jasiñski M., Kolodziejska R.: The role of the endotheliumin the regulation of vascular smooth muscle cell contractionsinduced by angiotensin II after ischemia and reperfusion.Arch. Pharm. Res., 2010; 33: 1019-1024
    Google Scholar
  • 31. Szadujkis-Szadurska K., Szadujkis-Szadurski L., Szadujkis-SzadurskiR., Grześk G.: Modulation of the reactivity of the vascularsmooth muscle cells on angiotensin II (ANG II) during ischemia/reperfusion (I/R). Eur. J. Clin. Invest., 2006; 36, suppl. 1: 4
    Google Scholar
  • 32. Szadujkis-Szadurski L., Szadujkis-Szadurski R., Szadujkis-SzadurskaK., Skublicki S., Szymański W.: Nitric oxide induces dilationof human chorionic via inhibition of Rho-kinase signalling. Fund.Clin. Pharmacol., 2004; 18, suppl. 1: 77
    Google Scholar
  • 33. Szadujkis-Szadurski R., Szadujkis-Szadurska K., Szadujkis-SzadurskiL., Skublicki S., Szymański W.: Angiotensin II-evoked Ca2+ releaseand influx responses are inhibited by nitric oxide in humanchorionic arteries. Pol. J. Pharmacol., 2004; 56, suppl.: 199
    Google Scholar
  • 34. Thompson-Torgerson C.S., Holowatz L.A., Flavahan N.A., KenneyW.L.: Cold-induced cutaneous vasoconstriction is mediated by Rhokinase in vivo in human skin. Am. J. Physiol. Heart Circ. Physiol.,2007; 292: H1700-H1705
    Google Scholar
  • 35. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., MorishitaT., Tamakawa H., Yamagami K., Inui J., Maekawa M., Narumiya S.:Calcium sensitization of smooth muscle mediated by a Rho-associatedprotein kinase in hypertension. Nature, 1997; 389: 990-994
    Google Scholar
  • 36. Volpe M., Tocci G., Savoia C.: Angiotensin II receptor blockersand coronary artery disease: ‘presumed innocents’. Eur. Heart J.,2006; 27: 1506-1507
    Google Scholar
  • 37. Wang Q.S., Zheng Y.M., Dong L., Ho Y.S., Guo Z., Wang Y.X.: Roleof mitochondrial reactive oxygen species in hypoxia-dependent increasein intracellular calcium in pulmonary artery myocytes. FreeRadic. Biol. Med., 2007; 42: 642-653
    Google Scholar
  • 38. Wang Z., Jin N., Ganguli S., Swartz D.R., Li L., Rhoades R.A.: Rho–kinase activation is involved in hypoxia-induced pulmonary vasoconstriction.Am. J. Respir. Cell Mol. Biol., 2001; 25: 628-635
    Google Scholar
  • 39. Yin J., Jin L., Ying Z., Webb R.C.: Activation of NADPH oxidasecontributes to RhoA/Rho-kinase dependent contraction induced byangiotensin II. Hypertension, 2004; 44: 560
    Google Scholar

Pełna treść artykułu

Przejdź do treści