Wpływ histatyny-5 oraz lizozymu na zdolność formowania biofilmu przez Streptococcus mutans w warunkach in vitro

ARTYKUŁ PRZEGLĄDOWY

Wpływ histatyny-5 oraz lizozymu na zdolność formowania biofilmu przez Streptococcus mutans w warunkach in vitro

Wirginia Krzyściak 1 , Anna Jurczak 2 , Jakub Piątkowski 3 , Dorota Kościelniak 2 , Iwona Gregorczyk-Maga 2 , Iwona Kołodziej 2 , Monika A. Papież 4 , Dorota Olczak-Kowalczyk 5

1. Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
2. Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Krakow, Poland
3. Genetics Laboratory, Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
4. Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
5. Department of Pediatric Dentistry, Medical University of Warsaw, Warsaw, Poland

Opublikowany: 2015-09-20
GICID: 01.3001.0009.6575
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2015; 69 : 1056-1066

 

Abstrakt

Przypisy

  • 1. Banas J.A.: Virulence properties of Streptococcus mutans. Front.Biosci., 2004; 9: 1267-1277
    Google Scholar
  • 2. Benachour A., Ladjouzi R., Le Jeune A., Hébert L., Thorpe S., CourtinP., Chapot-Chartier M.P., Prajsnar T.K., Foster S.J., Mesnage S.:The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylasePgdA (EF1843) is required for Enterococcus faecalis virulence.J. Bacteriol., 2012; 194: 6066-6073 3 Benitez-Paez A., Belda-Ferre P., Simón-Soro A., Mira A.: Microbiotadiversity and gene expression dynamics in human oral biofilms.BMC Genomics, 2014; 15: 311-323
    Google Scholar
  • 3. inhibit HIV-1 replication. AIDS, 2003; 17: F39-F48
    Google Scholar
  • 4. Brand H.S., Veerman E.C.: Saliva and wound healing. Chin. J.Dent. Res., 2013; 16: 7-12
    Google Scholar
  • 5. Brogden K.M., Guthmiller J.M.: Polymicrobial diseases. Washington:ASM Press. 2008
    Google Scholar
  • 6. Cirioni O., Giacometti A., Ghiselli R., Orlando F., Kamysz W., D’AmatoG., Mocchegiani F., Lukasiak J., Silvestri C., Saba V., Scalise G.: Potentialtherapeutic role of histatin derivative P-113d in experimental rat modelsof Pseudomonas aeruginosa sepsis. J. Infect. Dis., 2004; 190: 356-364
    Google Scholar
  • 7. Dale B.A., Fredericks L.P.: Antimicrobial peptides in the oral environment:expression and function in health and disease. Curr. IssuesMol. Biol., 2005; 7: 119-134
    Google Scholar
  • 8. De Smet K., Contreras R.: Human antimicrobial peptides: defensins,cathelicidins and histatins. Biotechnol. Lett., 2005; 27: 1337-1347
    Google Scholar
  • 9. Futoma-Kołoch B., Bugla-Płońska G.: Efektywność bakteriobójczegodziałania surowicy wynikająca z obecności układu dopełniacza ilizozymu wobec bakterii, które unikają odpowiedzi immunologicznejorganizmu. Postępy Hig. Med. Dośw., 2009; 63: 471-484
    Google Scholar
  • 10. Hatti S., Ravindra S., Satpathy A., Kulkarni R.D., Parande M.V.:Biofilm inhibition and antimicrobial activity of a dentifrice containingsalivary substitutes. Int. J. Dent. Hyg., 2007; 5: 218-224
    Google Scholar
  • 11. Helmerhorst E.J., Hodgson R., van’t Hof W., Veerman E.C., AllisonC., Nieuw Amerongen. A.V.: The effects of histatin-derived basic antimicrobialpeptides on oral biofilms. J. Dent. Res., 1999; 78: 1245-1250
    Google Scholar
  • 12. Helmerhorst E.J., Troxler R.F., Oppenheim F.G.: The human salivarypeptide histatin 5 exerts its antifungal activity through theformation of reactive oxygen species. Proc. Natl. Acad. Sci. USA,2001; 98: 14637-14642
    Google Scholar
  • 13. Huang L., Xu Q.A., Liu C., Fan M.W., Li Y.H.: Anti-caries DNAvaccine-induced secretory immunoglobulin A antibodies inhibitformation of Streptococcus mutans biofilms in vitro. Acta Pharmacol.Sin., 2013; 34: 239-246
    Google Scholar
  • 14. Huo L., Zhang K., Ling J., Peng Z., Huang X., Liu H., Gu L.: Antimicrobialand DNA-binding activities of the peptide fragments ofhuman lactoferrin and histatin 5 against Streptococcus mutans. Arch.Oral. Biol., 2011; 56: 869-876
    Google Scholar
  • 15. Jankowska A.K., Waszkiel D., Kowalczyk A.: Ślina jako głównyskładnik ekosystemu jamy ustnej. Część I. Mechanizm wydzielaniai funkcje. Wiad. Lek., 2007; 60: 148-154
    Google Scholar
  • 16. Joly S., Organ C.C., Johnson G.K., McCray P.B., Guthmiller J.M.:Correlation between β-defensin expression and induction profiles ingingival keratinocytes. Mol. Immunol., 2005; 42: 1073-1084
    Google Scholar
  • 17. Kho H.S., Vacca Smith A.M., Koo H., Scott-Anne K., Bowen W.H.:Interactions of Streptococcus mutans glucosyltransferase B with lysozymein solution and on the surface of hydroxyapatite. CariesRes., 2005; 39: 411-416
    Google Scholar
  • 18. Klein M.I., DeBaz L., Agidi S., Lee H., Xie G., Lin A.H., HamakerB.R., Lemos J.A., Koo H.: Dynamics of Streptococcus mutans transcriptomein response to starch and sucrose during biofilm development.PLoS One, 2010; 5: e13478
    Google Scholar
  • 19. Kolenbrander P.E., Palmer R.J., Rickard A.H., Jakubovics N.S.,Chalmers N.I., Diaz P.I.: Bacterial interactions and successions duringplaque development. Periodontol 2000, 2006; 42: 47-79
    Google Scholar
  • 20. Krzyściak W., Jurczak A., Kościelniak D., Bystrowska B., SkalniakA.: The virulence of Streptococcus mutans and the ability to form biofilms.Eur. J. Clin. Microbiol. Infect. Dis., 2014; 33: 499-515
    Google Scholar
  • 21. Krzyściak W., Pluskwa K.K., Piątkowski J., Krzyściak P., JurczakA., Kościelniak D., Skalniak A.: The usefulness of biotyping in the determinationof selected pathogenicity determinants in Streptococcusmutans. BMC Microbiol., 2014; 14: 194
    Google Scholar
  • 22. Kuboniwa M., Tribble G.D., Hendrickson E.L., Amano A., LamontR.J., Hackett M.: Insights into the virulence of oral biofilms: discoveriesfrom proteomics. Expert Rev. Proteomics, 2012; 9: 311-323
    Google Scholar
  • 23. Lang C., Böttner M., Holz C., Veen M., Ryser M., Reindl A., PompejusM., Tanzer J.M.: Specific Lactobacillus/Mutans Streptococcus co–aggregation. J. Dent. Res., 2010; 89: 175-179
    Google Scholar
  • 24. Lee S.H., Choi B.K., Kim Y.J.: The cariogenic characters of xylitol-resistantand xylitol-sensitive Streptococcus mutans in biofilmformation with salivary bacteria. Arch. Oral Biol., 2012; 57: 697-703
    Google Scholar
  • 25. Lemos J.A., Quivey R.G., Koo H., Abranches J.: Streptococcus mutans:a new Gram-positive paradigm? Microbiology, 2013; 159: 436-445
    Google Scholar
  • 26. Leśnierowski G., Borowiak R.: Zastosowanie rezorcyny jako środkaochronnego lizozymu podczas jego wysokotemperaturowej modyfikacji.Żywność. Nauka. Technologia. Jakość, 2012; 2: 131-142
    Google Scholar
  • 27. Li R., Kumar R., Tati S., Puri S., Edgerton M.: Candida albicansflu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentrationand fungicidal activity. Antimicrob. Agents Chemother.,2013; 57: 1832-1839
    Google Scholar
  • 28. Loesche W.J.: Role of Streptococcus mutans in human dental decay.Microbiol. Rev., 1986; 50: 353-380
    Google Scholar
  • 29. Ly-Chatain M.H., Moussaoui S., Vera A., Rigobello V., DemarignyY.: Antiviral effect of cationic compounds on bacteriophages. Front.Microbiol., 2013; 4: 46
    Google Scholar
  • 30. Matsui R., Cvitkovitch D.: Acid tolerance mechanisms utilized byStreptococcus mutans. Future Microbiol., 2010; 5: 403-417
    Google Scholar
  • 31. Melino S., Santone C., Di Nardo P., Sarkar B.: Histatins: salivarypeptides with copper (II) and zinc(II)-binding motifs. Perspectivesfor biomedical applications. FEBS J., 2014; 281: 657-672
    Google Scholar
  • 32. Metwalli K.H., Khan S.A., Krom B.P., Jabra-Rizk M.A.: Streptococcusmutans, Candida albicans, and the human mouth: a sticky situation.PLoS Pathog., 2013; 9: e1003616
    Google Scholar
  • 33. Morales J.O., Ross A.C., McConville J.T.: Protein-coated nanoparticlesembedded in films as delivery platforms. J. Pharm. Pharmacol.,2013; 65: 827-838
    Google Scholar
  • 34. Nicolas G.G., Lavoie M.C.: Streptococcus mutans and oral streptococciin dental plaque. Can. J. Microbiol., 2011; 57: 1-20
    Google Scholar
  • 35. Pasupuleti M., Schmidtchen A., Malmsten M.: Antimicrobialpeptides: key components of the innate immune system. Crit. Rev.Biotechnol., 2012; 32: 143-171
    Google Scholar
  • 36. Pepperney A., Chikindas M.: Antibacterial peptides: opportunitiesfor the prevention and treatment of dental caries. ProbioticsAntimicro. Prot., 2011; 3: 68-96
    Google Scholar
  • 37. Postollec F., Norde W., de Vries J., Busscher H.J., van der Mei H.C.:Interactive forces between co-aggregating and non-co-aggregatingoral bacterial pairs. J. Dent. Res., 2006; 85: 231-234
    Google Scholar
  • 38. Quinones-Mateu M.E., Lederman M.M., Feng Z., Chakraborty B.,Weber J., Rangel H.R., Marotta M.L., Mirza M., Jiang B., Kiser P., Medvik K., Sieg S.F., Weinberg A.: Human epithelial b-defensins 2 and
    Google Scholar
  • 39. Rickard A.H., Gilbert P., High N.J., Kolenbrander P.E., HandleyP.S.: Bacterial coaggregation: an integral process in the developmentof multi-species biofilms. Trends Microbiol., 2003; 11: 94-100
    Google Scholar
  • 40. Rijnkels M., Elnitski L., Miller W., Rosen J.M.: Multispecies comparativeanalysis of a mammalian-specific genomic domain encodingsecretory proteins. Genomics, 2003; 82: 417-432
    Google Scholar
  • 41. Roger V., Tenovuo J., Lenander-Lumikari M., Söderling E., Vilja P.:Lysozyme and lactoperoxidase inhibit the adherence of Streptococcusmutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite invitro. Caries Res., 1994; 28: 421-428
    Google Scholar
  • 42. Sabatini L.M., Warner T.F., Saitoh E., Azen E.A.: Tissue distributionof RNAs for cystatins, histatins, statherin, and proline-richsalivary proteins in humans and macaques. J. Dent. Res., 1989; 68:1138-1145
    Google Scholar
  • 43. Samaranayake Y.H., Cheung B.P., Parahitiyawa N., SeneviratneC.J., Yau J.Y., Yeung K.W., Samaranayake L.P.: Synergistic activity oflysozyme and antifungal agents against Candida albicans biofilms ondenture acrylic surfaces. Arch. Oral Biol., 2009; 54: 115-126
    Google Scholar
  • 44. Scali C., Kunimoto B.: An update on chronic wounds and the roleof biofilms. J. Cutan. Med. Surg., 2013; 17: 371-376
    Google Scholar
  • 45. Senadheera D., Cvitkovitch D.G.: Quorum sensing and biofilmformation by Streptococcus mutans. Adv. Exp. Med. Biol., 2008; 631:178-188
    Google Scholar
  • 46. Singh P.K., Parsek M.R., Greenberg E.P., Welsh M.J.: A componentof innate immunity prevents bacterial biofilm development.Nature, 2002; 417: 552-555
    Google Scholar
  • 47. Situ H., Bobek L.A.: In vitro assessment of antifungal therapeuticpotential of salivary histatin-5, two variants of histatin-5, andsalivary mucin (MUC7) domain 1. Antimicrob. Agents Chemother.,2000; 44: 1485-1493
    Google Scholar
  • 48. Socransky S.S., Haffejee A.D.: Dental biofilms: difficult therapeutictargets. Periodontol. 2000, 2002; 28: 12-55
    Google Scholar
  • 49. Söderling E.M., Marttinen A.M., Haukioja A.L.: Probiotic lactobacilliinterfere with Streptococcus mutans biofilm formation in vitro.Curr. Microbiol., 2011; 62: 618-622
    Google Scholar
  • 50. Sugiyama K., Suzuki Y., Furuta H.: Isolation and characterizationof histamine-releasing peptides from human parotid saliva.Life Sci., 1985; 37: 475-480
    Google Scholar
  • 51. Tati S., Jang W.S., Li R., Kumar R., Puri S., Edgerton M.: Histatin 5resistance of Candida glabrata can be reversed by insertion of Candidaalbicans polyamine transporter-encoding genes DUR3 and DUR31.PLoS One, 2013; 8: e61480
    Google Scholar
  • 52. Tati S., Li R., Puri S., Kumar R., Davidow P., Edgerton M.: Histatin5-spermidine conjugates have enhanced fungicidal activity andefficacy as a topical therapeutic for oral candidiasis. Antimicrob.Agents Chemother., 2014; 58: 756-766
    Google Scholar
  • 53. Tay W.M., Hanafy A.I., Angerhofer A., Ming L.J.: A plausiblerole of salivary copper in antimicrobial activity of histatin-5-metalbinding and oxidative activity of its copper complex. Bioorg. Med.Chem. Lett., 2009; 19: 6709-6712
    Google Scholar
  • 54. Teanpaisan R., Piwat S., Dahlén G.: Inhibitory effect of oral Lactobacillusagainst oral pathogens. Lett. Appl. Microbiol., 2011; 53: 452-459
    Google Scholar
  • 55. Vylkova S., Jang W.S., Li W., Nayyar N., Edgerton M.: Histatin 5initiates osmotic stress response in Candida albicans via activationof the Hog1 mitogen-activated protein kinase pathway. Eukaryot.Cell, 2007; 6: 1876-1888
    Google Scholar
  • 56. Wan A.K., Seow W.K., Walsh L.J., Bird P.S.: Comparison of fiveselective media for the growth and enumeration of Streptococcusmutans. Aust. Dent. J., 2002; 47: 21-26
    Google Scholar
  • 57. Wang G.: Human antimicrobial peptides and proteins. Pharmaceuticals,2014; 7: 545-594
    Google Scholar
  • 58. Zijnge V., van Leeuwen M.B., Degener J.E., Abbas F., ThurnheerT., Gmür R., Harmsen H.J.: Oral biofilm architecture on natural teeth.PLoS One, 2010; 5: e9321
    Google Scholar

Pełna treść artykułu

Przejdź do treści